

PageRank: Ranking of nodes in graphs

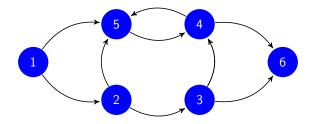
Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

October 15, 2019

Ranking of nodes in graphs: Random walk

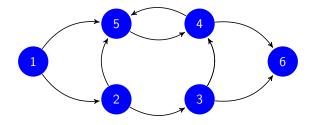
Ranking of nodes in graphs: Probability propagation

Graphs



- ► Graph \Rightarrow A set of V of vertices or nodes j = 1, ..., J \Rightarrow Connected by a set of edges E defined as ordered pairs (i, j)
- ► In figure \Rightarrow Nodes are $V = \{1, 2, 3, 4, 5, 6\}$ \Rightarrow Edges $E = \{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), ... (3, 6), (4, 5), (4, 6), (5, 4)\}$
- ▶ Ex. 1: Websites and hyperlinks \Rightarrow World Wide Web (WWW)
- Ex. 2: People and friendship \Rightarrow Social network

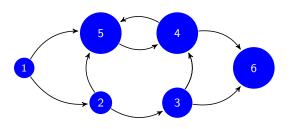
How well connected nodes are?



- ► Q: Which node is the most connected? A: Define most connected ⇒ Can define "most connected" in different ways
- Two important connectivity indicators
 - 1) How many links point to a node (outgoing links irrelevant)
 - 2) How important are the links that point to a node
- ▶ Node rankings to measure website relevance, social influence

Connectivity ranking

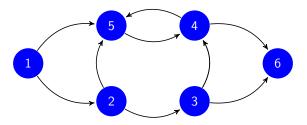
- ► Key insight: There is information in the structure of the network
- Knowledge is distributed through the network
 - \Rightarrow The network (not the nodes) knows the rankings
- Idea exploited by Google's PageRank[©] to rank webpages
 ... by social scientists to study trust & reputation in social networks
 ... by ISI to rank scientific papers, transactions & magazines ...



- No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- Same for 6

Preliminary definitions

• Graph $G = (V, E) \Rightarrow$ vertices $V = \{1, 2, \dots, J\}$ and edges E



Outgoing neighborhood of i is the set of nodes j to which i points

$$n(i) := \{j : (i,j) \in E\}$$

• Incoming neighborhood, $n^{-1}(i)$ is the set of nodes that point to *i*:

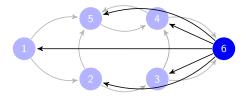
$$n^{-1}(i) := \{j : (j, i) \in E\}$$

• Strongly connected $G \Rightarrow$ directed path joining any pair of nodes

Definition of rank

- ▶ Agent A chooses node *i*, e.g., web page, at random for initial visit
- Next visit randomly chosen between links in the neighborhood n(i)
 All neighbors chosen with equal probability
- ▶ If reach a dead end because node *i* has no neighbors
 ⇒ Chose next visit at random equiprobably among all nodes
- ▶ Redefine graph G = (V, E) adding edges from dead ends to all nodes

 \Rightarrow Restrict attention to connected (modified) graphs



Rank of node i is the average number of visits of agent A to i

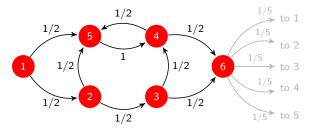
Equiprobable random walk

- Formally, let A_n be the node visited at time n
- Define transition probability P_{ij} from node *i* into node *j*

