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Random processes

I Random processes assign a function X (t) to a random event

⇒ Without restrictions, there is little to say about them

⇒ Markov property simplifies matters and is not too restrictive

I Also constrained ourselves to discrete state spaces

⇒ Further simplification but might be too restrictive

I Time t and range of X (t) values continuous in general
I Time and/or state may be discrete as particular cases

I Restrict attention to (any type or a combination of types)

⇒ Markov processes (memoryless)

⇒ Gaussian processes (Gaussian probability distributions)

⇒ Stationary processes (“limit distribution”)
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Markov processes

I X (t) is a Markov process when the future is independent of the past

I For all t > s and arbitrary values x(t), x(s) and x(u) for all u < s

P
(
X (t) ≤ x(t)

∣∣X (s) ≤ x(s),X (u) ≤ x(u), u < s
)

= P
(
X (t) ≤ x(t)

∣∣X (s) ≤ x(s)
)

⇒ Markov property defined in terms of cdfs, not pmfs

I Markov property useful for same reasons as in discrete time/state

⇒ But not that useful as in discrete time /state

I More details later
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Gaussian processes

I X (t) is a Gaussian process when all prob. distributions are Gaussian

I For arbitrary n > 0, times t1, t2, . . . , tn it holds

⇒ Values X (t1),X (t2), . . . ,X (tn) are jointly Gaussian RVs

I Simplifies study because Gaussian distribution is simplest possible

⇒ Suffices to know mean, variances and (cross-)covariances

⇒ Linear transformation of independent Gaussians is Gaussian

⇒ Linear transformation of jointly Gaussians is Gaussian

I More details later
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Markov processes + Gaussian processes

I Markov (memoryless) and Gaussian properties are different

⇒ Will study cases when both hold

I Brownian motion, also known as Wiener process

⇒ Brownian motion with drift

⇒ White noise ⇒ Linear evolution models

I Geometric brownian motion

⇒ Arbitrages

⇒ Risk neutral measures

⇒ Pricing of stock options (Black-Scholes)
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Stationary processes

I Process X (t) is stationary if probabilities are invariant to time shifts

I For arbitrary n > 0, times t1, t2, . . . , tn and arbitrary time shift s

P (X (t1 + s) ≤ x1,X (t2 + s) ≤ x2, . . . ,X (tn + s) ≤ xn) =

P (X (t1) ≤ x1,X (t2) ≤ x2, . . . ,X (tn) ≤ xn)

⇒ System’s behavior is independent of time origin

I Follows from our success studying limit probabilities

⇒ Study of stationary process ≈ Study of limit distribution

I Will study ⇒ Spectral analysis of stationary random processes
⇒ Linear filtering of stationary random processes

I More details later
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Jointly Gaussian random variables

I Def: Random variables X1, . . . ,Xn are jointly Gaussian (normal) if any
linear combination of them is Gaussian

⇒ Given n > 0, for any scalars a1, . . . , an the RV (a = [a1, . . . , an]
T )

Y = a1X1 + a2X2 + . . .+ anXn = aTX is Gaussian distributed

⇒ May also say vector RV X = [X1, . . . ,Xn]
T is Gaussian

I Consider 2 dimensions ⇒ 2 RVs X1 and X2 are jointly normal

I To describe joint distribution have to specify

⇒ Means: µ1 = E [X1] and µ2 = E [X2]

⇒ Variances: σ2
11 = var [X1] = E

[
(X1 − µ1)

2
]
and σ2

22 = var [X2]

⇒ Covariance: σ2
12 = cov(X1,X2) = E [(X1 − µ1)(X2 − µ2)]= σ2

21
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Pdf of jointly Gaussian RVs in 2 dimensions

I Define mean vector µ = [µ1, µ2]
T and covariance matrix C ∈ R2×2

C =

(
σ2
11 σ2

12

σ2
21 σ2

22

)
⇒ C is symmetric, i.e., CT = C because σ2

21 = σ2
12

I Joint pdf of X = [X1,X2]
T is given by

fX(x) =
1

2π det1/2(C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
⇒ Assumed that C is invertible, thus det(C) 6= 0

I If the pdf of X is fX(x) above, can verify Y = aTX is Gaussian
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Pdf of jointly Gaussian RVs in n dimensions

I For X ∈ Rn (n dimensions) define µ = E [X] and covariance matrix

C := E
[
(X− µ)(X− µ)T

]
=


σ2
11 σ2

12 . . . σ2
1n

σ2
21 σ2

22 . . . σ2
2n

...
. . .

