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Exponential distribution

I Exponential RVs often model times at which events occur

⇒ Or time elapsed between occurrence of random events

I RV T ∼ exp(λ) is exponential with parameter λ if its pdf is

fT (t) = λe−λt , for all t ≥ 0

I Cdf, integral of the pdf, is ⇒ FT (t) = P (T ≤ t) = 1− e−λt

⇒ Complementary (c)cdf is ⇒ P(T ≥ t) = 1− FT (t) = e−λt

pdf (λ = 1) cdf (λ = 1)
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Expected value

I Expected value of time T ∼ exp(λ) is

E [T ] =

∫ ∞
0

tλe−λtdt = −te−λt
∣∣∣∣∞
0

+

∫ ∞
0

e−λtdt = 0 +
1

λ

⇒ Integrated by parts with u = t, dv = λe−λtdt

I Mean time is inverse of parameter λ

⇒ λ is rate/frequency of events happening at intervals T

⇒ Interpret: Average of λt events by time t

I Bigger λ ⇒ smaller expected times, larger frequency of events
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t
∣∣∣∣∣
t = 0

∣∣∣∣∣
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∣∣∣∣∣
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Second moment and variance

I For second moment also integrate by parts (u = t2, dv = λe−λtdt)

E
[
T 2
]

=

∫ ∞
0

t2λe−λtdt = −t2e−λt
∣∣∣∣∞
0

+

∫ ∞
0

2te−λtdt

I First term is 0, second is (2/λ)E [T ]

E
[
T 2
]

=
2

λ

∫ ∞
0

tλe−λt =
2

λ2

I The variance is computed from the mean and second moment

var [T ] = E
[
T 2
]
− E2[T ] =

2

λ2
− 1

λ2
=

1

λ2

⇒ Parameter λ controls mean and variance of exponential RV
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Memoryless random times

I Def: Consider random time T . We say time T is memoryless if

P
(
T > s + t

∣∣T > t
)

= P (T > s)

I Probability of waiting s extra units of time (e.g., seconds) given that
we waited t seconds, is just the probability of waiting s seconds

⇒ System does not remember it has already waited t seconds

⇒ Same probability irrespectively of time already elapsed

Ex: Chemical reaction A + B → AB occurs when molecules A and B
“collide”. A, B move around randomly. Time T until reaction
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Exponential RVs are memoryless

I Write memoryless property in terms of joint pdf

P
(
T > s + t

∣∣T > t
)

=
P (T > s + t,T > t)

P (T > t)
= P (T > s)

I Notice event {T > s + t,T > t} is equivalent to {T > s + t}
⇒ Replace P (T > s + t,T > t) = P (T > s + t) and reorder

P (T > s + t) = P (T > t)P (T > s)

I If T ∼ exp(λ), ccdf is P (T > t) = e−λt so that

P (T > s + t) = e−λ(s+t) = e−λte−λs = P (T > t) P (T > s)

I If random time T is exponential ⇒ T is memoryless
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Continuous memoryless RVs are exponential

I Consider a function g(t) with the property g(t + s) = g(t)g(s)

I Q: Functional form of g(t)? Take logarithms

log g(t + s) = log g(t) + log g(s)

⇒ Only holds for all t and s if log g(t) = ct for some constant c

⇒ Which in turn, can only hold if g(t) = ect for some constant c

I Compare observation with statement of memoryless property

P (T > s + t) = P (T > t) P (T > s)

⇒ It must be P (T > t) = ect for some constant c

I T continuous: only true for exponential T ∼ exp(−c)

I T discrete: only geometric P (T > t) = (1− p)t with (1− p) = ec

I If continuous random time T is memoryless ⇒ T is exponential
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Main memoryless property result

Theorem
A continuous random variable T is memoryless if and only if it is
exponentially distributed. That is

P
(
T > s + t

∣∣T > t
)

= P (T > s)

if and only if fT (t) = λe−λt for some λ > 0

I Exponential RVs are memoryless. Do not remember elapsed time

⇒ Only type of continuous memoryless RVs

I Discrete RV T is memoryless if and only of it is geometric

⇒ Geometrics are discrete approximations of exponentials

⇒ Exponentials are continuous limits of geometrics

I Exponential = time until success ⇔ Geometric = nr. trials until success
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Exponential times example

I First customer’s arrival to a store takes T ∼ exp(1/10) minutes

⇒ Suppose 5 minutes have passed without an arrival

I Q: How likely is it that the customer arrives within the next 3 mins.?

