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Definition

I Continuous-time positive variable t ∈ [0,∞)

I Time-dependent random state X (t) takes values on a countable set
I In general denote states as i = 0, 1, 2, . . ., i.e., here the state space is N
I If X (t) = i we say “the process is in state i at time t”

I Def: Process X (t) is a continuous-time Markov chain (CTMC) if

P
(
X (t + s) = j

∣∣X (s) = i ,X (u) = x(u), u < s
)

= P
(
X (t + s) = j

∣∣X (s) = i
)

I Markov property ⇒ Given the present state X (s)

⇒ Future X (t + s) is independent of the past X (u) = x(u), u < s

I In principle need to specify functions P
(
X (t + s) = j

∣∣X (s) = i
)

⇒ For all times t and s, for all pairs of states (i , j)
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Notation and homogeneity

I Notation
I X [s : t] state values for all times s ≤ u ≤ t, includes borders
I X (s : t) values for all times s < u < t, borders excluded
I X (s : t] values for all times s < u ≤ t, exclude left, include right
I X [s : t) values for all times s ≤ u < t, include left, exclude right

I Homogeneous CTMC if P
(
X (t + s) = j

∣∣X (s) = i
)

invariant for all s

⇒ We restrict consideration to homogeneous CTMCs

I Still need Pij(t) := P
(
X (t + s) = j

∣∣X (s) = i
)

for all t and pairs (i , j)

⇒ Pij(t) is known as the transition probability function. More later

I Markov property and homogeneity make description somewhat simpler
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Transition times

I Ti = time until transition out of state i into any other state j

I Def: Ti is a random variable called transition time with ccdf

P (Ti > t) = P
(
X (0 : t] = i

∣∣X (0) = i
)

I Probability of Ti > t + s given that Ti > s? Use cdf expression

P
(
Ti > t + s

∣∣Ti > s
)

= P
(
X (0 : t + s] = i

∣∣X [0 : s] = i
)

= P
(
X (s : t + s] = i

∣∣X [0 : s] = i
)

= P
(
X (s : t + s] = i

∣∣X (s) = i
)

= P
(
X (0 : t] = i

∣∣X (0) = i
)

I Used that X [0 : s] = i given, Markov property, and homogeneity

I From definition of Ti ⇒ P
(
Ti > t + s

∣∣Ti > s
)

= P (Ti > t)

⇒ Transition times are exponential random variables
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Alternative definition

I Exponential transition times is a fundamental property of CTMCs

⇒ Can be used as “algorithmic” definition of CTMCs

I Continuous-time random process X (t) is a CTMC if

(a) Transition times Ti are exponential random variables with mean 1/νi
(b) When they occur, transition from state i to j with probability Pij

∞∑
j=1

Pij = 1, Pii = 0

(c) Transition times Ti and transitioned state j are independent

I Define matrix P grouping transition probabilities Pij

I CTMC states evolve as in a discrete-time Markov chain

⇒ State transitions occur at exponential intervals Ti ∼ exp(νi )

⇒ As opposed to occurring at fixed intervals
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Embedded discrete-time Markov chain

I Consider a CTMC with transition matrix P and rates νi

I Def: CTMC’s embedded discrete-time MC has transition matrix P

I Transition probabilities P describe a discrete-time MC

⇒ No self-transitions (Pii = 0, P’s diagonal null)

⇒ Can use underlying discrete-time MCs to study CTMCs

I Def: State j accessible from i if accessible in the embedded MC

I Def: States i and j communicate if they do so in the embedded MC

⇒ Communication is a class property

I Recurrence, transience, ergodicity. Class properties . . . More later
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Transition rates

I Expected value of transition time Ti is E [Ti ] = 1/νi

⇒ Can interpret νi as the rate of transition out of state i

⇒ Of these transitions, a fraction Pij are into state j

I Def: Transition rate from i to j is qij := νiPij

I Transition rates offer yet another specification of CTMCs

I If qij are given can recover νi as

νi = νi

∞∑
j=1

Pij =
∞∑
j=1

νiPij =
∞∑
j=1

qij

I Can also recover Pij as ⇒ Pij = qij/νi = qij

( ∞∑
j=1

qij

)−1
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Birth and death process example

