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Queues

I Queuing theory is concerned with the (boring) issue of waiting

⇒ Waiting is boring, queuing theory not necessarily so

I “Customers” arrive to receive “service” by “servers”

⇒ Between arrival and start of service wait in queue

I Quantities of interest (for example)

⇒ Number of customers in queue ⇒ L (for length)

⇒ Time spent in queue ⇒ W for (wait)

I Queues are a pervasive application of CTMCs

λ
µ
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Where do queues appear?

I Queues are fundamental to the analysis of (public) transportation
I Wait to enter a highway ⇒ Customers = cars
I Q: Subway travel times, subway or buses?
I Q: Infrequent big buses or frequent small buses?

I Packet traffic in communication networks
I Route determination, congestion management
I Real-time requirements, delays, resource management

I Logistics and operations research
I Customers = raw materials, components, final products
I Customers in queue = products in storage = inactive capital

I Customer service
I Q: How many representatives in a call center? Call center pooling
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Examples of queues

I Simplest rendition ⇒ Single queue, single server, infinite spots

⇒ Simpler if arrivals and services are Poisson ⇒ M/M/1 queue

⇒ Limiting number of spots not difficult ⇒ Losses appear

λ
µ

I Multi-server queues ⇒ Single queue, many servers

⇒ M/M/c queue ⇒ c Poisson servers (i.e., exp. service times)

λ

µ1

µ2
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Networks of queues

I Groups of interacting queues ⇒ Applications become interesting

Ex: A queue tandem

λ
µ1 µ2

I Can have arrivals at different points and random re-entries

λ1

λ2

λ3

µ12

µ13

Exit

µ10

I Batch service and arrivals, loss systems (not considered)
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M/M/1 queue

I Arrival and service processes are Poisson ⇒ Birth & death process

a) Customers arrive at an average rate of λ per unit time
b) Customers are serviced at an average rate of µ per unit time
c) Interarrival and inter-service time are exponential and independent

λ
µ

I Hypothesis of Poisson arrivals is reasonable

I Hypothesis of exponential service times not so reasonable

⇒ Simplifies the analysis. Otherwise, study a M/G/1 queue

I Steady-state behavior (systems operating for a long time)

⇒ Q: Limit probabilities for the M/M/1 system?
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CTMC model

I Define CTMC by identifying states Q(t) with queue lengths

⇒ Transition rates qi,i+1 = λ for all i , and qi,i−1 = µ for i 6= 0

I Recall that first of two exponential times is exponentially distributed

⇒ Mean transition times are νi = λ+ µ for i 6= 0 and ν0 = λ

i i+1i−10

λ

µ µ

λλ λ

µ

. . . . . .

I Limit distribution equations (Rate out of j = Rate into j)

λP0 = µP1, (λ+ µ)Pi = λPi−1 + µPi+1
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Queue length as a function of time

I Simulation for λ = 30 customers/min, µ = 40 services/min

I Probability distribution estimated by sample averaging with M = 105

P (Q(t) = k) ≈ 1

M

M∑
i=1

I {Qi (t) = k}

I Steady state (in a probabilistic sense) reached in around 103 mins.

I Queue length vs. time. Probabilities are color coded

⇒ Mean queue length shown in white
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Close up on initial times

I Probabilities settle at their equilibrium values
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Another view of queue length evolution

I Cross-sections of queue length probabilities at different times
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Ergodicity

I Compare ensemble averages for large t with ergodic averages

Ti (t) =
1

t

∫ t

0

I {Q(τ) = i}dτ
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I They are approximately equal, as they should (equal as t → ∞)
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A non stable queue

I All former observations valid for stable queues (λ < µ)

I Simulation for λ = 60 customers/min and µ = 40, customers/min

⇒ Queue length grows unbounded

⇒ Probability of small number of customers in queue vanishes

⇒ Actually CTMC transient, Pi → 0 for all i

I Queue length vs. time. Probabilities are color coded

⇒ Mean queue length shown in white
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Solution of limit distribution equations

I Start expressing all prob. in terms of P0. Definie traffic intensity ρ := λ/µ

I Repeat process done for birth and death process

I Equation for P0

I Sum eqs. for P1

and P0

I Sum result and
eq. for P2

I Sum result and
eq. for Pi

⇒
⇒

⇒

⇒

⇒ λP0 = µP1

λP0 = µP1

(λ+ µ)P1 = λP0 + µP2 ⇒ λP1 = µP2

λP1 = µP2

(λ+ µ)P2 = λP1 + µP3 ⇒ λP2 = µP3

λPi−1 = µPi

(λ+ µ)Pi = λPi−1 + µPi+1 ⇒ λPi = µPi+1

I From where it follows ⇒ Pi+1 = (λ/µ)Pi = ρPi and recursively Pi = ρiP0
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Solution of limit distribution equations (continued)

I The sum of all probabilities is 1 (use geometric series formula)

1 =
∞∑
i=0

Pi =
∞∑
i=0

ρiP0 =
P0

1− ρ

I Solve for P0 to obtain

P0 = 1− ρ, ⇒ Pi = (1− ρ)ρi

⇒ Valid for λ/µ < 1, if not CTMC is transient (queue unstable)