...
σ2
n1 σ2

n2 . . . σ2
nn


⇒ C symmetric, (i , j)-th element is σ2

ij = cov(Xi ,Xj)

I Joint pdf of X defined as before (almost, spot the difference)

fX(x) =
1

(2π)n/2 det1/2(C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
⇒ C invertible and det(C) 6= 0. All linear combinations normal

I To fully specify the probability distribution of a Gaussian vector X

⇒ The mean vector µ and covariance matrix C suffice
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Notational aside and independence

I With x ∈ Rn, µ ∈ Rn and C ∈ Rn×n, define function N (x;µ,C) as

N (x;µ,C) :=
1

(2π)n/2 det1/2(C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
⇒ µ and C are parameters, x is the argument of the function

I Let X ∈ Rn be a Gaussian vector with mean µ, and covariance C

⇒ Can write the pdf of X as fX(x) = N (x;µ,C)

I If X1, . . . ,Xn are mutually independent, then C = diag(σ2
11, . . . , σ

2
nn) and

fX(x) =
n∏

i=1

1√
2πσ2

ii

exp

(
− (xi − µi )

2

2σ2
ii

)
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Gaussian processes

I Gaussian processes (GP) generalize Gaussian vectors to infinite dimensions

I Def: X (t) is a GP if any linear combination of values X (t) is Gaussian

⇒ For arbitrary n > 0, times t1, . . . , tn and constants a1, . . . , an

Y = a1X (t1) + a2X (t2) + . . .+ anX (tn) is Gaussian distributed

⇒ Time index t can be continuous or discrete

I More general, any linear functional of X (t) is normally distributed

⇒ A functional is a function of a function

Ex: The (random) integral Y =

∫ t2

t1

X (t) dt is Gaussian distributed

⇒ Integral functional is akin to a sum of X (ti ), for all ti ∈ [t1, t2]
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Joint pdfs in a Gaussian process

I Consider times t1, . . . , tn. The mean value µ(ti ) at such times is

µ(ti ) = E [X (ti )]

I The covariance between values at times ti and tj is

C(ti , tj) = E
[(
X (ti )− µ(ti )

)(
X (tj)− µ(tj)

)]
I Covariance matrix for values X (t1), . . . ,X (tn) is then

C(t1, . . . , tn) =


C(t1, t1) C(t1, t2) . . . C(t1, tn)
C(t2, t1) C(t2, t2) . . . C(t2, tn)

...
...

. . .
...

C(tn, t1) C(tn, t2) . . . C(tn, tn)


I Joint pdf of X (t1), . . . ,X (tn) then given as

fX (t1),...,X (tn)(x1, . . . , xn) = N
(
[x1, . . . , xn]

T ; [µ(t1), . . . , µ(tn)]
T ,C(t1, . . . , tn)

)
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Mean value and autocorrelation functions

I To specify a Gaussian process, suffices to specify:

⇒ Mean value function ⇒ µ(t) = E [X (t)]; and

⇒ Autocorrelation function ⇒ R(t1, t2) = E
[
X (t1)X (t2)

]
I Autocovariance obtained as C (t1, t2) = R(t1, t2)− µ(t1)µ(t2)

I For simplicity, will mostly consider processes with µ(t) = 0

⇒ Otherwise, can define process Y (t) = X (t)− µX (t)

⇒ In such case C (t1, t2) = R(t1, t2) because µY (t) = 0

I Autocorrelation is a symmetric function of two variables t1 and t2

R(t1, t2) = R(t2, t1)
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Probabilities in a Gaussian process

I All probs. in a GP can be expressed in terms of µ(t) and R(t1, t2)

I For example, pdf of X (t) is

fX (t)(xt) =
1√

2π
(
R(t, t)− µ2(t)

) exp
(
−

(
xt − µ(t)

)2
2
(
R(t, t)− µ2(t)

))

I Notice that X (t)−µ(t)√
R(t,t)−µ2(t)

is a standard Gaussian random variable

⇒ P (X (t) > a) = Φ
(

a−µ(t)√
R(t,t)−µ2(t)

)
, where

Φ(x) =

∫ ∞

x

1√
2π

exp

(
−x2

2

)
dx
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Joint and conditional probabilities in a GP

I For a zero-mean GP X (t) consider two times t1 and t2

I The covariance matrix for X (t1) and X (t2) is

C =

(
R(t1, t1) R(t1, t2)
R(t1, t2) R(t2, t2)