I Use memoryless property of exponential T

P
(
T ≤ 8

∣∣T > 5
)

= 1− P
(
T > 8

∣∣T > 5
)

= 1− P (T > 3) = 1− e−3λ = 1− e−0.3

I Q: How likely is it that the customer arrives after time T = 9?

P
(
T > 9

∣∣T > 5
)

= P (T > 4) = e−4λ = e−0.4

I Q: What is the expected additional time until the first arrival?

I Additional time is T − 5, and P
(
T − 5 > t

∣∣T > 5
)

= P (T > t)

E
[
T − 5

∣∣T > 5
]

= E [T ] = 1/λ = 10
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Time to first event

I Independent exponential RVs T1, T2 with parameters λ1, λ2

I Q: Prob. distribution of time to first event, i.e., T := min(T1,T2)?

⇒ To have T > t we need both T1 > t and T2 > t

I Using independence of T1 and T2 we can write

P (T > t) = P (T1 > t,T2 > t) = P (T1 > t) P (T2 > t)

I Substituting expressions of exponential ccdfs

P (T > t) = e−λ1te−λ2t = e−(λ1+λ2)t

I T := min(T1,T2) is exponentially distributed with parameter λ1 +λ2

I In general, for n independent RVs Ti ∼ exp(λi ) define T := mini Ti

⇒ T is exponentially distributed with parameter
∑n

i=1 λi

Introduction to Random Processes Continuous-time Markov Chains 11



First event to happen

I Q: Prob. P (T1 < T2) of T1 ∼ exp(λ1) happening before T2 ∼ exp(λ2)?

I Condition on T2 = t, integrate over the pdf of T2, independence

P (T1 < T2) =

∫ ∞
0

P
(
T1 < t

∣∣T2 = t
)
fT2(t) dt =

∫ ∞
0

FT1(t)fT2(t) dt

I Substitute expressions for exponential pdf and cdf

P (T1 < T2) =

∫ ∞
0

(1− e−λ1t)λ2e
−λ2t dt =

λ1
λ1 + λ2

I Either T1 comes before T2 or vice versa, hence

P (T2 < T1) = 1− P (T1 < T2) =
λ2

λ1 + λ2

⇒ Probabilities are relative values of rates (parameters)

I Larger rate ⇒ smaller average ⇒ higher prob. happening first
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Additional properties of exponential RVs

I Consider n independent RVs Ti ∼ exp(λi ). Ti time to i-th event

I Probability of j-th event happening first

P
(
Tj = min

i
Ti

)
=

λj∑n
i=1 λi

, j = 1, . . . , n

I Time to first event and rank ordering of events are independent

P
(

min
i

Ti ≥ t,T i1 < . . . < Tin

)
= P

(
min
i

Ti ≥ t
)

P (Ti1 < . . . < Tin)

I Suppose T ∼ exp(λ), independent of non-negative RV X

I Strong memoryless property asserts

P
(
T > X + t

∣∣T > X
)

= P (T > t)

⇒ Also forgets random but independent elapsed times
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Strong memoryless property example

I Independent customer arrival times Ti ∼ exp(λi ), i = 1, . . . , 3

⇒ Suppose customer 3 arrives first, i.e., min(T1,T2) > T3

I Q: Probability that time between first and second arrival exceeds t?

I We want to compute

P
(
min(T1,T2)− T3 > t

∣∣ min(T1,T2) > T3

)
I Denote Ti2 := min(T1,T2) the time to second arrival

⇒ Recall Ti2 ∼ exp(λ1 + λ2), Ti2 independent of Ti1 = T3

I Apply the strong memoryless property

P
(
Ti2 − T3 > t

∣∣Ti2 > T3

)
= P (Ti2 > t) = e−(λ1+λ2)t
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Probability of event in infinitesimal time

I Q: Probability of an event happening in infinitesimal time h?

