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Queuing theory is concerned with the (boring) issue of waiting

= Waiting is boring, queuing theory not necessarily so

» “Customers” arrive to receive “service” by “servers”

= Between arrival and start of service wait in queue

v

Quantities of interest (for example)
= Number of customers in queue = L (for length)
= Time spent in queue = W for (wait)

v

Queues are a pervasive application of CTMCs




Where do queues appear?

> Queues are fundamental to the analysis of (public) transportation

» Wait to enter a highway =- Customers = cars
» Q: Subway travel times, subway or buses?
> Q: Infrequent big buses or frequent small buses?

Packet traffic in communication networks

v

> Route determination, congestion management
> Real-time requirements, delays, resource management

v

Logistics and operations research

» Customers = raw materials, components, final products
» Customers in queue = products in storage = inactive capital

» Customer service
> Q: How many representatives in a call center? Call center pooling



Examples of queues

» Simplest rendition = Single queue, single server, infinite spots
= Simpler if arrivals and services are Poisson = M/M/1 queue

= Limiting number of spots not difficult = Losses appear

= B
I

» Multi-server queues = Single queue, many servers

= M/M/c queue = c Poisson servers (i.e., exp. service times)
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Networks of queues

» Groups of interacting queues =- Applications become interesting

Ex: A queue tandem
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» Can have arrivals at different points and random re-entries
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» Batch service and arrivals, loss systems (not considered)
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M/M/1 queue

» Arrival and service processes are Poisson =- Birth & death process

a) Customers arrive at an average rate of \ per unit time
b) Customers are serviced at an average rate of y per unit time
c) Interarrival and inter-service time are exponential and independent

= R
n

» Hypothesis of Poisson arrivals is reasonable

» Hypothesis of exponential service times not so reasonable
= Simplifies the analysis. Otherwise, study a M/G/1 queue

» Steady-state behavior (systems operating for a long time)
= Q: Limit probabilities for the M/M/1 system?



» Define CTMC by identifying states Q(t) with queue lengths
= Transition rates g; j;1 = A forall i, and g; ;1 = p for i #0

» Recall that first of two exponential times is exponentially distributed

= Mean transition times are v; = A+ p for i #0 and vy = A

A A A A
A ~—_
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» Limit distribution equations (Rate out of j = Rate into j)

APy = uPr, (/\ + /I,)P,' =APi_1 4+ uPis1



Queue length as a function of time

» Simulation for A = 30 customers/min, u = 40 services/min

» Probability distribution estimated by sample averaging with M = 10°

P(Q(t) = k) ~ % D@ =k}

> Steady state (in a probabilistic sense) reached in around 10% mins.
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» Queue length vs. time. Probabilities are color coded
= Mean queue length shown in white



Close up on initial times

» Probabilities settle at their equilibrium values
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Another view of queue length evolution
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Ergodicity

» Compare ensemble averages for large t with ergodic averages

1

Ti(t) = 7

/Ot]I{Q(T) =i}dr

0.6
I Ensemble average

I Ergodic average

Probability
°
%

o
Ny

0.1

6
Queue Length

» They are approximately equal, as they should (equal as t — o)



A non stable queue

> All former observations valid for stable queues (A < p)
» Simulation for A = 60 customers/min and p = 40, customers/min
= Queue length grows unbounded

= Probability of small number of customers in queue vanishes
= Actually CTMC transient, P; — 0 for all i
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» Queue length vs. time. Probabilities are color coded
= Mean queue length shown in white



Solution of limit distribution equations

> Start expressing all prob. in terms of Py. Definie traffic intensity p := \/u

»> Repeat process done for birth and death process

» Equation for Py = = APo=pP
> Sum egs. for Py = APo = phr

and Py ()\ + }L)Pl = APy + /LP2 = AP = MP2
» Sum result and = AP = uP»

eq. for P, A+ )Py = APy + pPs = AP =puP;s
» Sum result and = AP_1 = uP;

eq. for P;

A+ u)Pi = APioi+pPiy1 = AP = pPia

» From where it follows = P11 = (\/i)P: = pP; and recursively P; = p' Py



Solution of limit distribution equations (continued)

v

The sum of all probabilities is 1 (use geometric series formula)

1=iP;=iPiP0= fo
i i=0

i=0 1_p

v

Solve for Py to obtain
Po=1-—p, :>P,-:(1—p)pi

= Valid for A\/p < 1, if not CTMC is transient (queue unstable)

v

Expression coincides with non-concurrent queue in discrete time
=- Not surprising. Continuous time = discrete time with small At

= For small At non-concurrent hypothesis is accurate

v

Present derivation “much cleaner,” though



Steady-state expected queue length

» To compute expected queue length [E[L] use limit probabilities

(oo}

E[L] =Y iP=i(1—p)p
i=0

i=0

» Latter is derivative of geometric sum (32, ix’ = x/(1 — x)?). Then

ElL = (1—p) x m—s = -

(I-=p2 1-p

» Recall A < u or equivalently p < 1 for queue stability
= If A &~ u queue is stable but E [L] becomes very large



Steady-state expected wait

» Customer arrives, L in queue already. Q: Time spent in queue?
= Time required to service these L customers

= Plus time until arriving customer is served
L+1
> Let Ty, Ta,..., Ty 11 be these times. Queue wait = W = Z T;
i=1
» Expected value (condition on L = ¢, then expectation w.r.t. L)
L+1

E[W]—ElZTi E %Tiﬂ—fH

» L = /¢ “not random" in inner expectation = interchange with sum

E[W] = li]E[T]] E(L+1DE[T]=E[L+1]E[T]]



Expected wait (continued)

