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PageRank: Random walk

Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Probability propagation
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Graphs
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I Graph ⇒ A set of V of vertices or nodes j = 1, . . . , J
⇒ Connected by a set of edges E defined as ordered pairs (i , j)

I In figure ⇒ Nodes are V = {1, 2, 3, 4, 5, 6}
⇒ Edges E = {(1, 2), (1, 5),(2, 3), (2, 5), (3, 4), ...

(3, 6), (4, 5), (4, 6), (5, 4)}
I Ex. 1: Websites and hyperlinks ⇒ World Wide Web (WWW)

I Ex. 2: People and friendship ⇒ Social network
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How well connected nodes are?
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I Q: Which node is the most connected? A: Define most connected

⇒ Can define “most connected” in different ways

I Two important connectivity indicators

1) How many links point to a node (outgoing links irrelevant)
2) How important are the links that point to a node

I Node rankings to measure website relevance, social influence
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Connectivity ranking

I Key insight: There is information in the structure of the network

I Knowledge is distributed through the network

⇒ The network (not the nodes) knows the rankings

I Idea exploited by Google’s PageRank c© to rank webpages

... by social scientists to study trust & reputation in social networks

... by ISI to rank scientific papers, transactions & magazines ...
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I No one points to 1

I Only 1 points to 2

I Only 2 points to 3, but 2
more important than 1

I 4 as high as 5 with less links

I Links to 5 have lower rank

I Same for 6
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Preliminary definitions

I Graph G = (V ,E ) ⇒ vertices V = {1, 2, . . . , J} and edges E
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I Outgoing neighborhood of i is the set of nodes j to which i points

n(i) := {j : (i , j) ∈ E}

I Incoming neighborhood, n−1(i) is the set of nodes that point to i :

n−1(i) := {j : (j , i) ∈ E}

I Strongly connected G ⇒ directed path joining any pair of nodes
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Definition of rank

I Agent A chooses node i , e.g., web page, at random for initial visit

I Next visit randomly chosen between links in the neighborhood n(i)

⇒ All neighbors chosen with equal probability

I If reach a dead end because node i has no neighbors

⇒ Chose next visit at random equiprobably among all nodes

I Redefine graph G = (V ,E ) adding edges from dead ends to all nodes

⇒ Restrict attention to connected (modified) graphs
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I Rank of node i is the average number of visits of agent A to i
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Equiprobable random walk

I Formally, let An be the node visited at time n

I Define transition probability Pij from node i into node j

Pij := P
(
An+1 = j

∣∣An = i
)

I Next visit equiprobable among i ’s Ni := |n(i)| neighbors

Pij =
1

|n(i)|
=

1

Ni
, for all j ∈ n(i)
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I Still have a graph

I But also a MC

I Red (not blue) circles
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Formal definition of rank

I Def: Rank ri of i-th node is the time average of number of visits

ri := lim
n→∞

1

n

n∑
m=1

I {Am = i}

⇒ Define vector of ranks r := [r1, r2, . . . , rJ ]T

I Rank ri can be approximated by average rni at time n

rni :=
1

n

n∑
m=1

I {Am = i}

⇒ Since lim
n→∞

rni = ri , it holds rni ≈ ri for n sufficiently large

⇒ Define vector of approximate ranks rn := [rn1, rn2, . . . , rnJ ]T

I If modified graph is connected, rank independent of initial visit
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Ranking algorithm

Output : Vector r(i) with ranking of node i
Input : Scalar n indicating maximum number of iterations
Input : Vector N(i) containing number of neighbors of i
Input : Matrix N(i , j) containing indices j of neighbors of i

m = 1; r=zeros(J,1); % Initialize time and ranks
A0 = random(‘unid’,J); % Draw first visit uniformly at random
while m < n do

jump = random(‘unid’,NAm−1); % Neighbor uniformly at random
Am = N(Am−1, jump); % Jump to selected neighbor
r(Am) = r(Am) + 1; % Update ranking for Am

m = m + 1;
end
r = r/n; % Normalize by number of iterations n
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Social graph example

I Asked probability students about homework collaboration

I Created (crude) graph of the social network of students in the class

⇒ Used ranking algorithm to understand connectedness

I Ex: I want to know how well students are coping with the class

⇒ Best to ask people with higher connectivity ranking

I 2009 data from “UPenn’s ECE440”
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Ranked class graph
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Convergence metrics

I Recall r is vector of ranks and rn of rank iterates

I By definition lim
n→∞

rn = r . How fast rn converges to r (r given)?