)
I Joint pdf of X (t1) and X (t2) then given as (recall µ(t) = 0)

fX (t1),X (t2)(xt1 , xt2) =
1

2π det1/2(C)
exp

(
−1

2
[xt1 , xt2 ]

TC−1[xt1 , xt2 ]

)

I Conditional pdf of X (t1) given X (t2) computed as

fX (t1)|X (t2)(xt1
∣∣ xt2) = fX (t1),X (t2)(xt1 , xt2)

fX (t2)(xt2)
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h/2

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h/4

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Random walk, time step h and step size σ
√
h

I Let X (t) be the position at time t with X (0) = 0

⇒ Time interval is h and σ
√
h is the size of each step

⇒ Walker steps right or left w.p. 1/2 for each direction

I Given X (t) = x , prob. distribution of the position at time t + h is

P
(
X (t + h) = x + σ

√
h
∣∣X (t) = x

)
= 1/2

P
(
X (t + h) = x − σ

√
h
∣∣X (t) = x

)
= 1/2

I Consider time T = Nh and index n = 1, 2, . . . ,N

⇒ Introduce step RVs Yn = ±1, with P (Yn = ±1) = 1/2

⇒ Can write X (nh) in terms of X ((n − 1)h) and Yn as

X (nh) = X ((n − 1)h) +
(
σ
√
h
)
Yn
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Central Limit Theorem as h → 0

I Use recursion to write X (T ) = X (Nh) as (recall X (0) = 0)

X (T ) = X (Nh) = X (0) +
(
σ
√
h
) N∑

n=1

Yn =
(
σ
√
h
) N∑

n=1

Yn

I Y1, . . . ,YN are i.i.d. with zero-mean and variance

var [Yn] = E
[
Y 2
n

]
= (1/2)× 12 + (1/2)× (−1)2 = 1

I As h → 0 we have N = T/h → ∞, and from Central Limit Theorem

N∑
n=1

Yn ∼ N (0,N) = N (0,T/h)

⇒ X (T ) ∼ N
(
0, (σ2h)× (T/h)

)
= N

(
0, σ2T

)
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Conditional distribution of future values

I More generally, consider times T = Nh and T + S = (N +M)h

I Let X (T ) = x(T ) be given. Can write X (T + S) as

X (T + S) = x(T ) +
(
σ
√
h
) N+M∑

n=N+1

Yn

I From Central Limit Theorem it then follows

N+M∑
n=N+1

Yn ∼ N
(
0, (N +M − N)

)
= N (0,S/h)

⇒
[
X (T + S)

∣∣X (T ) = x(T )
]
∼ N (x(T ), σ2S)
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Definition of Brownian motion

I The former analysis was for motivational purposes

I Def: A Brownian motion process (a.k.a Wiener process) satisfies

(i) X (t) is normally distributed with zero mean and variance σ2t

X (t) ∼ N
(
0, σ2t

)
(ii) Independent increments ⇒ For disjoint intervals (t1, t2) and (s1, s2)

increments X (t2)− X (t1) and X (s2)− X (s1) are independent RVs

(iii) Stationary increments ⇒ Probability distribution of increment
X (t + s)− X (s) is the same as probability distribution of X (t)

I Property (ii) ⇒ Brownian motion is a Markov process

I Properties (i)-(iii) ⇒ Brownian motion is a Gaussian process
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Mean and autocorrelation of Brownian motion

I Mean function µ(t) = E [X (t)] is null for all times (by definition)

µ(t) = E [X (t)] = 0

I For autocorrelation RX (t1, t2) start with times t1 < t2

I Use conditional expectations to write

RX (t1, t2) = E [X (t1)X (t2)] = EX (t1)

[
EX (t2)

[
X (t1)X (t2)

∣∣X (t1)
]]

I In the innermost expectation X (t1) is a given constant, then

RX (t1, t2) = EX (t1)

[
X (t1)EX (t2)

[
X (t2)

∣∣X (t1)
]]

⇒ Proceed by computing innermost expectation
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Autocorrelation of Brownian motion (continued)

I The conditional distribution of X (t2) given X (t1) for t1 < t2 is[
X (t2)

∣∣X (t1)
]
∼ N

(
X (t1), σ

2(t2 − t1)
)

⇒ Innermost expectation is EX (t2)

[
X (t2)

∣∣X (t1)
]
= X (t1)

I From where autocorrelation follows as

RX (t1, t2) = EX (t1)

[
X (t1)X (t1)

]
= EX (t1)

[
X 2(t1)

]
= σ2t1

I Repeating steps, if t2 < t1 ⇒ RX (t1, t2) = σ2t2

I Autocorrelation of Brownian motion ⇒ RX (t1, t2) = σ2 min(t1, t2)
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Brownian motion with drift

I Similar to Brownian motion, but start from biased random walk

I Time interval h, step size σ
√
h, right or left with different probs.