I State X (t) = 0, 1, . . . Interpret as number of individuals

I Birth and deaths occur at state-dependent rates. When X (t) = i

I Births ⇒ Individuals added at exponential times with mean 1/λi

⇒ Birth or arrival rate = λi births per unit of time

I Deaths ⇒ Individuals removed at exponential times with rate 1/µi

⇒ Death or departure rate = µi deaths per unit of time

I Birth and death times are independent

I Birth and death (BD) processes are then CTMCs
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Transition times and probabilities

I Q: Transition times Ti? Leave state i 6= 0 when birth or death occur

I If TB and TD are times to next birth and death, Ti = min(TB ,TD)

⇒ Since TB and TD are exponential, so is Ti with rate

νi = λi + µi

I When leaving state i can go to i + 1 (birth first) or i − 1 (death first)

⇒ Birth occurs before death with probability
λi

λi + µi
= Pi,i+1

⇒ Death occurs before birth with probability
µi

λi + µi
= Pi,i−1

I Leave state 0 only if a birth occurs, then

ν0 = λ0, P01 = 1

⇒ If CTMC leaves 0, goes to 1 with probability 1

⇒ Might not leave 0 if λ0 = 0 (e.g., to model extinction)
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Transition rates

I Rate of transition from i to i + 1 is (recall definition qij = νiPij)

qi,i+1 = νiPi,i+1 = (λi + µi )
λi

λi + µi
= λi

I Likewise, rate of transition from i to i − 1 is

qi,i−1 = νiPi,i−1 = (λi + µi )
µi

λi + µi
= µi

I For i = 0 ⇒ q01 = ν0P01 = λ0

i i+1i−10

λi

µi µi+1

λi−1λ0 λi+1

µ1

. . . . . .

I Somewhat more natural representation. Similar to discrete-time MCs
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Poisson process example

I A Poisson process is a BD process with λi = λ and µi = 0 constant

I State N(t) counts the total number of events (arrivals) by time t

⇒ Arrivals occur a rate of λ per unit time

⇒ Transition times are the i.i.d. exponential interarrival times

i i+1i−10

λλλ λ

. . . . . .

I The Poisson process is a CTMC
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M/M/1 queue example

I An M/M/1 queue is a BD process with λi = λ and µi = µ constant

I State Q(t) is the number of customers in the system at time t

⇒ Customers arrive for service at a rate of λ per unit time

⇒ They are serviced at a rate of µ customers per unit time

i i+1i−10

λ

µ µ

λλ λ

µ

. . . . . .

I The M/M is for Markov arrivals/Markov departures

⇒ Implies a Poisson arrival process, exponential services times

⇒ The 1 is because there is only one server
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Transition probability function

I Two equivalent ways of specifying a CTMC

1) Transition time averages 1/νi + transition probabilities Pij

⇒ Easier description

⇒ Typical starting point for CTMC modeling

2) Transition probability function Pij(t) := P
(
X (t + s) = j

∣∣X (s) = i
)

⇒ More complete description for all t ≥ 0

⇒ Similar in spirit to Pn
ij for discrete-time Markov chains

I Goal: compute Pij(t) from transition times and probabilities

⇒ Notice two obvious properties Pij(0) = 0, Pii (0) = 1
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Roadmap to determine Pij(t)

I Goal is to obtain a differential equation whose solution is Pij(t)

⇒ Study change in Pij(t) when time changes slightly

I Separate in two subproblems (divide and conquer)

⇒ Transition probabilities for small time h, Pij(h)

⇒ Transition probabilities in t + h as function of those in t and h

I We can combine both results in two different ways

1) Jump from 0 to t then to t + h ⇒ Process runs a little longer

⇒ Changes where the process is going to ⇒ Forward equations

2) Jump from 0 to h then to t + h ⇒ Process starts a little later

⇒ Changes where the process comes from ⇒ Backward equations
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Transition probability in infinitesimal time

Theorem
The transition probability functions Pii (t) and Pij(t) satisfy the following
limits as t approaches 0

lim
t→0

Pij(t)

t
= qij , lim

t→0

1− Pii (t)

t
= νi

I Since Pij(0) = 0, Pii (0) = 1 above limits are derivatives at t = 0

∂Pij(t)

∂t

∣∣∣∣
t=0

= qij ,
∂Pii (t)

∂t

∣∣∣∣
t=0

= −νi

I Limits also imply that for small h (recall Taylor series)

Pij(h) = qijh + o(h), Pii (h) = 1− νih + o(h)

I Transition rates qij are “instantaneous transition probabilities”

⇒ Transition probability coefficient for small time h
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Probability of event in infinitesimal time (reminder)

I Q: Probability of an event happening in infinitesimal time h?

