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Arbitrages

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
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Arbitrage

I Bet on different events with each outcome paying a random return

I Arbitrage: possibility of devising a betting strategy that

⇒ Guarantees a positive return

⇒ No matter the combined outcome of the events

I Arbitrages often involve operating in two (or more) different markets
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Sports betting example

Ex: Booker 1 ⇒ Yankees win pays 1.5:1, Yankees loss pays 3:1

I Bet x on Yankees and y against Yankees. Guaranteed earnings?

Yankees win: 0.5x − y > 0 ⇒ x > 2y

Yankees loose: − x + 2y > 0 ⇒ x < 2y

⇒ Arbitrage not possible. Notice that 1/(1.5) + 1/3 = 1

Ex: Booker 2 ⇒ Yankees win pays 1.4:1, Yankees loss pays 3.1:1

I Bet x on Yankees and y against Yankees. Guaranteed earnings?

Yankees win: 0.4x − y > 0 ⇒ x > 2.5y

Yankees loose: − x + 2.1y > 0 ⇒ x < 2.1y

⇒ Arbitrage not possible. Notice that 1/(1.4) + 1/(3.1) > 1
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Sports betting example (continued)

I First condition on Booker 1 and second on Booker 2 are compatible

I Bet x on Yankees on Booker 1, y against Yankees on Booker 2

I Guaranteed earnings possible. Make e.g., x = 2066, y = 1000

Yankees win: 0.5× 2066− 1000 = 33

Yankees loose: − 2066 + 2.1× 1000 = 34

⇒ Arbitrage possible. Notice that 1/(1.5) + 1/(3.1) < 1

I Sport bookies coordinate their odds to avoid arbitrage opportunities

⇒ Like card counting in casinos, arbitrage betting not illegal

⇒ But you will be banned if caught involved in such practices

I If you plan on doing this, do it on, e.g., currency exchange markets
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Events, returns, and investment strategy

I Let events on which bets are posted be k = 1, 2, . . . ,K

I Let j = 1, 2, . . . , J index possible joint outcomes
I Joint realizations, also called “world realization”, or “world outcome”

I If world outcome is j , event k yields return rjk per unit invested (bet)

I Invest (bet) xk in event k ⇒ return for world j is xk r jk

⇒ Bets xk can be positive (xk > 0) or negative (xk < 0)

⇒ Positive = regular bet (buy). Negative = short bet (sell)

I Total earnings ⇒
K∑

k=1

xk r jk = xT rj

I Vectors of returns for outcome j ⇒ rj := [rj1, . . . , rjK ]
T (given)

I Vector of bets ⇒ x := [x1, . . . , xK ]
T (controlled by gambler)
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Notation in the sports betting example

Ex: Booker 1 ⇒ Yankees win pays 1.5:1, Yankees loose pays 3:1

I There are K = 2 events to bet on

⇒ A Yankees’ win (k = 1) and a Yankees’ loss (k = 2)

I Naturally, there are J = 2 possible outcomes

⇒ Yankees won (j = 1) and Yankess lost (j = 2)

I Q: What are the returns?

Yankees win (j = 1): r11 = 0.5, r12 = −1

Yankees loose (j = 2): r21 = −1, r22 = 2

⇒ Return vectors are thus r1 = [0.5,−1]T and r2 = [−1, 2]T

I Bet x on Yankees and y against Yankees, vector of bets x = [x , y ]T
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Arbitrage (clearly defined now)

I Arbitrage is possible if there exists investment strategy x such that

xT rj > 0, for all j = 1, . . . , J

I Equivalently, arbitrage is possible if

max
x

(
min
j

(
xT rj

))
> 0

I Earnings xT rj are the inner product of x and rj (i.e., ⊥ projection)

rj

x

xT rj > 0

rj

x

xT rj < 0

⇒ Positive earnings if angle between x and rj < π/2 (90◦)
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When is arbitrage possible?

I There is a line that leaves all rj
vectors to one side

I There is not a line that leaves all rj
vectors to one side

r1
r2 r3

l

x r1 r2

r3

I Arbitrage possible I Arbitrage not possible

I Prob. vector p = [p1, . . . , pJ ]
T

on world outcomes such that

Ep(r) =
J∑

j=1

pj rj = 0

does not exist

I There is prob. vector p = [p1, . . . , pJ ]
T

on world outcomes such that

Ep(r) =
J∑

j=1

pj rj = 0

I Think of pj as scaling factors
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Arbitrage theorem

I Have demonstrated the following result, called arbitrage theorem

⇒ Formal proof follows from duality theory in optimization

Theorem
Given vectors of returns rj ∈ RK associated with random world outcomes
j = 1, . . . , J, an arbitrage is not possible if and only if there exists a
probability vector p = [p1, . . . , pJ ]

T with pj ≥ 0 and pT1 = 1, such that
Ep(r) = 0. Equivalently,

max
x

(
min
j

(
xT rj

))
≤ 0 ⇔

J∑
j=1

pj rj = 0

I Prob. vector p is NOT the prob. distribution of events j = 1, . . . , J
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Example: Arbitrages in sports betting

Ex: Booker 1 ⇒ Yankees win pays 1.5:1, Yankees loose pays 3:1

I There are K = 2 events to bet on, J = 2 possible outcomes

I Q: What are the returns?