> Use expression for E[L] to evaluate E[L + 1] as

]E[L+1]=1E[L]+1:lf 1

> Substitute expressions for E[L + 1] and E[T;] =1/p

11
1—p pu—2X

E[W]:%x

» Recall A = arrival rate. Former may be written as

E[W] = % x lfp = (1/NE[L]



Little's law

» For M/M/1 queue have just seen = E[L] = AE[W/]

= Expression referred to as Little's law
» True even if arrivals and departures are not Poisson (not proved)

» Expected nr.customers in queue = arrival rate X expected wait
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M/M/2 queue

> Service offered by two Poisson servers with service rates 11 and o

= Arrivals are Poisson with rate A as in the M/M/1 queue

» When a server finishes serving a customer, serves next one in queue

= If queue is empty the server waits for the next customer

» If both servers are idle when a new customer arrives

= Service is performed by server 1




CTMC model: States

» When no customers are in line, need to distinguish servers’ states

» State 0,00 = no customers in queue, no customers being served

» State 0,10 = no customers in queue, 1 customer served by server 1
» State 0,01 = no customers in queue, 1 customer served by server 2
» State 0,11 = no customers in queue, 2 customers in service

» When there are customers in line, both servers are busy

» State /,11 = i > 0 customers in queue and 2 customers in service
» States /,01, 7,10 and 7,00 are not possible for i > 0



C model: Transition rates

» Transition from 7,11 to (i 4 1,11) when arrival = gj 11;(i41),11 = A

» Transition from i, 11 to (i — 1,11) when either server 1 or 2 finishes

= First service completion by either server 1 or 2

» Min. of two exponentials is exponential = gj 11.(—1),11 = M1 + H2

A A A
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w1+ p2 p1+ p2 p1+ p2



CTMC model: Transition rates (continued)

» From 0,00 move to 0,10 on arrival = qo,00.0,10 = A
From 0,10 move to 0,11 on arrival = qo,10.0,11 = A
» From 0,01 move to 0,11 on arrival = go01.0,11 = A

v

From 0,10 to 0,00 when server 1 finishes = qg,01.0,00 = f41
From 0,11 to 0,01 when server 1 finishes = qg11.0,01 = f41
From 0,01 to 0,00 when server 2 finishes = qg,01.0,00 = /12
From 0,11 to 0,10 when server 2 finishes = gg 11.0,10 = /12
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Limit distribution equations

M\QQW

> For states 7,11 with / > 0, egs. are analogous to M/M/1 queue
(A + 1 4 p2)Pinn = APii—1y 11 + (1 + p2) Py,
» For states 0,11, 0,10, 0,01 and 0,00 we have

(A + p1 + p2) Poir = APoio + APojor + (p1 + p2) P
(A + 1) Pojio = APojoo + p2Po,11
(A + p2) Poo1 = p1Po,11
A Pooo = p1Po,10 + 12Po01

» System of linear equations = Solve numerically to find probabilities



Closing comments

» For large i behaves like M/M/1 queue with service rate (u1 + o)
= Still, states with no queued packets are important

» M/M/c queue = c servers with rates pg,. .., fic

= More cumbersome to analyze but no fundamental differences
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A queue tandem

» Customers arrive at system to receive two services

» They arrive at a rate A and wait in queue 1 for service 1

= Service 1 is performed at a rate

» After completions of service 1 customers move to queue 2
= Service 2 is performed at a rate y»

A4> ————> —
21 H2




CTMC model

» States (/, /) represent i customers in queue 1 and j in queue 2

> If both queues are empty (i = j = 0), only possible event is an arrival

_ A
o O

> If queue 2 is empty might have arrival or completion of service 1

gio,(i+1)0 = A o
gio,(i-1)1 = M1 =
o -



C model (continued)

> If queue 1 is empty might have arrival or completion of service 2

Lo S 1./ ]
qoj,ij = A

2

» If no queue is empty arrival, service 1 and service 2 possible

qij (i+1)j = A N R
qij,(i-1)(+1) = M1 @

qij,i(j—1) = M2

qoj,0(j—1) = M2

lllz



Balance equations

> Rate at which CTMC enters state (7, ) = rate at which CTMC leaves (7, )

» State (0,0) - Both queues empty

» From (0,0) can go to (1,0) o
» Can enter (0,0) from (0,1)

APoo = p2Pox @_A>°

> State (i, 0) - Queue 2 empty

» From (/,0) goto (i +1,0) or (i — 1,1

) G @
> Into (/,0) from (i —1,0) or (i,1) l‘ \
12
M1 H1
— > — >



Balance equations (continued)

» State (0,]) - Queue 1 empty

» From (0,) go to (1,/) or (0,j — 1) Z
» Into (0,/) from (1,5 — 1) or (0, + 1) o N

(A + 12) Poj = paPrj—1) + 12 Pojs1)




Balance equations (continued)

» State (i,]j) - Neither queue empty

» From (i,j) cangoto (i+1,j), (i—1,j+1)or (i,j—1)
» Can enter (i,j) from (i —1,j), (i+1,j—1) or (i,j+ 1)

(A + pa + p2) Py = AP 1) + m Pisnyg—1) + 12Pigi)




Solution of balance equations

» Direct substitution shows that balance equations are solved by

= (o) () (2 ()

» Compare with expression for M/M/1 queue
= It behaves as two independent M/M/1 queues
= First queue has rates A and
= Second queue has rates A and pp

> Result can be generalized to networks of queues
= Important in transportation networks

= Also useful to analyze Internet traffic



Glossary
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Independent M/M/1 queues



	Queuing theory
	M/M/1 queue
	Multiserver queues
	Networks of queues