$$P_{ij} := \mathsf{P}\left(A_{n+1} = j \mid A_n = i\right)$$

• Next visit equiprobable among *i*'s $N_i := |n(i)|$ neighbors

$$P_{ij} = rac{1}{|n(i)|} = rac{1}{N_i}, \qquad ext{for all } j \in n(i)$$



- Still have a graph
- But also a MC
- ▶ Red (not blue) circles

Formal definition of rank

Def: Rank r_i of *i*-th node is the time average of number of visits

$$r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ A_m = i \}$$

 \Rightarrow Define vector of ranks $\mathbf{r} := [r_1, r_2, \dots, r_J]^T$

• Rank r_i can be approximated by average r_{ni} at time n

$$r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \{ A_m = i \}$$

 $\Rightarrow \text{ Since } \lim_{n \to \infty} r_{ni} = r_i \text{ , it holds } r_{ni} \approx r_i \text{ for } n \text{ sufficiently large}$ $\Rightarrow \text{ Define vector of approximate ranks } \mathbf{r}_n := [r_{n1}, r_{n2}, \dots, r_{nJ}]^T$

If modified graph is connected, rank independent of initial visit

Output : Vector $\mathbf{r}(i)$ with ranking of node i

- Input : Scalar *n* indicating maximum number of iterations
- Input : Vector N(i) containing number of neighbors of i
- Input : Matrix N(i, j) containing indices j of neighbors of i

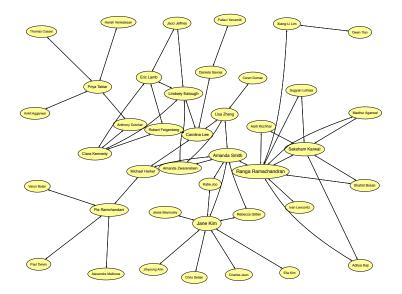
m = 1; $\mathbf{r} = \text{zeros}(J,1)$; % Initialize time and ranks $A_0 = \text{random}(\text{`unid'}, J)$; % Draw first visit uniformly at random while m < n do

jump = random('unid', $N_{A_{m-1}}$); % Neighbor uniformly at random $A_m = \mathbf{N}(A_{m-1}, \text{ jump})$; % Jump to selected neighbor $\mathbf{r}(A_m) = \mathbf{r}(A_m) + 1$; % Update ranking for A_m m = m + 1; end

 $\mathbf{r} = \mathbf{r}/n$; % Normalize by number of iterations *n*

- Asked probability students about homework collaboration
- Created (crude) graph of the social network of students in the class
 ⇒ Used ranking algorithm to understand connectedness
- ► Ex: I want to know how well students are coping with the class ⇒ Best to ask people with higher connectivity ranking
- 2009 data from "UPenn's ECE440"

Ranked class graph



Convergence metrics

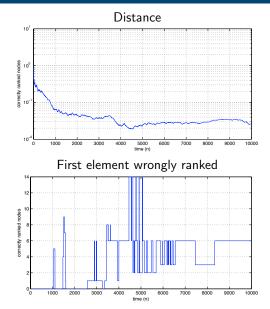
- Recall r is vector of ranks and r_n of rank iterates
- ▶ By definition $\lim_{n\to\infty} \mathbf{r}_n = \mathbf{r}$. How fast \mathbf{r}_n converges to \mathbf{r} (\mathbf{r} given)?
- Can measure by ℓ_2 distance between **r** and **r**_n

$$\zeta_n := \|\mathbf{r} - \mathbf{r}_n\|_2 = \left(\sum_{i=1}^J (r_{ni} - r_i)^2\right)^{1/2}$$

- If interest is only on highest ranked nodes, e.g., a web search
 ⇒ Denote r⁽ⁱ⁾ as the index of the *i*-th highest ranked node
 ⇒ Let r⁽ⁱ⁾_n be the index of the *i*-th highest ranked node at time n
- ▶ First element wrongly ranked at time *n*

$$\xi_n := \arg\min_i \{r^{(i)} \neq r_n^{(i)}\}$$

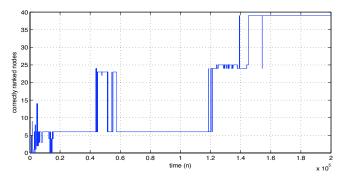
Evaluation of convergence metrics



- Distance close to 10^{-2} in $\approx 5 \times 10^3$ iterations
- Bad: Two highest ranks in $\approx 4 \times 10^3$ iterations
- Awful: Six best ranks in $\approx 8 \times 10^3$ iterations