I Want P (T < h) for small h

P (T < h) =

∫ h

0

λe−λt dt ≈ λh

⇒ Equivalent to
∂P (T < t)

∂t

∣∣∣∣
t=0

= λ

I Sometimes also write P (T < h) = λh + o(h)

⇒ o(h) implies lim
h→0

o(h)

h
= 0

⇒ Read as “negligible with respect to h”

I Q: Two independent events in infinitesimal time h?

P (T1 ≤ h,T2 ≤ h) ≈ (λ1h)(λ2h) = λ1λ2h
2 = o(h)
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Transition probability in infinitesimal time (proof)

Proof.

I Consider a small time h, and recall Ti ∼ exp(νi )

I Since 1− Pii (h) is the probability of transitioning out of state i

1− Pii (h) = P (Ti < h) = νih + o(h)

⇒ Divide by h and take limit to establish the second identity

I For Pij(t) notice that since two or more transitions have o(h) prob.

Pij(h) = P
(
X (h) = j

∣∣X (0) = i
)

= PijP (Ti < h) + o(h)

I Again, since Ti is exponential P (Ti < h) = νih + o(h). Then

Pij(h) = νiPijh + o(h) = qijh + o(h)

⇒ Divide by h and take limit to establish the first identity
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Chapman-Kolmogorov equations

Theorem
For all times s and t the transition probability functions Pij(t + s) are
obtained from Pik(t) and Pkj(s) as

Pij(t + s) =
∞∑
k=0

Pik(t)Pkj(s)

I As for discrete-time MCs, to go from i to j in time t + s

⇒ Go from i to some state k in time t ⇒ Pik(t)

⇒ In the remaining time s go from k to j ⇒ Pkj(s)

⇒ Sum over all possible intermediate states k
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Chapman-Kolmogorov equations (proof)

Proof.

Pij(t + s)

= P
(
X (t + s) = j

∣∣X (0) = i
)

Definition of Pij(t + s)

=
∞∑
k=0

P
(
X (t + s) = j

∣∣X (t) = k,X (0) = i
)
P
(
X (t) = k

∣∣X (0) = i
)

Law of total probability

=
∞∑
k=0

P
(
X (t + s) = j

∣∣X (t) = k
)
Pik(t) Markov property of CTMC

and definition of Pik(t)

=
∞∑
k=0

Pkj(s)Pik(t) Definition of Pkj(s)
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Combining both results

I Let us combine the last two results to express Pij(t + h)

I Use Chapman-Kolmogorov’s equations for 0→ t → h

Pij(t + h) =
∞∑
k=0

Pik(t)Pkj(h) = Pij(t)Pjj(h) +
∞∑

k=0,k 6=j

Pik(t)Pkj(h)

I Substitute infinitesimal time expressions for Pjj(h) and Pkj(h)

Pij(t + h) = Pij(t)(1− νjh) +
∞∑

k=0,k 6=j

Pik(t)qkjh + o(h)

I Subtract Pij(t) from both sides and divide by h

Pij(t + h)− Pij(t)

h
= −νjPij(t) +

∞∑
k=0,k 6=j

Pik(t)qkj +
o(h)

h

I Right-hand side equals a “derivative” ratio. Let h→ 0 to prove . . .
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Kolmogorov’s forward equations

Theorem
The transition probability functions Pij(t) of a CTMC satisfy the system
of differential equations (for all pairs i , j)

∂Pij(t)

∂t
=

∞∑
k=0,k 6=j

qkjPik(t)− νjPij(t)

I Interpret each summand in Kolmogorov’s forward equations
I ∂Pij(t)/∂t = rate of change of Pij(t)
I qkjPik(t) = (transition into k in 0→ t) ×

(rate of moving into j in next instant)
I νjPij(t) = (transition into j in 0→ t) ×

(rate of leaving j in next instant)

I Change in Pij(t) =
∑

k (moving into j from k)− (leaving j)

I Kolmogorov’s forward equations valid in most cases, but not always
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Kolmogorov’s backward equations

I For forward equations used Chapman-Kolmogorov’s for 0→ t → h

I For backward equations we use 0→ h→ t to express Pij(t + h) as

Pij(t + h) =
∞∑
k=0

Pik(h)Pkj(t) = Pii (h)Pij(t) +
∞∑

k=0,k 6=i

Pik(h)Pkj(t)

