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Simulation of chemical reactions

I Chemical system with m reactant types and n possible reactions

I Reactant quantities change over time as reactions occur

I Nr. of type j reactants at time t denoted as Xj(t)

I System’s state ⇒ vector X(t) := [X1(t),X2(t), . . . ,Xj(t)]T

I To specify i-th reaction ⇒ reactants, products and rates

Ri : s li1X1 + s li2X2 + . . .+ s limXm
hi (X)→ s ri1X1 + s ri2X2 + . . .+ s rimXm

I (s li1 molecules of type 1) + . . .+ (s lim molecules of type m) react ...
... to yield (s ri1 of type 1) + . . .+ (s rim of type m)

I Rate of reaction hi (X) depends on number of molecules present

I Let Ti (X) denote the time until the i-th reaction when state is X
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Stoichiometry matrices

I Can be more conveniently written using matrices

⇒ Define vector of rates h(X) = [h1(X), h2(X), . . . , hn(X)]T

⇒ Define stoichiometry left matrix S(l) with elements s lij

⇒ Define stoichiometry right matrix S(r) with elements s rij

I Write system of chemical reactions as ⇒ S(l)X
h(X)→ S(r)X

s l11 s l12 · s l1m
· · · ·
s li1 s li2 · s lim
· · · ·
s ln2 s ln2 · s lnm





X1

X2

·
Xm




s l11X1 + . . . + s l1mXm

·
s li1X1 + . . . + s limXm

·
s ln1X1 + . . . + s lnmXm




S(l)

= X

S(l)X

=

X1s
l
i1
X2s

l
i2

Xms
l
im

sr11 sr12 · sr1m
· · · ·
sri1 sri2 · srim
· · · ·
srn2 srn2 · srnm





X1

X2

·
Xm




sr11X1 + . . . + sr1mXm

·
sri1X1 + . . . + srimXm

·
srn1X1 + . . . + srnmXm




S(r)

= X

S(r)X

X1s
r
i1
X2s

r
i2

Xms
r
im

Introduction to Random Processes Simulation of Chemical Reactions 4



Example 1: Dimerization kinetics

I Molecule can exist in simple form P and as a dimer D

I Define vector X := [P,D]T

I Possible reactions are dimerization and dissociation

R1 (Dimerization): 2P
h1(X)→ D

R2 (Dissociation): D
h2(X)→ 2P

I Rates and stoichiometry matrices S(l) and S(r) given by

S(l) =

[
2 0
0 1

]
, S(r) =

[
0 1
2 0

]
, h(X) =

[
h1(X)
h2(X)

]
I Rewrite equations more compactly as ⇒ S(l)X

h(X)→ S(r)X
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Example 2: Enzymatic reaction

I Substrate S converted to product P. Enzyme E catalyzes conversion

I Converting S into P directly requires significant energy

I Enzyme E reacts with S to form intermediate molecule SE (binding)

I Molecule SE then separates into product P liberating E (conversion)

I This cycle requires less energy than direct conversion

I SE may also separate back into S and E (dissociation)

I Possible reactions are binding, conversion and dissociation, then

R1 (Binding): S + E
h1(X)→ SE

R2 (Dissociation): SE
h2(X)→ S + E

R3 (Conversion): SE
h3(X)→ E + P
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Example 2: Enzymatic reaction (continued)

I System state represented by vector X := [S ,E ,SE ,P]T

I Stoichiometry matrices S(l) and S(r) given by

S E SE P S E SE P

S(l) =

 1 1 0 0
0 0 1 0
0 0 1 0

 R1

R2

R3

S(r) =

 0 0 1 0
1 1 0 0
0 1 0 1

 R1

R2

R3

I Reaction rate vector h(X) = [h1(X), h2(X), h3(X)]T

I Rewrite equations more compactly as ⇒ S(l)X
h(X)→ S(r)X
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Second order reaction

I Consider second order reaction Ri : X1 + X2 → . . . (two reactants)

I Let Ti (X1,X2) be time until R occurs when there are X1 type 1 and
X2 type 2 molecules

I Have seen that Ti (X1,X2) is exponentially distributed with rate

hi (X) = hi (X1,X2) = ciX1X2

I Constant ci measures reactivity of X1 and X2

I Argument ⇒ Ti (1, 1) memoryless (depends on chance encounter)

⇒ Thus Ti (1, 1) is exponential with, say, parameter ci

⇒ Ti (X1,X2) is the minimum of X1X2 exponentials

⇒ Ti (X1,X2) exponential with parameter ciX1X2
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Second order involving molecules of same type

I Second order reaction with two molecules of same type

Ri : X1 + X1 → . . .