I Want P (T < h) for small h

P (T < h) =

∫ h

0

λe−λt dt ≈ λh

⇒ Equivalent to
∂P (T < t)

∂t

∣∣∣∣
t=0

= λ

I Sometimes also write P (T < h) = λh + o(h)

⇒ o(h) implies lim
h→0

o(h)

h
= 0

⇒ Read as “negligible with respect to h”

I Q: Two independent events in infinitesimal time h?

P (T1 ≤ h,T2 ≤ h) ≈ (λ1h)(λ2h) = λ1λ2h
2 = o(h)
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Counting and Poisson processes

Exponential random variables

Counting processes and definition of Poisson processes

Properties of Poisson processes

Introduction to Random Processes Continuous-time Markov Chains 16



Counting processes

I Random process N(t) in continuous time t ∈ R+

I Def: Counting process N(t) counts number of events by time t

I Nonnegative integer valued: N(0) = 0, N(t) ∈ {0, 1, 2, . . .}
I Nondecreasing: N(s) ≤ N(t) for s < t

I Event counter: N(t)− N(s) = number of events in interval (s, t]
I N(t) continuous from the right
I N(S4)− N(S2) = 2, while N(S4)− N(S2 − ε) = 3 for small ε > 0

Ex.1: # text messages (SMS) typed
since beginning of class

Ex.2: # economic crises since 1900

Ex.3: # customers at Wegmans since
8 am this morning t

N(t)

1
2
3
4
5
6

S1 S2 S3 S4 S5 S6
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Independent increments

I Consider times s1 < t1 < s2 < t2 and intervals (s1, t1] and (s2, t2]

⇒ N(t1)− N(s1) events occur in (s1, t1]

⇒ N(t2)− N(s2) events occur in (s2, t2]

I Def: Independent increments implies latter two are independent

P (N(t1)− N(s1) = k ,N(t2)− N(s2) = l)

= P (N(t1)− N(s1) = k) P (N(t2)− N(s2) = l)

I Number of events in disjoint time intervals are independent

Ex.1: Likely true for SMS, except for “have to send” messages

Ex.2: Most likely not true for economic crises (business cycle)

Ex.3: Likely true for Wegmans, except for unforeseen events (storms)

I Does not mean N(t) independent of N(s), say for t > s

⇒ These events are clearly dependent, since N(t) is at least N(s)
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Stationary increments

I Consider time intervals (0, t] and (s, s + t]

⇒ N(t) events occur in (0, t]

⇒ N(s + t)− N(s) events in (s, s + t]

I Def: Stationary increments implies latter two have same prob. dist.

P (N(s + t)− N(s) = k) = P (N(t) = k)

I Prob. dist. of number of events depends on length of interval only

Ex.1: Likely true if lecture is good and you keep interest in the class

Ex.2: Maybe true if you do not believe we become better at preventing crises

Ex.3: Most likely not true because of, e.g., rush hours and slow days
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Poisson process

I Def: A counting process N(t) is a Poisson process if

(a) The process has stationary and independent increments
(b) The number of events in (0, t] has Poisson distribution with mean λt

P (N(t) = n) = e−λt (λt)n

n!

I An equivalent definition is the following

(i) The process has stationary and independent increments
(ii) Single event in infinitesimal time ⇒ P (N(h) = 1) = λh + o(h)
(iii) Multiple events in infinitesimal time ⇒ P (N(h) > 1) = o(h)

⇒ A more intuitive definition (even hard to grasp now)

I Conditions (i) and (a) are the same

I That (b) implies (ii) and (iii) is obvious
I Substitute small h in Poisson pmf’s expression for P (N(t) = n)

I To see that (ii) and (iii) imply (b) requires some work
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Explanation of model (i)-(iii)

I Consider time T and divide interval (0,T ] in n subintervals

I Subintervals are of duration h = T/n, h vanishes as n increases

⇒ The m-th subinterval spans
(
(m − 1)h,mh

]
I Define Am as the number of events that occur in m-th subinterval

Am = N
(
mh
)
− N

(
(m − 1)h

)
I The total number of events in (0,T ] is the sum of Am, m = 1, . . . , n

N(T ) =
n∑

m=1

Am=
n∑

m=1

N
(
mh
)
− N

(
(m − 1)h

)
I In figure, N(T ) = 5, A1, A2, A4, A7, A8 are 1 and A3, A5, A6 are 0

← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→
↓S1 ↓S2 ↓S3 ↓S4 ↓S5

t

∣∣∣∣
t = 0

∣∣∣∣
t = T
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Probability distribution of Am (intuitive arg.)