I Substitute infinitesimal time expression for Pii (h) and Pik(h)

Pij(t + h) = (1− νih)Pij(t) +
∞∑

k=0,k 6=i

qikhPkj(t) + o(h)

I Subtract Pij(t) from both sides and divide by h

Pij(t + h)− Pij(t)

h
= −νiPij(t) +

∞∑
k=0,k 6=i

qikPkj(t) +
o(h)

h

I Right-hand side equals a “derivative” ratio. Let h→ 0 to prove . . .
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Kolmogorov’s backward equations

Theorem
The transition probability functions Pij(t) of a CTMC satisfy the system
of differential equations (for all pairs i , j)

∂Pij(t)

∂t
=

∞∑
k=0,k 6=i

qikPkj(t)− νiPij(t)

I Interpret each summand in Kolmogorov’s backward equations
I ∂Pij(t)/∂t = rate of change of Pij(t)
I qikPkj(t) = (transition into j in h→ t) ×

(rate of transition into k in initial instant)
I νiPij(t) = (transition into j in h→ t) ×

(rate of leaving i in initial instant)

I Forward equations ⇒ change in Pij(t) if finish h later

I Backward equations ⇒ change in Pij(t) if start h earlier

I Where process goes (forward) vs. where process comes from (backward)
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A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

I Transition rates are q01 and q10
I Given q01 and q10 can find

rates of transitions out of {0, 1}

ν0 =
∑
j

q0j = q01, ν1 =
∑
j

q1j = q10

0 1

q01

q10

I Use Kolmogorov’s equations to find transition probability functions

P00(t), P01(t), P10(t), P11(t)

I Transition probabilities out of each state sum up to one

P00(t) + P01(t) = 1, P10(t) + P11(t) = 1
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Kolmogorov’s forward equations

I Kolmogorov’s forward equations (process runs a little longer)

P
′

i j(t) =
∞∑

k=0,k 6=j

qkjPik(t)− νjPi j(t)

I For the two state CTMC

P
′

00(t) = q10P01(t)− ν0P00(t), P
′

01(t) = q01P00(t)− ν1P01(t)

P
′

10(t) = q10P11(t)− ν0P10(t), P
′

11(t) = q01P10(t)− ν1P11(t)

I Probabilities out of 0 sum up to 1 ⇒ eqs. in first row are equivalent

I Probabilities out of 1 sum up to 1 ⇒ eqs. in second row are equivalent

⇒ Pick the equations for P
′

00(t) and P
′

11(t)
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Solution of forward equations

I Use ⇒ Relation between transition rates: ν0 = q01 and ν1 = q10
⇒ Probs. sum 1: P01(t) = 1− P00(t) and P10(t) = 1− P11(t)

P
′

00(t) = q10
[
1− P00(t)

]
− q01P00(t) = q10 − (q10 + q01)P00(t)

P
′

11(t) = q01
[
1− P11(t)

]
− q10P11(t) = q01 − (q10 + q01)P11(t)

I Can obtain exact same pair of equations from backward equations

I First-order linear differential equations ⇒ Solutions are exponential

I For P00(t) propose candidate solution (just differentiate to check)

P00(t) =
q10

q10 + q01
+ ce−(q10+q01)t

⇒ To determine c use initial condition P00(0) = 1
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Solution of forward equations (continued)

I Evaluation of candidate solution at initial condition P00(0) = 1 yields

1 =
q10

q10 + q01
+ c ⇒ c =

q01
q10 + q01

I Finally transition probability function P00(t)

P00(t) =
q10

q10 + q01
+

q01
q10 + q01

e−(q10+q01)t

I Repeat for P11(t). Same exponent, different constants

P11(t) =
q01

q10 + q01
+

q10
q10 + q01

e−(q10+q01)t

I As time goes to infinity, P00(t) and P11(t) converge exponentially

⇒ Convergence rate depends on magnitude of q10 + q01
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Convergence of transition probabilities

I Recall P01(t) = 1− P00(t) and P10(t) = 1− P11(t)

I Limiting (steady-state) probabilities are

lim
t→∞

P00(t) =
q10

q10 + q01
, lim

t→∞
P01(t) =

q01
q10 + q01

lim
t→∞

P11(t) =
q01

q10 + q01
, lim

t→∞
P10(t) =

q10
q10 + q01

I Limit distribution exists and is independent of initial condition

⇒ Compare across diagonals
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Kolmogorov’s forward equations in matrix form