(Very) slow convergence

- ▶ Cannot confidently claim convergence until 10⁵ iterations
 - \Rightarrow Beyond particular case, slow convergence inherent to algorithm



► Example has 40 nodes, want to use in network with 10⁹ nodes!
⇒ Leverage properties of MCs to obtain a faster algorithm

Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Probability propagation

Limit probabilities

• Recall definition of rank
$$\Rightarrow r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{A_m = i\}$$

► Rank is time average of number of state visits in a MC ⇒ Can be as well obtained from limiting probabilities

• Recall transition probabilities
$$\Rightarrow P_{ij} = \frac{1}{N_i}$$
, for all $j \in n(i)$

▶ Stationary distribution $\boldsymbol{\pi} = [\pi_1, \pi_1, \dots, \pi_J]^T$ solution of

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i$$

 \Rightarrow Plus normalization equation $\sum_{i=1}^J \pi_i = 1$

• As per ergodicity of MC (strongly connected G) \Rightarrow **r** = π

As always, can define matrix **P** with elements P_{ij}

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^J P_{ji} \pi_j \quad \text{for all } i$$

Right hand side is just definition of a matrix product leading to

$$\boldsymbol{\pi} = \mathbf{P}^T \boldsymbol{\pi}, \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

 \Rightarrow Also added normalization equation

Idea: solve system of linear equations or eigenvalue problem on P^T
 ⇒ Requires matrix P available at a central location
 ⇒ Computationally costly (sparse matrix P with 10¹⁸ entries)

What are limit probabilities?

• Let $p_i(n)$ denote probability of agent A visiting node i at time n

$$p_i(n) := \mathsf{P}(A_n = i)$$

• Probabilities at time n + 1 and n can be related

$$P(A_{n+1} = i) = \sum_{j \in n^{-1}(i)} P(A_{n+1} = i | A_n = j) P(A_n = j)$$

Which is, of course, probability propagation in a MC

$$p_i(n+1) = \sum_{j\in n^{-1}(i)} P_{ji}p_j(n)$$

▶ By definition limit probabilities are (let $\mathbf{p}(n) = [p_1(n), \dots, p_J(n)]^T$)

$$\lim_{n\to\infty}\mathbf{p}(n)=\boldsymbol{\pi}=\mathbf{r}$$

⇒ Compute ranks from limit of propagated probabilities

Can also write probability propagation in matrix form

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j=1}^J P_{ji}p_j(n)$$
 for all *i*

Right hand side is just definition of a matrix product leading to

$$\mathbf{p}(n+1) = \mathbf{P}^T \mathbf{p}(n)$$

► Idea: can approximate rank by large *n* probability distribution $\Rightarrow \mathbf{r} = \lim_{n \to \infty} \mathbf{p}(n) \approx \mathbf{p}(n) \text{ for } n \text{ sufficiently large}$

▶ Algorithm is just a recursive matrix product, a power iteration

Output : Vector $\mathbf{r}(i)$ with ranking of node *i* Input : Scalar *n* indicating maximum number of iterations Input : Matrix P containing transition probabilities m = 1; % Initialize time $\mathbf{r} = (1/J) \text{ones}(J,1)$; % Initial distribution uniform across all nodes while m < n do $| \mathbf{r} = \mathbf{P}^T \mathbf{r}$; % Probability propagation m = m + 1; end

- Q: Why does the random walk converge so slow?
- ► A: Need to register a large number of agent visits to every state Ex: 40 nodes, say 100 visits to each ⇒ 4 × 10³ iters.
- ► Smart idea: Unleash a large number of agents K

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \frac{1}{K} \sum_{k=1}^K \mathbb{I}\left\{A_{km} = i\right\}$$

- Visits are now spread over time and space
 - \Rightarrow Converges "K times faster"
 - \Rightarrow But haven't changed computational cost

• Q: What happens if we unleash infinite number of agents K?