I Note first that since increments are stationary as per (i), it holds

P (Am = k) = P
(
N
(
mh
)
− N

(
(m − 1)h

)
= k

)
= P (N(h) = k)

I In particular, using (ii) and (iii)

P (Am = 1) = P (N(h) = 1) = λh + o(h)

P (Am > 1) = P (N(h) > 1) = o(h)

I Set aside o(h) probabilities – They’re negligible with respect to λh

P (Am = 1) = λh P (Am = 0) = 1− λh

⇒ Am is Bernoulli with parameter λh

← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→
↓S1 ↓S2 ↓S3 ↓S4 ↓S5

t

∣∣∣∣
t = 0

∣∣∣∣
t = T

Introduction to Random Processes Continuous-time Markov Chains 22



Probability distribution of N(T ) (intuitive arg.)

I Since increments are also independent as per (i), Am are independent

I N(T ) is sum of n independent Bernoulli RVs with parameter λh

⇒ N(T ) is binomial with parameters (n, λh) = (n, λT/n)

I As interval length h→ 0, number of intervals n→∞
⇒ The product n × λh = λT stays constant

⇒ N(T ) is Poisson with parameter λT (Law of rare events)

I Then (ii)-(iii) imply (b) and definitions are equivalent

⇒ Not a proof because we neglected o(h) terms

⇒ But explains what a Poisson process is

← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→ ← h→
↓S1 ↓S2 ↓S3 ↓S4 ↓S5

t

∣∣∣∣
t = 0

∣∣∣∣
t = T
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What is a Poisson process?

I Fundamental defining properties of a Poisson process
I Events happen in small interval h with probability λh proportional to h
I Whether event happens in an interval has no effect on other intervals

I Modeling questions

Q1: Expect probability of event proportional to length of interval?
Q2: Expect subsequent intervals to behave independently?

⇒ If positive, then a Poisson process model is appropriate

I Typically arise in a large population of agents acting independently

⇒ Larger interval, larger chance an agent takes an action

⇒ Action of one agent has no effect on action of other agents

⇒ Has therefore negligible effect on action of group
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Examples of Poisson processes

Ex.1: Number of people arriving at subway station. Number of cars
arriving at a highway entrance. Number of customers entering a
store ... Large number of agents (people, drivers, customers) acting
independently

Ex.2: SMS generated by all students in the class. Once you send an SMS
you are likely to stay silent for a while. But in a large population this
has a minimal effect in the probability of someone generating a SMS

Ex.3: Count of molecule reactions. Molecules are “removed” from pool of
reactants once they react. But effect is negligible in large
population. Eventually reactants are depleted, but in small time
scale process is approximately Poisson
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Formal argument to show equivalence

I Define Amax := max
m=1,...,n

(Am) , maximum nr. of events in one interval

I If Amax ≤ 1 all intervals have 0 or 1 events. Consider probability

P
(
N(T ) = k

∣∣Amax ≤ 1
)

⇒ For given h, N(T ) conditioned on Amax ≤ 1 is binomial

⇒ Parameters are n = T/h and p = λh + o(h)

I Interval length h→ 0 ⇒ Parameter p → 0, nr. of intervals n→∞
⇒ Product np ⇒ lim

h→0
np = lim

h→0
(T/h)(λh + o(h)) = λT

I N(T ) conditioned on Amax ≤ 1 is Poisson with parameter λT

P
(
N(T ) = k

∣∣Amax ≤ 1
)

= e−λT
(λT )k

k!
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Formal argument to show equivalence (continued)

I Separate study in Amax ≤ 1 and Amax > 1. That is, condition

P (N(T ) = k) = P
(
N(T ) = k

∣∣Amax ≤ 1
)
P (Amax ≤ 1)

+ P
(
N(T ) = k

∣∣Amax > 1
)
P (Amax > 1)