I Expression coincides with non-concurrent queue in discrete time

⇒ Not surprising. Continuous time ≈ discrete time with small ∆t

⇒ For small ∆t non-concurrent hypothesis is accurate

I Present derivation “much cleaner,” though
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Steady-state expected queue length

I To compute expected queue length E [L] use limit probabilities

E [L] =
∞∑
i=0

iPi =
∞∑
i=0

i(1− ρ)ρi

I Latter is derivative of geometric sum (
∑∞

i=0 ix
i = x/(1− x)2). Then

E [L] = (1− ρ)× ρ

(1− ρ)2
=

ρ

1− ρ

I Recall λ < µ or equivalently ρ < 1 for queue stability

⇒ If λ ≈ µ queue is stable but E [L] becomes very large
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Steady-state expected wait

I Customer arrives, L in queue already. Q: Time spent in queue?

⇒ Time required to service these L customers

⇒ Plus time until arriving customer is served

I Let T1,T2, . . . ,TL+1 be these times. Queue wait ⇒ W =
L+1∑
i=1

Ti

I Expected value (condition on L = `, then expectation w.r.t. L )

E [W ] = E

[
L+1∑
i=1

Ti

]
= E

[
E

[
`+1∑
i=1

Ti

∣∣ L = `

]]
I L = ` “not random” in inner expectation ⇒ interchange with sum

E [W ] = E

[
L+1∑
i=1

E [Ti ]

]
= E [(L+ 1)E [Ti ]] = E [L+ 1]E [Ti ]
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Expected wait (continued)

I Use expression for E [L] to evaluate E [L+ 1] as

E [L+ 1] = E [L] + 1 =
ρ

1− ρ
+ 1 =

1

1− ρ

I Substitute expressions for E [L+ 1] and E [Ti ] = 1/µ

E [W ] =
1

µ
× 1

1− ρ
=

1

µ− λ

I Recall λ = arrival rate. Former may be written as

E [W ] =
1

λ
× ρ

1− ρ
= (1/λ)E [L]
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Little’s law

I For M/M/1 queue have just seen ⇒ E [L] = λE [W ]

⇒ Expression referred to as Little’s law

I True even if arrivals and departures are not Poisson (not proved)

I Expected nr.customers in queue = arrival rate × expected wait
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M/M/2 queue

I Service offered by two Poisson servers with service rates µ1 and µ2

⇒ Arrivals are Poisson with rate λ as in the M/M/1 queue

I When a server finishes serving a customer, serves next one in queue

⇒ If queue is empty the server waits for the next customer

I If both servers are idle when a new customer arrives

⇒ Service is performed by server 1 (simply by convention)

λ

µ1

µ2

Introduction to Random Processes Queuing Theory 22



CTMC model: States

I When no customers are in line, need to distinguish servers’ states
I State 0, 00 = no customers in queue, no customers being served
I State 0, 10 = no customers in queue, 1 customer served by server 1
I State 0, 01 = no customers in queue, 1 customer served by server 2
I State 0, 11 = no customers in queue, 2 customers in service

I When there are customers in line, both servers are busy
I State i , 11 = i > 0 customers in queue and 2 customers in service
I States i , 01, i , 10 and i , 00 are not possible for i > 0

0, 00

0, 10

0, 01

0, 11 1, 11 2, 11 . . .
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CTMC model: Transition rates

I Transition from i , 11 to (i + 1, 11) when arrival ⇒ qi,11;(i+1),11 = λ

I Transition from i , 11 to (i − 1, 11) when either server 1 or 2 finishes

⇒ First service completion by either server 1 or 2

I Min. of two exponentials is exponential ⇒ qi,11;(i−1),11 = µ1 + µ2

0, 00

0, 10

0, 01

0, 11 1, 11 2, 11

λ

µ1 + µ2

λ

µ1 + µ2

λ

µ1 + µ2

. . .
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CTMC model: Transition rates (continued)

I From 0, 00 move to 0, 10 on arrival ⇒ q0,00;0,10 = λ
I From 0, 10 move to 0, 11 on arrival ⇒ q0,10;0,11 = λ
I From 0, 01 move to 0, 11 on arrival ⇒ q0,01;0,11 = λ

I From 0, 10 to 0, 00 when server 1 finishes ⇒ q0,01;0,00 = µ1

I From 0, 11 to 0, 01 when server 1 finishes ⇒ q0,11;0,01 = µ1

I From 0, 01 to 0, 00 when server 2 finishes ⇒ q0,01;0,00 = µ2

I From 0, 11 to 0, 10 when server 2 finishes ⇒ q0,11;0,10 = µ2

0, 00

0, 10

0, 01

0, 11 1, 11 2, 11

λ λ

µ1

µ2

λ

λ

µ1

µ2

µ1 + µ2

λ

µ1 + µ2

λ

µ1 + µ2

. . .
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Limit distribution equations

0, 00

0, 10

0, 01

0, 11 1, 11 2, 11

λ λ

µ1

µ2

λ

λ

µ1

µ2

µ1 + µ2

λ

µ1 + µ2

λ

µ1 + µ2

. . .