P
(
X (t + h) = x + σ

√
h
∣∣X (t) = x

)
=

1

2

(
1 +

µ

σ

√
h
)

P
(
X (t + h) = x − σ

√
h
∣∣X (t) = x

)
=

1

2

(
1− µ

σ

√
h
)

⇒ If µ > 0 biased to the right, if µ < 0 biased to the left

I Definition requires h small enough to make (µ/σ)
√
h ≤ 1

I Notice that bias vanishes as
√
h, same as step size
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Mean and variance of biased steps

I Define step RV Yn = ±1, with probabilities

P (Yn = 1) =
1

2

(
1 +

µ

σ

√
h
)
, P (Yn = −1) =

1

2

(
1− µ

σ

√
h
)

I Expected value of Yn is

E [Yn] = 1× P (Yn = 1) + (−1)× P (Yn = −1)

=
1

2

(
1 +

µ

σ

√
h
)

− 1

2

(
1− µ

σ

√
h
)
=

µ

σ

√
h

I Second moment of Yn is

E
[
Y 2

n

]
= (1)2 × P (Yn = 1) + (−1)2 × P (Yn = −1) = 1

I Variance of Yn is ⇒ var [Yn] = E
[
Y 2

n

]
− E2[Yn] = 1− µ2

σ2
h
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Central Limit Theorem as h → 0

I Consider time T = Nh, index n = 1, 2, . . . ,N. Write X (nh) as

X (nh) = X ((n − 1)h) +
(
σ
√
h
)
Yn

I Use recursively to write X (T ) = X (Nh) as

X (T ) = X (Nh) = X (0) +
(
σ
√
h
) N∑

n=1

Yn =
(
σ
√
h
) N∑

n=1

Yn

I As h → 0 we have N → ∞ and
∑N

n=1 Yn normally distributed

I As h → 0, X (T ) tends to be normally distributed by CLT
I Need to determine mean and variance (and only mean and variance)
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Mean and variance of X (T )

I Expected value of X (T ) = scaled sum of E [Yn] (recall T = Nh)

E [X (T )] =
(
σ
√
h
)
× N × E [Yn] =

(
σ
√
h
)
× N ×

(µ
σ

√
h
)
= µT

I Variance of X (T ) = scaled sum of variances of independent Yn

var [X (T )] =
(
σ
√
h
)2

× N × var [Yn]

=
(
σ2h
)
× N ×

(
1− µ2

σ2
h

)
→ σ2T

⇒ Used T = Nh and 1− (µ2/σ2)h → 1

I Brownian motion with drift (BMD) ⇒ X (t) ∼ N
(
µt, σ2t

)
⇒ Normal with mean µt and variance σ2t

⇒ Independent and stationary increments
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Geometric random walk

I Suppose next state follows by multiplying current by a random factor

⇒ Compare with adding or subtracting a random quantity

I Define RV Yn = ±1 with probabilities as in biased random walk

P (Yn = 1) =
1

2

(
1 +

µ

σ

√
h
)
, P (Yn = −1) =

1

2

(
1− µ

σ

√
h
)

I Def: The geometric random walk follows the recursion

Z(nh) = Z((n − 1)h)e

(
σ
√
h
)
Yn

⇒ When Yn = 1 increase Z (nh) by relative amount e

(
σ
√
h
)

⇒ When Yn = −1 decrease Z (nh) by relative amount e
−
(
σ
√
h
)

I Notice e
±
(
σ
√
h
)
≈ 1±

(
σ
√
h
)

⇒ Useful to model investment return
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Geometric Brownian motion

I Take logarithms on both sides of recursive definition

log
(
Z (nh)

)
= log

(
Z ((n − 1)h)

)
+
(
σ
√
h
)
Yn

I Define X (nh) = log
(
Z (nh)