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^K \mathbb{I} \{A_{km} = i\}$$

Using law of large numbers and expected value of indicator function

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{E}\left[\mathbb{I}\left\{A_m = i\right\}\right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathsf{P}\left(A_m = i\right)$$

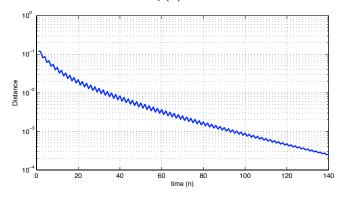
• Graph walk is an ergodic MC, then $\lim_{m \to \infty} P(A_m = i)$ exists, and

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n p_i(m) = \lim_{n \to \infty} p_i(n)$$

 \Rightarrow Probability propagation \approx Unleashing infinitely many agents

Distance to rank

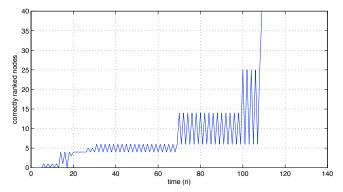
► Initialize with uniform probability distribution ⇒ p(0) = (1/J)1
 ⇒ Plot distance between p(n) and r



• Distance is 10^{-2} in ≈ 30 iters., 10^{-4} in ≈ 140 iters.

 \Rightarrow Convergence two orders of magnitude faster than random walk

Rank of highest ranked node that is wrongly ranked by time n



- ▶ Not bad: All nodes correctly ranked in 120 iterations
- Good: Ten best ranks in 70 iterations
- Great: Four best ranks in 20 iterations

Nodes want to compute their rank r_i

- \Rightarrow Can communicate with neighbors only (incoming + outgoing)
- \Rightarrow Access to neighborhood information only
- Recall probability update

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j}p_j(n)$$

 \Rightarrow Uses local information only

- Distributed algorithm. Nodes keep local rank estimates $r_i(n)$
 - ▶ Receive rank (probability) estimates $r_j(n)$ from neighbors $j \in n^{-1}(i)$
 - Update local rank estimate $r_i(n+1) = \sum_{i \in n^{-1}(i)} r_i(n) / N_i$
 - Communicate rank estimate $r_i(n+1)$ to outgoing neighbors $j \in n(i)$
- Only need to know the number of neighbors of my neighbors

- Can communicate with neighbors only (incoming + outgoing)
 - \Rightarrow But cannot access neighborhood information
 - \Rightarrow Pass agent ('hot potato') around
- Local rank estimates $r_i(n)$ and counter with number of visits V_i
- Algorithm run by node i at time n

if Agent received from neighbor then $V_i = V_i + 1$ Choose random neighbor Send agent to chosen neighbor end $n = n + 1; r_i(n) = V_i/n;$

Speed up convergence by generating many agents to pass around

Random walk (RW) implementation

- \Rightarrow Most secure. No information shared with other nodes
- \Rightarrow Implementation can be distributed
- \Rightarrow Convergence exceedingly slow

System of linear equations

- \Rightarrow Least security. Graph in central server
- \Rightarrow Distributed implementation not clear
- \Rightarrow Convergence not an issue
- \Rightarrow But computationally costly to obtain approximate solutions

Probability propagation

- \Rightarrow Somewhat secure. Information shared with neighbors only
- \Rightarrow Implementation can be distributed
- \Rightarrow Convergence rate acceptable (orders of magnitude faster than RW)

- Graph, nodes and edges
- Connectivity indicators
- Node ranking
- Google's PageRank
- Node's neighborhood
- Strong connectivity
- Random walk on a graph
- Long-run fraction of state visits

- Ranking algorithm
- Convergence metrics
- Computational cost
- Probability propagation
- Power method
- Distributed algorithm
- Security