I For states i , 11 with i > 0, eqs. are analogous to M/M/1 queue

(λ+ µ1 + µ2)Pi,11 = λP(i−1),11 + (µ1 + µ2)P(i+1),11

I For states 0, 11, 0, 10, 0, 01 and 0, 00 we have

(λ+ µ1 + µ2)P0,11 = λP0,10 + λP0,01 + (µ1 + µ2)P1,11

(λ+ µ1)P0,10 = λP0,00 + µ2P0,11

(λ+ µ2)P0,01 = µ1P0,11

λP0,00 = µ1P0,10 + µ2P0,01

I System of linear equations ⇒ Solve numerically to find probabilities
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Closing comments

I For large i behaves like M/M/1 queue with service rate (µ1 + µ2)

⇒ Still, states with no queued packets are important

I M/M/c queue ⇒ c servers with rates µ1, . . . , µc

⇒ More cumbersome to analyze but no fundamental differences
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A queue tandem

I Customers arrive at system to receive two services

I They arrive at a rate λ and wait in queue 1 for service 1

⇒ Service 1 is performed at a rate µ1

I After completions of service 1 customers move to queue 2

⇒ Service 2 is performed at a rate µ2

λ
µ1 µ2
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CTMC model

I States (i , j) represent i customers in queue 1 and j in queue 2

I If both queues are empty (i = j = 0), only possible event is an arrival

q00,10 = λ 0, 0 1, 0
λ

I If queue 2 is empty might have arrival or completion of service 1

qi0,(i+1)0 = λ

qi0,(i−1)1 = µ1
i, 0 i+1, 0

i−1, 1

λ
µ1
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CTMC model (continued)

I If queue 1 is empty might have arrival or completion of service 2

q0j,1j = λ

q0j,0(j−1) = µ2

0, j 1, j

0, j−1

λ

µ2

I If no queue is empty arrival, service 1 and service 2 possible

qi j,(i+1)j = λ

qij,(i−1)(j+1) = µ1

qi j,i(j−1) = µ2

i, j i+1, j

i, j−1

i−1, j+1

λ
µ1

µ2
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Balance equations

I Rate at which CTMC enters state (i , j) = rate at which CTMC leaves (i , j)

I State (0, 0) - Both queues empty

I From (0, 0) can go to (1, 0)

I Can enter (0, 0) from (0, 1)

λP00 = µ2P01 0, 0 1, 0

0, 1

λ

µ2
µ1

I State (i, 0) - Queue 2 empty

I From (i , 0) go to (i + 1, 0) or (i − 1, 1)

I Into (i , 0) from (i − 1, 0) or (i , 1)

(λ+ µ1)Pi0 = λP(i−1)0 + µ2Pi1
i, 0 i+1, 0i−1, 0

i, 1i−1, 1

λ

µ1

λ

µ2

λ

µ1
µ2
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Balance equations (continued)

I State (0, j) - Queue 1 empty

I From (0, j) go to (1, j) or (0, j − 1)

I Into (0, j) from (1, j − 1) or (0, j + 1)

(λ+ µ2)P0j = µ1P1(j−1) + µ2P0(j+1)

0, j 1, j

0, j+1

0, j−1 1, j−1

λ

µ2
µ1

µ2

λ

µ1

µ2
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Balance equations (continued)

I State (i, j) - Neither queue empty

I From (i , j) can go to (i + 1, j), (i − 1, j + 1) or (i , j − 1)

I Can enter (i , j) from (i − 1, j), (i + 1, j − 1) or (i , j + 1)

(λ+ µ1 + µ2)Pij = λP(i−1)j + µ1P(i+1)(j−1) + µ2Pi(j+1)

i, j i+1, ji−1, j

i, j+1

i, j−1

i−1, j+1

i+1, j−1

λ

µ1

µ2

λ

µ1

µ2

λ

λ

µ1

µ1

µ2

µ2
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Solution of balance equations

I Direct substitution shows that balance equations are solved by

Pij =

(
1− λ

µ1

)(
λ

µ1

)i (
1− λ

µ2

)(
λ

µ2

)j

I Compare with expression for M/M/1 queue

⇒ It behaves as two independent M/M/1 queues

⇒ First queue has rates λ and µ1

⇒ Second queue has rates λ and µ2

I Result can be generalized to networks of queues

⇒ Important in transportation networks

⇒ Also useful to analyze Internet traffic
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Glossary

I Queuing theory

I Customers and servers

I Queue length

I Time spent in queue

I M/M/1 queue

I Finite-capacity queue

I Multi-server queue

I Network of queues

I Queue tandem

I Poisson arrivals

I Exponential service times

I Balance equations

I Stable queue

I Traffic intensity

I Expected queue length

I Expected waiting time

I Little’s law

I M/M/c queue

I Aggregate service rate

I Independent M/M/1 queues
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