I Restrict attention to finite CTMCs with N states

⇒ Define matrix R ∈ RN×N with elements rij = qij , rii = −νi
I Rewrite Kolmogorov’s forward eqs. as (process runs a little longer)

P
′
ij(t) =

N∑
k=1,k 6=j

qkjPik(t)− νjPij(t) =
N∑

k=1

rkjPik(t)

I Right-hand side defines elements of a matrix product

P11(t) · P1k (t) · P1N (t)

· · · · ·
Pi1(t) · Pik (t) · PiN (t)

· · · · ·
PN1(t) · PNk (t) · PJN (t)





r11 · r1j · r1N

· · · · ·
rk1 · rkj · rkN

· · · · ·
rN1 · rNj · rNN




s11 · s1j · s1N

· · · · ·
si1 · sij · siN

· · · · ·
sN1 · sNk · sNN



P(t) =

= R

= P(t)R = P
′
(t)

r1jPi1(t)

rkjPik (t)

rNjPiN (t)
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Kolmogorov’s backward equations in matrix form

I Similarly, Kolmogorov’s backward eqs. (process starts a little later)

P
′

ij(t) =
N∑

k=1,k 6=i

qikPkj(t)− νiPij(t) =
N∑

k=1

rikPkj(t)

I Right-hand side also defines a matrix product

r11 · r1k · r1N
· · · · ·
ri1 · rik · riN
· · · · ·

rN1 · rNk · rJN





P11(t) · P1j (t) · P1N (t)

· · · · ·
Pk1(t) · Pkj (t) · PkN (t)

· · · · ·
PN1(t) · PNj (t) · PNN (t)




s11 · s1j · s1N

· · · · ·
si1 · sij · siN

· · · · ·
sN1 · sNk · sNN



R =

= P(t)

= RP(t) = P
′
(t)

ri1P1j (t)

rikPkj (t)

riNPNj (t)
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Kolmogorov’s equations in matrix form

I Matrix form of Kolmogorov’s forward equation ⇒ P
′
(t) = P(t)R

I Matrix form of Kolmogorov’s backward equation ⇒ P
′
(t) = RP(t)

⇒ More similar than apparent

⇒ But not equivalent because matrix product not commutative

I Notwithstanding both equations have to accept the same solution
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Matrix exponential

I Kolmogorov’s equations are first-order linear differential equations

⇒ They are coupled, P ′ij(t) depends on Pkj(t) for all k

⇒ Accepts exponential solution ⇒ Define matrix exponential

I Def: The matrix exponential eAt of matrix At is the series

eAt =
∞∑
n=0

(At)n

n!
= I + At +

(At)2

2
+

(At)3

2× 3
+ . . .

I Derivative of matrix exponential with respect to t

∂eAt

∂t
= 0 + A + A2t +

A3t2

2
+ . . . = A

(
I + At +

(At)2

2
+ . . .

)
= AeAt

I Putting A on right side of product shows that ⇒ ∂eAt

∂t
= eAtA
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Solution of Kolmogorov’s equations

I Propose solution of the form P(t) = eRt

I P(t) solves backward equations, since derivative is

∂P(t)

∂t
=
∂eRt

∂t
= ReRt = RP(t)

I It also solves forward equations

∂P(t)

∂t
=
∂eRt

∂t
= eRtR = P(t)R

I Notice that P(0) = I, as it should (Pii (0) = 1, and Pij(0) = 0)
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Computing the matrix exponential

I Suppose A ∈ Rn×n is diagonalizable, i.e., A = UDU−1

⇒ Diagonal matrix D = diag(λ1, . . . , λn) collects eigenvalues λi

⇒ Matrix U has the corresponding eigenvectors as columns

I We have the following neat identity

eAt =
∞∑
n=0

(UDU−1t)n

n!
= U

( ∞∑
n=0

(Dt)n

n!

)
U−1 = UeDtU−1

I But since D is diagonal, then

eDt =
∞∑
n=0

(Dt)n

n!
=

 eλ1t . . . 0
...

. . .
...