I Property (iii) implies that P (Amax > 1) vanishes as h→ 0

P (Amax > 1) ≤
n∑

m=1

P (Am > 1) = no(h) = T
o(h)

h
→ 0

I Thus, as h→ 0, P (Amax > 1)→ 0 and P (Amax ≤ 1)→ 1. Then

lim
h→0

P (N(T ) = k) = lim
h→0

P
(
N(T ) = k

∣∣Amax ≤ 1
)

I Right-hand side is Poisson ⇒ N(T ) Poisson with parameter λT
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Properties of Poisson processes

Exponential random variables

Counting processes and definition of Poisson processes

Properties of Poisson processes
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Arrival times and interarrival times

t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I Let S1,S2, . . . be the sequence of absolute times of events (arrivals)
I Def: Si is known as the i-th arrival time

⇒ Notice that Si = mint(N(t) ≥ i)

I Let T1,T2, . . . be the sequence of times between events
I Def: Ti is known as the i-th interarrival time

I Useful identities: Si =
∑i

k=1 Tk and Ti = Si − Si−1, where S0 = 0
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Interarrival times are i.i.d. exponential RVs

I Ccdf of T1 ⇒ P (T1 > t) = P (N(t) = 0) = e−λt

⇒ T1 has exponential distribution with parameter λ

I Since increments are stationary and independent, likely Ti are i.i.d.

Theorem
Interarrival times Ti of a Poisson process are independent identically
distributed exponential random variables with parameter λ, i.e.,

P (Ti > t) = e−λt

I Have already proved for T1. Let us see the rest

Introduction to Random Processes Continuous-time Markov Chains 30



Interarrival times are i.i.d. exponential RVs

Proof.

I Recall Si is i-th arrival time. Condition on Si

P (Ti+1 > t) =

∫
P
(
Ti+1 > t

∣∣ Si = s
)
fSi (s) ds

I To have Ti+1 > t given that Si = s it must be N(s + t) = N(s)

P
(
Ti+1 > t

∣∣Si = s
)

= P
(
N(t + s)− N(s) = 0

∣∣N(s) = i
)

I Since increments are independent, drop conditioning on N(s) = i

P
(
Ti+1 > t

∣∣Si = s
)

= P (N(t + s)− N(s) = 0)

I Since increments are also stationary and N(t) is Poisson, then

P
(
Ti+1 > t

∣∣Si = s
)

= P (N(t) = 0) = e−λt

I Substituting into integral yields ⇒ P (Ti+1 > t) = e−λt
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Interarrival times example

I Let N1(t) and N2(t) be Poisson processes with rates λ1 and λ2

⇒ Suppose N1(t) and N2(t) are independent

I Q: What is the expected time till the first arrival from either process?

I Denote as S
(i)
1 the first arrival time from process i = 1, 2

⇒ We are looking for E
[
min

(
S
(1)
1 ,S

(2)
1

)]
I Note that S

(1)
1 = T

(1)
1 and S

(2)
1 = T

(2)
1

⇒ S
(1)
1 ∼ exp(λ1) and S

(2)
1 ∼ exp(λ2)

⇒ Also, S
(1)
1 and S

(2)
1 are independent

I Recall that min
(
S
(1)
1 ,S

(2)
1

)
∼ exp(λ1 + λ2), then

E
[
min

(
S
(1)
1 ,S

(2)
1

)]
=

1

λ1 + λ2
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Alternative definition of Poisson process

I Start with sequence of independent random times T1,T2, . . .

I Times Ti ∼ exp(λ) have exponential distribution with parameter λ

I Define i-th arrival time Si

Si = T1 + T2 + . . .+ Ti

I Define counting process of
events occurred by time t

N(t) = max
i

(Si ≤ t)

I N(t) is a Poisson process
t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I If N(t) is a Poisson process interarrival times Ti are i.i.d. exponential

I To show that definition is equivalent have to show the converse

⇒ If interarrival times are i.i.d. exponential, process is Poisson
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Alternative definition of Poisson process (cont.)

I Exponential i.i.d. interarrival times ⇒ Q: Poisson process?