I Can measure by `2 distance between r and rn

ζn := ‖r − rn‖2 =

( J∑
i=1

(rni − ri )
2

)1/2

I If interest is only on highest ranked nodes, e.g., a web search

⇒ Denote r (i) as the index of the i-th highest ranked node

⇒ Let r
(i)
n be the index of the i-th highest ranked node at time n

I First element wrongly ranked at time n

ξn := arg min
i
{r (i) 6= r (i)n }
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Evaluation of convergence metrics

Distance
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

time (n)

co
rre

ct
ly 

ra
nk

ed
 n

od
es

I Distance close to 10−2 in
≈ 5× 103 iterations

I Bad: Two highest ranks
in ≈ 4× 103 iterations

I Awful: Six best ranks in
≈ 8× 103 iterations

I (Very) slow convergence
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When does this algorithm converge?

I Cannot confidently claim convergence until 105 iterations

⇒ Beyond particular case, slow convergence inherent to algorithm
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I Example has 40 nodes, want to use in network with 109 nodes!

⇒ Leverage properties of MCs to obtain a faster algorithm
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PageRank: Probability propagation

Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Probability propagation
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Limit probabilities

I Recall definition of rank ⇒ ri := lim
n→∞

1

n

n∑
m=1

I {Am = i}

I Rank is time average of number of state visits in a MC

⇒ Can be as well obtained from limiting probabilities

I Recall transition probabilities ⇒ Pij =
1

Ni
, for all j ∈ n(i)

I Stationary distribution π = [π1, π1, . . . , πJ ]T solution of

πi =
∑

j∈n−1(i)

Pj iπj =
∑

j∈n−1(i)

πj
Nj

for all i

⇒ Plus normalization equation
∑J

i=1 πi = 1

I As per ergodicity of MC (strongly connected G ) ⇒ r = π
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Matrix notation, eigenvalue problem

I As always, can define matrix P with elements Pij

πi =
∑

j∈n−1(i)

Pjiπj =
J∑

j=1

Pjiπj for all i

I Right hand side is just definition of a matrix product leading to

π = PTπ, πT1 = 1

⇒ Also added normalization equation

I Idea: solve system of linear equations or eigenvalue problem on PT

⇒ Requires matrix P available at a central location

⇒ Computationally costly (sparse matrix P with 1018 entries)
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What are limit probabilities?

I Let pi (n) denote probability of agent A visiting node i at time n

pi (n) := P (An = i)

I Probabilities at time n + 1 and n can be related

P (An+1 = i) =
∑

j∈n−1(i)

P
(
An+1 = i

∣∣An = j
)

P (An = j)

I Which is, of course, probability propagation in a MC

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n)

I By definition limit probabilities are (let p(n) = [p1(n), . . . , pJ(n)]T )

lim
n→∞

p(n) = π = r

⇒ Compute ranks from limit of propagated probabilities
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Probability propagation

I Can also write probability propagation in matrix form

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n) =
J∑

j=1

Pjipj(n) for all i

I Right hand side is just definition of a matrix product leading to

p(n + 1) = PTp(n)

I Idea: can approximate rank by large n probability distribution

⇒ r = lim
n→∞

p(n) ≈ p(n) for n sufficiently large
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Ranking algorithm

I Algorithm is just a recursive matrix product, a power iteration

Output : Vector r(i) with ranking of node i
Input : Scalar n indicating maximum number of iterations
Input : Matrix P containing transition probabilities

m = 1; % Initialize time
r=(1/J)ones(J,1); % Initial distribution uniform across all nodes
while m < n do

r = PT r; % Probability propagation
m = m + 1;

end
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Interpretation of probability propagation

I Q: Why does the random walk converge so slow?