I Hazard depends on the number of molecules X1, i.e. hi (X) = hi (X1)

I Reaction does not occur if there is a single molecule

I If there are 2 molecules Ti (2) is exponential with parameter, say, ci
I For arbitrary X1 there are X1(X1 − 1)/2 possible encounters

I Then, Ti (X1) is exponential with parameter

hi (X) = hi (X1) = ciX1(X1 − 1)/2

I ciX1(X1 − 1)/2 substantially different from ciX
2
1 /2 for small X1
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Zero-th, first and higher order reactions

I Zero-th order reaction Ri : ∅ → X1 (spontaneous generation)

I Assume an exponential model with constant rate hi = ci
I Used to model exogenous factors (and biblical phenomena)

I First order reaction Ri : X1 → . . . (decay)

I Exponential with rate hi (X) = hi (X1) = ciX1

I Higher order reactions involving more than two reactants

I E.g., third order reaction Ri : X1 + X2 + X3 → X4

I Time until next Ri reaction exponential. Hazard: hi (X) = ciX1X2X3

I Reactions of order more than 2 are rare

I Most likely, Ri is encapsulating two second order reactions

X1 + X2 → X5, X5 + X3 → X4
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The hazard function

I All reaction times are exponential RVs ⇒ CTMC with state X

I Hazards hi (X) determine transition rates of CTMC

I Hazards for zero-th, first and second order reactions (for reference)

Order Reaction Rate

zero-th ∅ c→ · · · c

first X1
c→ · · · cX1

second X1 + X2
c→ · · · cX1X2

second 2X1
c→ · · · cX1(X1 − 1)/2

I Probability of reaction Ri happening in infinitesimal time ε is

P (Ti (X) < ε) = hi (X)ε+ o(ε)

I That’s why the name hazard
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State transition for given reaction

I State is X(t) = X. Reaction Ri occurs. Next state X(t + dt) = Y?

I Number of reactants per type =

= i-th row of left stoichiometry matrix s
(l)
i = [s li1, s

l
i2, . . . , s

l
im]T

s li1X1 + s li2X2 + . . .+ s limXm
hi (X)→ . . .

I Number of products per type =

= i-th row of right stoichiometry matrix s
(r)
i = [s ri1, s

r
i2, . . . , s

r
im]T

. . .
hi (X)→ s ri1X1 + s ri2X2 + . . .+ s rimXm

I X decreases by nr. of reactants and increases by nr. of products

I Next sate is ⇒ Y = X− s
(l)
i + s

(r)
i (upon reaction Ri )
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Transition rates and probabilities

I q(X,Y) = transition rate from state X to state Y. Given by

q
(
X,X− s(l)i + s(r)i

)
= hi (X), i = 1, . . . , n

I Transition from state X to X− s
(l)
i + s

(r)
i when reaction Ri occurs

I ν(X) = Transition rate out of X into any state (any reaction occurs)

ν(X) =
n∑

i=1

q
(
X,X− s(l)i + s(r)i

)
=

n∑
i=1

hi (X)

I P(X,Y) = Prob. of going into Y given transition out of X occurs

P
(
X,X− s(l)i + s(r)i

)
=

q
(
X,X− s(l)i + s(r)i

)
ν(X)

=
hi (X)

ν(X)

I Probability that i-th reaction occurs given that a reaction occurred
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Gillespie’s algorithm

Gillespie’s algorithm = Simulation of CTMC

Input: Stoichiometry matrices S(l) and S(r). Initial state X(0)

Output: Molecule numbers as a function of time X(t)

(1) Initialize time and CTMC’s state t = 0, X = X(0)

(2) Calculate all hazards ⇒ hi (X)

(3) Calculate transition rate ⇒ ν(X) =
∑n

i=1 hi (X)

(4) Draw random time of next reaction ∆t ∼ Exp
(
ν(X)

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t ⇒ Ri drawn with prob. hi (X)/ν(X)

(7) Update state vector to account for this reaction ⇒ X− s
(l)
i + s

(r)
i

(8) Repeat from (2)
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Dimerization Kinetics