⇒ Show that implies definition (i)-(iii)

I Stationarity true because all Ti have same distribution

I Independent increments true because
I Interarrival times are independent
I Exponential RVs are memoryless

I Can have more than one event in (0, h] only if T1 < h and T2 < h

P (N(h) > 1) ≤ P (T1 ≤ h) P (T2 ≤ h)

= (1− e−λh)2 = (λh)2 + o(h2) = o(h)

I We have no event in (0, h] if T1 > h

P (N(h) = 0) = P (T1 ≥ h) = e−λh = 1− λh + o(h)

I The remaining case is N(h) = 1, whose probability is

P (N(h) = 1) = 1− P (N(h) = 0)− P (N(h) > 1) = λh + o(h)
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Three definitions of Poisson processes

Def. 1: Prob. of event proportional to interval width. Intervals independent

I Physical model definition

I Can a phenomenon be reasonably modeled as a Poisson process?

I The other two definitions are used for analysis and/or simulation

Def. 2: Prob. distribution of events in (0, t] is Poisson

I Event centric definition. Nr. of events in given time intervals

I Allows analysis and simulation

I Used when information about nr. of events in given time is desired

Def. 3: Prob. distribution of interarrival times is exponential

I Time centric definition. Times at which events happen

I Allows analysis and simulation

I Used when information about event times is of interest
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Number of visitors to a web page example

Ex: Count number of visits to a webpage between 6:00pm to 6:10pm

Def 1: Q: Poisson process? Yes, seems reasonable to have
I Probability of visit proportional to time interval duration
I Independent visits over disjoint time intervals

I Model as Poisson process with rate λ visits/second (v/s)

Def 2: Arrivals in (s, s + t] are Poisson with parameter λt

I Prob. of exactly 5 visits in 1 sec? ⇒ P (N(1) = 5) = e−λλ5/5!

I Expected nr. of visits in 10 minutes? ⇒ E [N(600)] = 600λ

I On average, data shows N visits in 10 minutes. Estimate λ̂ = N/600

Def 3: Interarrival times are i.i.d. Ti ∼ exp(λ)

I Expected time between visits? ⇒ E [Ti ] = 1/λ

I Expected arrival time Sn of n-th visitor?

⇒ Recall Sn =
∑n

i=1 Ti , hence E [Sn] =
∑n

i=1 E [Ti ] = n/λ
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Superposition of Poisson processes

I Let N1(t),N2(t) be Poisson processes with rates λ1 and λ2

⇒ Suppose N1(t) and N2(t) are independent

t t 

N1(t) N2(t) 

S2 S1 S1 S2 S3 
1 
2 

1 
2 
3 

I Then N(t) := N1(t) + N2(t) is a Poisson process with rate λ1 + λ2

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
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Thinning of a Poisson process

I Let BN = B1,B2, . . . be an i.i.d. sequence of Bernoulli(p) RVs

I Let N(t) be a Poisson process with rate λ, independent of BN

I Then M(t) :=
∑N(t)

i=1 Bi is a Poisson process with rate λp

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
t 

M(t) 

S1 S2 S3 
1 
2 
3 

Bi : 0 1 0 1 1 
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Splitting of a Poisson process

I Let ZN = Z1,Z2, . . . be an i.i.d. sequence of RVs, Zi ∈ {1, . . . ,m}
I Let N(t) be a Poisson process with rate λ, independent of ZN

I Define Nk(t) =
∑N(t)

i=1 I {Zi = k}, for each k = 1, . . . ,m

I Then each Nk(t) is a Poisson process with rate λP (Z1 = k)

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 

Zi : 1 2 3 2 2 t 

t 

N1(t) 

N2(t) 

S1 

S1 S2 S3 

1 

1 
2 
3 

t 

N3(t) 
1 

S1 
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Glossary

I Random times

I Exponential distribution

I Memoryless random times

I Time to first event

I First event to happen

I Strong memoryless property

I Event in infinitesimal interval

I Continuous-time process

I Counting process

I Right-continuous function

I Poisson process

I Independent increments

I Stationary increments

I Equivalent definitions

I Arrival times

I Interarrival times

I Event and time centric

I Superposition of Poisson processes

I Thinning of a Poisson process

I Splitting of a Poisson process
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