0 . . . eλnt


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Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

I Transition rates are q01 = 3 and q10 = 1
0 1

q01

q10

I Recall transition time rates are ν0 = q01 = 3, ν1 = q10 = 1, hence

R =

(
−ν0 q01
q10 −ν1

)
=

(
−3 3
1 −1

)
I Eigenvalues of R are 0,−4, eigenvectors [1, 1]T and [−3, 1]T . Thus

U =

(
1 −3
1 1

)
, U−1 =

(
1/4 3/4
−1/4 1/1

)
, eDt =

(
1 0
0 e−4t

)
I The solution to the forward equations is

P(t) = eRt = UeDtU−1 =

(
1/4 + (3/4)e−4t 3/4− (3/4)e−4t

1/4− (1/4)e−4t 3/4 + (1/4)e−4t

)
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Unconditional probabilities

I P(t) is transition prob. from states at time 0 to states at time t

I Define unconditional probs. at time t, pj(t) := P (X (t) = j)

⇒ Group in vector p(t) = [p1(t), p2(t), . . . , pj(t), . . .]T

I Given initial distribution p(0), find pj(t) conditioning on initial state

pj(t) =
∞∑
i=0

P
(
X (t) = j

∣∣X (0) = i
)

P (X (0) = i) =
∞∑
i=0

Pij(t)pi (0)

I Using compact matrix-vector notation ⇒ p(t) = PT (t)p(0)

⇒ Compare with discrete-time MC ⇒ p(n) = (Pn)Tp(0)
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Limit probabilities and ergodicity

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity
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Recurrent and transient states

I Recall the embedded discrete-time MC associated with any CTMC

⇒ Transition probs. of MC form the matrix P of the CTMC

⇒ No self transitions (Pii = 0, P’s diagonal null)

I States i ↔ j communicate in the CTMC if i ↔ j in the MC

⇒ Communication partitions MC in classes

⇒ Induces CTMC partition as well

I Def: CTMC is irreducible if embedded MC contains a single class

I State i is recurrent if it is recurrent in the embedded MC

⇒ Likewise, define transience and positive recurrence for CTMCs

I Transience and recurrence shared by elements of a MC class

⇒ Transience and recurrence are class properties of CTMCs

I Periodicity not possible in CTMCs
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Limiting probabilities

Theorem
Consider irreducible, positive recurrent CTMC with transition rates νi and
qij . Then, lim

t→∞
Pij(t) exists and is independent of the initial state i , i.e.,

Pj = lim
t→∞

Pij(t) exists for all (i , j)

Furthermore, steady-state probabilities Pj ≥ 0 are the unique nonnegative
solution of the system of linear equations

νjPj =
∞∑

k=0,k 6=j

qkjPk ,

∞∑
j=0

Pj = 1

I Limit distribution exists and is independent of initial condition

⇒ Obtained as solution of system of linear equations

⇒ Like discrete-time MCs, but equations slightly different
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Algebraic relation to determine limit probabilities

I As with MCs difficult part is to prove that Pj = lim
t→∞

Pij(t) exists

I Algebraic relations obtained from Kolmogorov’s forward equations

∂Pij(t)

∂t
=

∞∑
k=0,k 6=j

qkjPik(t)− νjPij(t)

I If limit distribution exists we have, independent of initial state i

lim
t→∞

∂Pij(t)

∂t
= 0, lim

t→∞
Pij(t) = Pj

I Considering the limit of Kolomogorov’s forward equations yields

0 =
∞∑

k=0,k 6=j

qkjPk − νjPj

I Reordering terms the limit distribution equations follow
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Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

I Transition rates are q01 and q10
0 1

q01

q10

I From transition rates find mean transition times ν0 = q01, ν1 = q10

I Stationary distribution equations

ν0P0 = q10P1, ν1P1 = q01P0, P0 + P1 = 1,

q01P0 = q10P1, q10P1 = q01P0

I Solution yields ⇒ P0 =
q10

q10 + q01
, P1 =

q01
q10 + q01

I Larger rate q10 of entering 0 ⇒ Larger prob. P0 of being at 0

I Larger rate q01 of entering 1 ⇒ Larger prob. P1 of being at 1

Introduction to Random Processes Continuous-time Markov Chains 44



Ergodicity

I Def: Fraction of time Ti (t) spent in state i by time t

Ti (t) :=
1

t

∫ t

0

I {X (τ) = i}dτ

⇒ Ti (t) a time/ergodic average, lim
t→∞

Ti (t) is an ergodic limit

I If CTMC is irreducible, positive recurrent, the ergodic theorem holds

Pi = lim
t→∞

Ti (t) = lim
t→∞

1

t

∫ t

0

I {X (τ) = i}dτ a.s.