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Lactose digestion (lac operon)
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Dimerization

I Dimerization occurs when two like molecules join together

I Many proteins (P) will form dimers (D)

I Dimerization may be rare in relative terms, but significant in absolute

terms at high concentration. For this reason plays important role in

auto-regulation of protein production

I Possible reactions are dimerization and dissociation

R1 (Dimerization): 2P
c1→ D

R2 (Dissociation): D
c2→ 2P

I Dimerization rare and dimers unstable ⇒ c2 � c1

I Stoichiometry matrices S(l) and S(r) given by

S(l) =

[
2 0
0 1

]
, S(r) =

[
0 1
2 0

]
,

I Rate of reaction 1 is h1(X) = c1P(P − 1)/2. Reaction 2 is h2(X) = c2D
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Gillespie’s algorithm for dimerization kinetics

(1) Initialize time and CTMC’s state t = 0, P = P(0), D = D(0)

(2) Calculate hazards ⇒ h1(X) = c1P(P − 1)/2,
⇒ h2(X) = c2D

(3) Calculate transition rate ⇒ ν(X) = c1P(P − 1)/2 + c2D

(4) Draw random time of next reaction

∆t ∼ exp
(
ν(X)

)
= exp

(
c1P(P − 1)/2 + c2D

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t

P (Dimerization:) = c1P(P − 1)/2/ν(X)
P (Dissociation:) = c2D/ν(X)

(7) Update state vector ⇒ Dimerization: P = P − 2, D = D + 1
⇒ Dissociation: P = P + 2, D = D − 1

(8) Repeat from (2)
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Stochastic simulation of dimerization kinetics

I Run of Gillespie’s algorithm for dimerization kinetics

I Initial condition P(0) = 301, D(0) = 0 (protein only)
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I Dimerization hazard

c1 = 1.66× 10−3 reactions

sec./molecule2

I Dissociation hazards

c2 = 0.2× 10−3 reactions

sec./molecule

I c = [c1, c2]T = [1.66× 10−3, 0.2]T

I P and D “stabilize” at point where dimerization and dissociation
become equally likely
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Information that can be obtained from simulations

I E.g., consider nr. of protein molecules P (P(t) + 2D(t) is constant)

I Mean and standard deviation of P versus time?

I Right graph ⇒ mean and ±3(standard deviations) over 104 trials

I Left graph shows 20 trials
I Vary around mean path but stay within ±3-standard deviations
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Steady-state probability distribution

I Time t = 10 seconds ⇒ approximate PMF over 104 trials

I Can use ergodicity instead
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I Bell-shaped. Only odd values of P are possible

I Runs are all odd or all even depending on initial condition
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Enzymatic reactions

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Lactose digestion (lac operon)
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Enzymes

I Substrate S converted into product P by action of enzyme E

I Intermediate product SE generated by combination of E and S

I SE later separates into product P liberating the enzyme E

I SE may also dissociate into S and E

I Enzymes can act as catalysts for reactions that would otherwise
rarely or never take place

I Possible reactions are binding, dissociation and conversion

R1 (Binding): S + E
c1→ SE

R2 (Dissociation): SE
c2→ S + E

R3 (Conversion): SE
c3→ P + E

I Dissociation typically not significant because c2 � c3
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Enzymatic reactions (continued)

I Stoichiometry matrices S(l) and S(r) given by

S E SE P S E SE P

S(l) =

 1 1 0 0
0 0 1 0
0 0 1 0

 R1

R2

R3

S(r) =

 0 0 1 0
1 1 0 0
0 0 1 1

 R1

R2

R3

I Reaction rates are

⇒ Reaction R1 (Binding): h1(X) = c1S × E ,

⇒ Reaction R2 (Dissociation): h2(X) = c2SE

⇒ Reaction R3 (Conversion): h3(X) = c3SE
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Gillespie’s algorithm for enzymatic reactions

(1) Initialization: t = 0, S = S(0), E = E(0), SE = SE(0), P = P(0)

(2) Calculate hazards ⇒ h1(X) = c1S × E ,
⇒ h2(X) = c2SE
⇒ h3(X) = c3SE

(3) Calculate transition rate ⇒ ν(X) = c1S × E + c2SE + c3SE

(4) Draw random time of next reaction

∆t ∼ exp
(
ν(X)