)
, thus recursion for X (nh) is

X (nh) = X ((n − 1)h) +
(
σ
√
h
)
Yn

⇒ As h → 0, X (t) becomes BMD with parameters µ and σ2

I Def: Given a BMD X (t) with parameters µ and σ2, the process Z (t)

Z (t) = eX (t)

is a geometric Brownian motion (GBM) with parameters µ and σ2
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Dirac delta function

I Consider a function δh(t) defined as

δh(t) =

{
1/h if − h/2 ≤ t ≤ h/2
0 else

I “Define” delta function as limit of δh(t) as h → 0

δ(t) = lim
h→0

δh(t) =

{
∞ if t = 0
0 else

I Q: Is this a function? A: Of course not t

δh(t)

I Consider the integral of δh(t) in an interval that includes [−h/2, h/2]∫ b

a

δh(t) dt = 1, for any a, b such that a ≤ −h/2, h/2 ≤ b

⇒ Integral is 1 independently of h
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Dirac delta function (continued)

I Another integral involving δh(t) (for h small)∫ b

a

f (t)δh(t) dt ≈
∫ h/2

−h/2

f (0)
1

h
dt ≈ f (0), a ≤ −h/2, h/2 ≤ b

I Def: The generalized function δ(t) is the entity having the property∫ b

a

f (t)δ(t) dt =

{
f (0) if a < 0 < b
0 else

I A delta function is not defined, its action on other functions is

I Interpretation: A delta function cannot be observed directly

⇒ But can be observed through its effect on other functions

I Delta function helps to define derivatives of discontinuous functions
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Heaviside’s step function and delta function

I Integral of delta function between −∞ and t∫ t

−∞
δ(u) du =

{
0 if t < 0
1 if t > 0

}
:= H(t)

⇒ H(t) is called Heaviside’s step function

I Define the derivative of Heaviside’s step function as

∂H(t)

∂t
= δ(t)

⇒ Maintains consistency of fundamental theorem of calculus

t

δ(t)H(t)
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White Gaussian noise

I Def: A white Gaussian noise (WGN) process W (t) is a GP with

⇒ Zero mean: µ(t) = E [W (t)] = 0 for all t

⇒ Delta function autocorrelation: RW (t1, t2) = σ2δ(t1 − t2)

I To interpret W (t) consider time step h and process Wh(nh) with

(i) Normal distribution Wh(nh) ∼ N (0, σ2/h)
(ii) Wh(n1h) and Wh(n2h) are independent for n1 6= n2

I White noise W (t) is the limit of the process Wh(nh) as h → 0

W (t) = lim
n→∞

Wh(nh), with n = t/h

⇒ Process Wh(nh) is the discrete-time representation of WGN
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Properties of white Gaussian noise

I For different times t1 and t2, W (t1) and W (t2) are uncorrelated

E [W (t1)W (t2)] = RW (t1, t2) = 0, t1 6= t2

I But since W (t) is Gaussian uncorrelatedness implies independence

⇒ Values of W (t) at different times are independent

I WGN has infinite power ⇒ E
[
W 2(t)

]
= RW (t, t) = σ2δ(0) = ∞

⇒ WGN does not represent any physical phenomena

I However WGN is a convenient abstraction
I Approximates processes with large power and ≈ independent samples

I Some processes can be modeled as post-processing of WGN

⇒ Cannot observe WGN directly

⇒ But can model its effect on systems, e.g., filters
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Integral of white Gaussian noise

I Consider integral of a WGN process W (t) ⇒ X (t) =

∫ t

0

W (u) du

I Since integration is linear functional and W (t) is GP, X (t) is also GP

⇒ To characterize X (t) just determine mean and autocorrelation

I The mean function µ(t) = E [X (t)] is null

µ(t) = E
[∫ t

0

W (u) du

]
=

∫ t

0

E [W (u)] du = 0

I The autocorrelation RX (t1, t2) is given by (assume t1 < t2)

RX (t1, t2) = E
[(∫ t1

0

W (u1) du1

)(∫ t2

0

W (u2) du2

)]
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Integral of white Gaussian noise (continued)

I Product of integral is double integral of product

RX (t1, t2) = E
[∫ t1

0

∫ t2

0

W (u1)W (u2) du1du2

]
I Interchange expectation and integration

RX (t1, t2) =

∫ t1

0

∫ t2

0

E [W (u1)W (u2)] du1du2

I Definition and value of autocorrelation RW (u1, u2) = σ2δ(u1 − u2)

