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A simple Predator-Prey model

I Populations of X prey molecules and Y predator molecules

I Three possible reactions (events)

1) Prey reproduction: X → 2X

2) Prey consumption to generate predator: X+Y → 2Y

3) Predator death: Y → ∅

I Each prey reproduces at rate α

⇒ Population of X preys ⇒ αX = rate of first reaction

I Prey individual consumed by predator individual on chance encounter

⇒ β = Rate of encounters between prey and predator individuals

⇒ X preys and Y predators ⇒ βXY = rate of second reaction

I Each predator dies off at rate γ

⇒ Population of Y predators ⇒ γY = rate of third reaction
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The Lotka-Volterra equations

I Study population dynamics ⇒ X (t) and Y (t) as functions of time t

I Conventional approach: model via system of differential eqs.

⇒ Lotka-Volterra (LV) system of differential equations

I Change in prey (dX (t)/dt) = Prey generation - Prey consumption

⇒ Prey is generated when it reproduces (rate αX (t))

⇒ Prey consumed by predators (rate βX (t)Y (t))

dX (t)

dt
= αX (t)− βX (t)Y (t)

I Predator change (dY (t)/dt) = Predator generation - consumption

⇒ Predator is generated when it consumes prey (rate βX (t)Y (t))

⇒ Predator consumed when it dies off (rate γY (t))

dY (t)

dt
= βX (t)Y (t)− γY (t)
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Solution of the Lotka-Volterra equations

I LV equations are non-linear but can be solved numerically
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I Prey reproduction rate α = 1

I Predator death rate γ = 0.1

I Predator consumption of prey β = 0.1

I Initial state X (0) = 4, Y (0) = 10

I Boom and bust cycles

I Start with prey reproduction > consumption ⇒ prey X (t) increases

I Predator production picks up (proportional to X (t)Y (t))

I Predator production > death ⇒ predator Y (t) increases

I Eventually prey reproduction < consumption ⇒ prey X (t) decreases

I Predator production slows down (proportional to X (t)Y (t))

I Predator production < death ⇒ predator Y (t) decreases

I Prey reproduction > consumption (start over)
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State-space diagram

I State-space diagram ⇒ plot Y (t) versus X (t)

⇒ Constrained to single orbit given by initial state (X (0),Y (0))
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Buildup: Prey increases fast, predator increases slowly (move right and slightly up)

Boom: Predator increases fast depleting prey (move up and left)

Bust: When prey is depleted predator collapses (move down almost straight)
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Two observations

I Too much regularity for a natural system (exact periodicity forever)
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I X (t), Y (t) modeled as continuous but actually discrete. Is this a problem?

I If X (t), Y (t) large can interpret as
concentrations (molecules/volume)

⇒ Often accurate (millions of molecules)

I If X (t), Y (t) small does not make sense

⇒ We had 7/100 prey at some point!

I There is an extinction event we are missing 0 10 20 30 40 50 60 70 80 90 1000
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X≈0.07

Introduction to Random Processes Predator-Prey Population Dynamics 7



Things deterministic model explains (or does not)

I Deterministic model is useful ⇒ Boom and bust cycles

⇒ Important property that the model predicts and explains

I But it does not capture some aspects of the system

⇒ Non-discrete population sizes (unrealistic fractional molecules)

⇒ No random variation (unrealistic regularity)

I Possibly missing important phenomena ⇒ Extinction

I Shortcomings most pronounced when number of molecules is small

⇒ Biochemistry at cellular level (1 ∼ 5 molecules typical)

I Address these shortcomings through a stochastic model
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Stochastic model as CTMC

Predator-Prey model (Lotka-Volterra system)

Stochastic model as continuous-time Markov chain
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Stochastic model

I Three possible reactions (events) occurring at rates c1, c2 and c3

1) Prey reproduction: X
c1→ 2X

2) Prey consumption to generate predator: X+Y
c2→ 2Y

3) Predator death: Y
c3→ ∅

I Denote as X (t),Y (t) the number of molecules by time t

I Can model X (t),Y (t) as continuous time Markov chains (CTMCs)?

I Large population size argument not applicable

⇒ Interest in systems with small number of molecules/individuals
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Stochastic model (continued)

I Consider system with 1 prey molecule x and 1 predator molecule y

I Let T2(1, 1) be the time until x reacts with y

⇒ Time until x , y meet, and x and y move randomly around

⇒ Reasonable to model T2(1, 1) as memoryless

P
(
T2(1, 1) > s + t

∣∣T2(1, 1) > s
)
= P (T2(1, 1) > t)

I T2(1, 1) is exponential with parameter (rate) c2

Introduction to Random Processes Predator-Prey Population Dynamics 11



Stochastic model (continued)

I Suppose now there are X preys and Y predators

⇒ There are XY possible predator-prey reactions

I Let T2(X ,Y ) be the time until the first of these reactions occurs

I Min. of exponential RVs is exponential with summed parameters

⇒ T2(X ,Y ) is exponential with parameter c2XY

I Likewise, time until first reaction of type 1 is T1(X ) ∼ exp(c1X )

I Time until first reaction of type 3 is T3(Y ) ∼ exp(c3Y )
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CTMC model

I If reaction times are exponential can model as CTMC

⇒ CTMC state (X ,Y ) with nr. of prey and predator molecules

X , Y X+1, YX−1, Y

X , Y+1

X , Y−1

X−1, Y+1

X+1, Y−1

c1X

c2XY

c3Y

c1(X − 1)

c2(X + 1)(Y − 1)

c3(Y + 1)

c1(X − 1)

c1X

c2(X + 1)Y

c2X (Y − 1)

c3(Y + 1)

c3Y

Transition rates

I (X ,Y ) → (X + 1,Y ):
Reaction 1 = c1X

I (X ,Y ) → (X−1,Y+1):
Reaction 2 = c2XY

I (X ,Y ) → (X ,Y − 1):
Reaction 3 = c3Y

I State-dependent rates

Introduction to Random Processes Predator-Prey Population Dynamics 13



Simulation of CTMC model

I Use CTMC model to simulate predator-prey dynamics
I Initial conditions are X (0) = 50 preys and Y (0) = 100 predators
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I Prey reproduction rate
c1 = 1 reactions/second

I Rate of predator consumption of prey
c2 = 0.005 reactions/second

I Predator death rate
c3 = 0.6 reactions/second

I Boom and bust cycles still the dominant feature of the system

⇒ But random fluctuations are apparent
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CTMC model in state space

I Plot Y (t) versus X (t) for the CTMC ⇒ state-space representation
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I No single fixed orbit as before

⇒ Randomly perturbed version of deterministic orbit
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Effect of different initial population sizes

I Chance of extinction captured by CTMC model (top plots)
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(Notice that Y-axis scales are different)
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Conclusions and the road ahead

I Deterministic vs. stochastic (random) modeling

I Deterministic modeling is simpler

⇒ Captures dominant features (boom and bust cycles)

I CTMC-based stochastic simulation more complex

⇒ Less regularity (all runs are different, state orbit not fixed)

⇒ Captures effects missed by deterministic solution (extinction)

I Gillespie’s algorithm. Optional reading in class website

⇒ CTMC model for every system of reactions is cumbersome

⇒ Impossible for hundreds of types and reactions

⇒ Q: Simulation for generic system of chemical reactions?
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