)
= exp

(
c1S × E + c2SE + c3SE

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t

P (Binding:) = c1S × E/ν(X)
P (Dissociation:) = c2SE/ν(X)
P (Conversion:) = c3SE/ν(X)

(7) Update state vector ⇒ Binding: S = S − 1, E = E − 1, SE = SE + 1
⇒ Dissociation: S = S + 1, E = E + 1, SE = SE − 1
⇒ Conversion: P = P + 1, E = E + 1, SE = SE − 1

(8) Repeat from (2)
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Stochastic simulation of enzymatic reactions

I Run of Gillespie’s algorithm for enzymatic reactions

I Initialize with only substrate and enzyme present

S(0) = 301, E(0) = 120, SE(0) = 0, P(0) = 0
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I Binding hazard

c1 = 1.66× 10−3 reactions

sec./molecule2

I Dissociation hazard

c2 = 10−4 reactions

sec./molecule

I Conversion hazard

c3 = 0.1
reactions

sec./molecule

I c = [c1, c2, c3]T= [1.66× 10−3, 10−4, 0.1]T
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Stochastic simulation (continued)

I At the beginning substrate and enzyme numbers decline as they bind to
each other to form intermediate product SE

I Intermediate product separates into final product P liberating enzyme E

I By t = 50 seconds substrate is completely converted into product and
enzymes are free. There is no intermediate product either
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Lactose digestion (lac operon)

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Lactose digestion (lac operon)
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Auto-regulation of protein production

I Simplified model of protein production in prokaryotes

I “Instructions” for creating proteins “encoded” in genes

I To produce proteins, genes are first transcribed into mRNA

I This mRNA is passed on to a ribosome to “assemble” the protein

I Protein production not immutable. How does it changes over time?

I Auto regulatory gene networks

⇒ Production triggered by external stimuli

⇒ Halted by negative feedback loops through protein byproducts

I E.g. Production of β-galactosidase to digest glucose

⇒ Lac-operon (lac for lactose, operon=set of interacting genes)
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Glucose, Lactose and β-galactosidase

I Glucose (G) and lactose (L) are variations of sugars

I Cells use glucose for energy but can reduce lactose to glucose

I Lactose reduced to glucose by enzyme β-galactosidase (βG )

Lactose digestion: L + βG
c1→ G + βG

Glucose consumption: G
c2→ ∅

I Did not model enzymatic reaction (compare with earlier example)

I Rate of lactose digestion c1L× (βG ). Glucose consumption c2G

I Producing β-galactosidase is not always necessary

I Production necessary only when lactose is present and glucose is not
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Lac-operon, normal state

I Lac-operon consists of three adjacent genes

I Promoter, operator and β-galactosidase code (three types in fact)

I Lac-operon has three possible states, regular, activated and repressed

I In normal state (Op) transcription proceeds at a small rate c3
I The promoter is a binding place for RNA polymerase (RNAP)

I RNAP binds to promoter to initiate gene transcription into mRNA

promoter operator lac x lac y lac z

RNAP
mRNA

I Model reaction as ⇒ Regular transcription: Op
c3→ Op + mRNA
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Lac-operon in activated state

I Operon activated (AOp) by catabolite activator protein (CAP)

I CAP binds upstream of the promoter altering DNA’s geometry

I Thereby facilitating (promoting) binding of RNAP to promoter

I Hence yielding a faster rate of transcription c4 � c3

promoter operator lac x lac y lac z

CAP

RNAP

mRNA

I Model reaction as ⇒ Activated transcription: AOp
c4→ AOp + mRNA
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Lac-operon in repressed state

I Operon repressed (ROp) by lactose repressor protein protein (LRP)

I LRP encoded by gene adjacent to lac operon, is always expressed
and has great affinity with the operator

I If LRP binds to operator it interferes with RNAP–promoter binding

I Without RNAP, there is no (or minimal) transcription

I Hence yielding a very slow rate of transcription c5 � c3 � c4

promoter operator lac x lac y lac z

L
R
P

RNAP
mRNA

I Model reaction as ⇒ Repressed transcription: ROp
c5→ ROp + mRNA
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Repression control