I Ergodic limit coincides with limit probabilities (almost surely)
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Function’s ergodic limit

I Consider function f (i) associated with state i . Can write f
(
X (t)

)
as

f
(
X (t)

)
=
∞∑
i=1

f (i)I {X (t) = i}

I Consider the time average of f
(
X (t)

)
lim
t→∞

1

t

∫ t

0

f
(
X (τ)

)
dτ = lim

t→∞

1

t

∫ t

0

∞∑
i=1

f (i)I {X (τ) = i}dτ

I Interchange summation with integral and limit to say

lim
t→∞

1

t

∫ t

0

f
(
X (τ)

)
dτ =

∞∑
i=1

f (i) lim
t→∞

1

t

∫ t

0

I {X (τ) = i}dτ =
∞∑
i=1

f (i)Pi

I Function’s ergodic limit = Function’s expectation under limiting dist.
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Limit distribution equations as balance equations

I Recall limit distribution equations ⇒ νjPj =
∞∑

k=0,k 6=j

qkjPk

I Pj = fraction of time spent in state j

I νj = rate of transition out of state j given CTMC is in state j

⇒ νjPj = rate of transition out of state j (unconditional)

I qkj = rate of transition from k to j given CTMC is in state k

⇒ qkjPk = rate of transition from k to j (unconditional)

⇒
∞∑

k=0,k 6=j

qkjPk = rate of transition into j , from all states

I Rate of transition out of state j = Rate of transition into state j

I Balance equations ⇒ Balance nr. of transitions in and out of state j
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Limit distribution for birth and death process

I Birth/deaths occur at state-dependent rates. When X (t) = i

I Births ⇒ Individuals added at exponential times with mean 1/λi

⇒ Birth rate = upward transition rate = qi,i+1 = λi

I Deaths ⇒ Individuals removed at exponential times with mean 1/µi

⇒ Death rate = downward transition rate = qi,i−1 = µi

I Transition time rates ⇒ νi = λi + µi , i > 0 and ν0 = λ0

i i+1i−10

λi

µi µi+1

λi−1λ0 λi+1

µ1

. . . . . .

I Limit distribution/balance equations: Rate out of j = Rate into j

(λi + µi )Pi = λi−1Pi−1 + µi+1Pi+1

λ0P0 = µ1P1
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Finding solution of balance equations

I Start expressing all probabilities in terms of P0

I Equation for P0 λ0P0 = µ1P1

I Sum eqs. for P1

and P0
λ0P0

(λ1 + µ1)P1

=

=

µ1P1

λ0P0 + µ2P2

λ1P1 = µ2P2

I Sum result and
eq. for P2

λ1P1

(λ2 + µ2)P2

=

=

µ2P2

λ1P1 + µ3P3

λ2P2 = µ3P3

...

I Sum result and
eq. for Pi

λi−1Pi−1

(λi + µi )Pi

=

=

µiPi

λi−1Pi−1 + µi+1Pi+1

λiPi = µi+1Pi+1
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Finding solution of balance equations (continued)

I Recursive substitutions on red equations on the right

P1 =
λ0
µ1

P0

P2 =
λ1
µ2

P1 =
λ1λ0
µ2µ1

P0

...

Pi+1 =
λi
µi+1

Pi =
λiλi−1 . . . λ0
µi+1µi . . . µ1

P0

I To find P0 use
∑∞

i=0 Pi = 1 ⇒ 1 = P0 +
∞∑
i=1

λiλi−1 . . . λ0
µi+1µi . . . µ1

P0

⇒ P0 =

[
1 +

∞∑
i=1

λiλi−1 . . . λ0
µi+1µi . . . µ1

]−1
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Glossary

I Continuous-time Markov chain

I Markov property

I Time-homogeneous CTMC

I Transition probability function

I Exponential transition time

I Transition probabilities

I Embedded discrete-time MC

I Transition rates

I Birth and death process

I Poisson process

I M/M/1 queue

I Chapman-Kolmogorov equations

I Kolmogorov’s forward equations

I Kolmogorov’s backward equations

I Limiting probabilities

I Matrix exponential

I Unconditional probabilities

I Recurrent and transient states

I Ergodicity

I Balance equations
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