RX (t1, t2) =

∫ t1

0

∫ t2

0

σ2δ(u1 − u2) du1du2

=

∫ t1

0

∫ t1

0

σ2δ(u1 − u2) du1du2 +

∫ t1

0

∫ t2

t1

σ2δ(u1 − u2) du1du2

=

∫ t1

0

σ2 du1 = σ2t1

⇒ Same mean and autocorrelation functions as Brownian motion
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White Gaussian noise and Brownian motion

I GPs are uniquely determined by mean and autocorrelation functions

⇒ The integral of WGN is a Brownian motion process

⇒ Conversely the derivative of Brownian motion is WGN

I With W (t) a WGN process and X (t) Brownian motion∫ t

0

W (u) du = X (t) ⇔ ∂X (t)

∂t
= W (t)

I Brownian motion can be also interpreted as a sum of Gaussians

⇒ Not Bernoullis as before with the random walk

⇒ Any i.i.d. distribution with same mean and variance works

I This is all nice, but derivatives and integrals involve limits

⇒ What are these derivatives and integrals?
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Mean-square derivative of a random process

I Consider a realization x(t) of the random process X (t)

I Def: The derivative of (lowercase) x(t) is

∂x(t)

∂t
= lim

h→0

x(t + h)− x(t)

h

I When this limit exists ⇒ Limit may not exist for all realizations

I Can define sure limit, a.s. limit, in probability, . . .

⇒ Notion of convergence used here is in mean-squared sense

I Def: Process ∂X (t)/∂t is the mean-square sense derivative of X (t) if

lim
h→0

E

[(
X (t + h)− X (t)

h
− ∂X (t)

∂t

)2
]
= 0
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Mean-square integral of a random process

I Likewise consider the integral of a realization x(t) of X (t)∫ b

a

x(t)dt = lim
h→0

(b−a)/h∑
n=1

hx(a+ nh)

⇒ Limit need not exist for all realizations

I Can define in sure sense, almost sure sense, in probability sense, . . .

⇒ Again, adopt definition in mean-square sense

I Def: Process
∫ b

a
X (t)dt is the mean square sense integral of X (t) if

lim
h→0

E

( (b−a)/h∑
n=1

hX (a+ nh)−
∫ b

a

X (t)dt

)2
 = 0

I Mean-square sense convergence is convenient to work with GPs
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Linear state model example

I Def: A random process X (t) follows a linear state model if

∂X (t)

∂t
= aX (t) +W (t)

with W (t) WGN, autocorrelation RW (t1, t2) = σ2δ(t1 − t2)

I Discrete-time representation of X (t) ⇒ X (nh) with step size h

I Solving differential equation between nh and (n + 1)h (h small)

X ((n + 1)h) ≈ X (nh)eah +

∫ (n+1)h

nh

W (t) dt

I Defining X (n) := X (nh) and W (n) :=
∫ (n+1)h

nh
W (t) dt may write

X (n + 1) ≈ (1 + ah)X (n) +W (n)

⇒ Where E
[
W 2(n)

]
= σ2h and W (n1) independent of W (n2)
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Vector linear state model example

I Def: A vector random process X(t) follows a linear state model if

∂X(t)

∂t
= AX(t) +W(t)

with W(t) vector WGN, autocorrelation RW (t1, t2) = σ2δ(t1 − t2)I

I Discrete-time representation of X(t) ⇒ X(nh) with step size h

I Solving differential equation between nh and (n + 1)h (h small)

X((n + 1)h) ≈ X(nh)eAh +

∫ (n+1)h

nh

W(t) dt

I Defining X(n) := X(nh) and W(n) :=
∫ (n+1)h

nh
W(t) dt may write

X(n + 1) ≈ (I+ Ah)X(n) +W(n)

⇒ Where E
[
W2(n)

]
= σ2hI and W(n1) independent of W(n2)
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Glossary

I Markov process

I Gaussian process

I Stationary process

I Gaussian random vectors

I Mean vector

I Covariance matrix

I Multivariate Gaussian pdf

I Linear functional

I Autocorrelation function

I Brownian motion (Wiener process)

I Brownian motion with drift

I Geometric random walk

I Geometric Brownian motion

I Investment returns

I Dirac delta function

I Heaviside’s step function

I White Gaussian noise

I Mean-square derivatives

I Mean-square integrals

I Linear (vector) state model

Introduction to Random Processes Gaussian, Markov and stationary processes 47


	Introduction and roadmap
	Gaussian processes
	Brownian motion and its variants
	White Gaussian noise