I A: Need to register a large number of agent visits to every state

Ex: 40 nodes, say 100 visits to each ⇒ 4× 103 iters.

I Smart idea: Unleash a large number of agents K

ri = lim
n→∞

1

n

n∑
m=1

1

K

K∑
k=1

I {Akm = i}

I Visits are now spread over time and space

⇒ Converges “K times faster”

⇒ But haven’t changed computational cost
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Interpretation of prob. propagation (continued)

I Q: What happens if we unleash infinite number of agents K?

ri = lim
n→∞

1

n

n∑
m=1

lim
K→∞

1

K

K∑
k=1

I {Akm = i}

I Using law of large numbers and expected value of indicator function

ri = lim
n→∞

1

n

n∑
m=1

E [I {Am = i}] = lim
n→∞

1

n

n∑
m=1

P (Am = i)

I Graph walk is an ergodic MC, then lim
m→∞

P (Am = i) exists, and

ri = lim
n→∞

1

n

n∑
m=1

pi (m) = lim
n→∞

pi (n)

⇒ Probability propagation ≈ Unleashing infinitely many agents

Introduction to Random Processes Ranking of nodes in graphs 23



Distance to rank

I Initialize with uniform probability distribution ⇒ p(0) = (1/J)1

⇒ Plot distance between p(n) and r
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I Distance is 10−2 in ≈ 30 iters., 10−4 in ≈ 140 iters.

⇒ Convergence two orders of magnitude faster than random walk
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Number of nodes correctly ranked

I Rank of highest ranked node that is wrongly ranked by time n
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I Not bad: All nodes correctly ranked in 120 iterations

I Good: Ten best ranks in 70 iterations

I Great: Four best ranks in 20 iterations
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Distributed algorithm to compute ranks

I Nodes want to compute their rank ri

⇒ Can communicate with neighbors only (incoming + outgoing)

⇒ Access to neighborhood information only

I Recall probability update

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n) =
∑

j∈n−1(i)

1

Nj
pj(n)

⇒ Uses local information only

I Distributed algorithm. Nodes keep local rank estimates ri (n)
I Receive rank (probability) estimates rj(n) from neighbors j ∈ n−1(i)
I Update local rank estimate ri (n + 1) =

∑
j∈n−1(i) rj(n)/Nj

I Communicate rank estimate ri (n + 1) to outgoing neighbors j ∈ n(i)

I Only need to know the number of neighbors of my neighbors
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Distributed implementation of random walk

I Can communicate with neighbors only (incoming + outgoing)

⇒ But cannot access neighborhood information

⇒ Pass agent (‘hot potato’) around

I Local rank estimates ri (n) and counter with number of visits Vi

I Algorithm run by node i at time n

if Agent received from neighbor then
Vi = Vi + 1
Choose random neighbor
Send agent to chosen neighbor

end
n = n + 1; ri (n) = Vi/n;

I Speed up convergence by generating many agents to pass around
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Comparison of different algorithms

I Random walk (RW) implementation

⇒ Most secure. No information shared with other nodes

⇒ Implementation can be distributed

⇒ Convergence exceedingly slow

I System of linear equations

⇒ Least security. Graph in central server

⇒ Distributed implementation not clear

⇒ Convergence not an issue

⇒ But computationally costly to obtain approximate solutions

I Probability propagation

⇒ Somewhat secure. Information shared with neighbors only

⇒ Implementation can be distributed

⇒ Convergence rate acceptable (orders of magnitude faster than RW)
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Glossary

I Graph, nodes and edges

I Connectivity indicators

I Node ranking

I Google’s PageRank

I Node’s neighborhood

I Strong connectivity

I Random walk on a graph

I Long-run fraction of state visits

I Ranking algorithm

I Convergence metrics

I Computational cost

I Probability propagation

I Power method

I Distributed algorithm

I Security
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