I If there is no lactose (L) present lac operon is in repressed state

I When lactose is present it combines with LRP

I Thereby preventing repression of lac operon. Lac operon in regular state

⇒ Small (but not minimal) rate of β-galactosidase production

promoter operator lac x lac y lac z

RNAP
mRNA LRP

Lactose

I We model this with the following reactions

Operon repression: LRP + Op
c6→ ROp

Operon liberation: ROp
c7→ LRP + Op

Repressor neutralization: LRP + L
c8→ LRPL

Repressor dissociation: LRPL
c9→ LRP + L
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Activation control

I Prevalence of CAP inversely proportional to glucose levels

I This involves a complex set of reactions in itself

I For a preliminary model the following reactions suffice

Operon activation: CAP + Op
c10→ AOp

Operon deactivation: AOp
c11→ CAP + Op

CAP neutralization: CAP + G
c12→ CAPG

CAP dissociation: CAPG
c13→ CAP + G

I If glucose is present, CAP is bound to glucose

I Thereby preventing activation of lac operon

⇒ Small rate of β-galactosidase production

promoter operator lac x lac y lac z

RNAP
mRNA CAP

Glucose
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Glucose, lactose and lac-operon states

I High lactose and high glucose (glucose preferred)
I CAP bound to glucose and LRP bound to lactose
I Operon in regular state, low production of β-galactosidase

I High lactose and low glucose (lactose only option)
I CAP bound upstream of promoter and LRP bound to lactose
I Operon in activated state, high production of β-galactosidase

I High glucose and low lactose (glucose dominant and preferred)
I CAP bound to glucose and LRP bound to operator
I Operon in repressed state, minimal production of β-galactosidase

I Low glucose and low lactose (no energy source available)
I CAP bound upstream of promoter and LRP bound to operator
I Repression dominates, minimal production of β-galactosidase

I β-galactosidase produced in significant quantities only with high
lactose and low glucose concentrations
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β-galactosidase assembly and decays

I To complete model we add reactions to account for

⇒ Assembly of β-galactosidase (βG ) enzyme

⇒ mRNA and βG decay

Protein synthesis: mRNA
c14→ mRNA + βG

mRNA decay: mRNA
c15→ ∅

βgalactosidase decay: βG
c16→ ∅
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Reactions modeling digestion of lactose

I Model of auto-regulatory gene network for digestion of lactose

I Rates in reactions/minute/molecule or reactions/minute/molecule2

Lactose digestion: L+ βG
c1→ G + βG c1 = 1

Glucose consumption: G
c2→ ∅ c2 = 0.1

Regular transcription: Op
c3→ Op +mRNA c3 = 0.01

Activated transcription: AOp
c4→ AOp +mRNA c4 = 0.1

Repressed transcription: ROp
c5→ ROp +mRNA c5 = 0.001

Operon repression: LRP + Op
c6→ ROp c6 = 1

Operon liberation: ROp
c7→ LRP + Op c7 = 1

I Compare rates c3-c5 for lac operon in different states
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Reactions modeling digestion of lactose (continued)

I Model of auto-regulatory gene network for digestion of lactose

I Rates in reactions/minute/molecule or reactions/minute/molecule2

Repressor neutralization: LRP + L
c8→ LRPL c8 = 10

Repressor dissociation: LRPL
c9→ LRP + L c9 = 1

Operon activation: CAP + Op
c10→ AOp c10 = 1

Operon deactivation: AOp
c11→ CAP + Op c11 = 1

CAP neutralization: CAP + G
c12→ CAPG c12 = 10

CAP dissociation: CAPG
c13→ CAP + G c13 = 1

Protein synthesis: mRNA
c14→ mRNA+ βGc14 = 1

mRNA decay: mRNA
c15→ ∅ c15 = 1

βgalactosidase decay: βG
c16→ ∅ c16 = 0.1

I Notice that LRP and CAP neutralization are fast (rates c8 and c12)
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Stochastic simulation: diauxie pattern

I Initial state ⇒ L = 50, G = 50, CAP = 10, LRP = 10

I Only 1 operon in regular state
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I Sugars (glucose and lactose) consumed sequentially

⇒ Glucose is consumed first

⇒ After glucose is depleted, lactose converted to glucose

⇒ After conversion, newly generated glucose is also consumed

I Yields two growth spurts = diauxie pattern
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Operon state and diauxie pattern

I Conversion occurs with operon in activated state
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mRNA transcription & β-Galactosidase synthesis

I Operon activation ⇒ mRNA transcription ⇒ β-Galactosidase synthesis
⇒ lactose digestion
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