Yankees win (j = 1): r11 = 0.5, r12 = −1

Yankees loose (j = 2): r21 = −1, r22 = 2

⇒ Return vectors are thus r1 = [0.5,−1]T and r2 = [−1, 2]T

I Arbitrage impossible if there is 0 ≤ p ≤ 1 such that

Ep(r) = p ×
[

0.5
−1

]
+ (1− p)×

[
−1
2

]
= 0

⇒ Straightforward to check that p = 2/3 satisfies the equation
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Example: Arbitrages in geometric random walk

I Consider a stock price X (nh) that follows a geometric random walk

X
(
(n + 1)h

)
= X (nh)eσ

√
hYn

I Yn is a binary random variable with probability distribution

P (Yn = 1) =
1

2

(
1 +

µ

σ

√
h
)
, P (Yn = −1) =

1

2

(
1− µ

σ

√
h
)

⇒ As h → 0, X (nh) becomes geometric Brownian motion

I Q: Are there arbitrage opportunities in trading this stock?

⇒ Too general, let us consider a narrower problem
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Stock flip investment strategy

I Consider the following investment strategy (stock flip):

Buy: Buy $1 in stock at time 0 for price X (0) per unit of stock

Sell: Sell stock at time h for price X (h) per unit of stock

I Cost of transaction is $1. Units of stock purchased are 1/X (0)

⇒ Cash after selling stock is X (h)/X (0)

⇒ Return on investment is X (h)/X (0)− 1

I There are two possible outcomes for the price of the stock at time h

⇒ May have Y0 = 1 or Y0 = −1 respectively yielding

X (h) = X (0)eσ
√
h, X (h) = X (0)e−σ

√
h

I Possible returns are therefore

r1 =
X (0)eσ

√
h

X (0)
− 1 = eσ

√
h − 1, r2 =

X (0)e−σ
√
h

X (0)
− 1 = e−σ

√
h − 1
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Present value of returns

I One dollar at time h is not the same as 1 dollar at time 0

⇒ Must take into account the time value of money

I Interest rate of a risk-free investment is α continuously compounded

⇒ In practice, α is the money-market rate (time value of money)

I Prices have to be compared at their present value

I The present value (at time 0) of X (h) is X (h)e−αh

⇒ Return on investment is e−αhX (h)/X (0)− 1

I Present value of possible returns (whether Y0 = 1 or Y0 = −1) are

r1 =
e−αhX (0)eσ

√
h

X (0)
− 1 = e−αheσ

√
h − 1,

r2 =
e−αhX (0)e−σ

√
h

X (0)
− 1 = e−αhe−σ

√
h − 1
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No arbitrage condition

I Arbitrage not possible if and only if there exists 0 ≤ q ≤ 1 such that

qr1 + (1− q)r2 = 0

⇒ Arbitrage theorem in one dimension (only one bet, stock flip)

I Substituting r1 and r2 for their respective values

q
(
e−αheσ

√
h − 1

)
+ (1− q)

(
e−αhe−σ

√
h − 1

)
= 0

I Can be easily solved for q. Expanding product and reordering terms

qe−αheσ
√
h + (1− q)e−αhe−σ

√
h = 1

I Multiplying by eαh and grouping terms with a q factor

q
(
eσ

√
h − e−σ

√
h
)
= eαh − e−σ

√
h
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No arbitrage condition (continued)

I Solving for q finally yields ⇒ q =
eαh − e−σ

√
h

eσ
√
h − e−σ

√
h

I For small h we have eαh ≈ 1 + αh and e±σ
√
h ≈ 1± σ

√
h+σ2h/2

I Thus, the value of q as h → 0 may be approximated as

q ≈
1 + αh −

(
1− σ

√
h + σ2h/2

)
1 + σ

√
h −

(
1− σ

√
h
) =

σ
√
h +

(
α− σ2/2

)
h

2σ
√
h

=
1

2

(
1 +

α− σ2/2

σ

√
h

)
I Approximation proves that at least for small h, then 0 < q < 1

⇒ Arbitrage not possible

I Also, suspiciously similar to probabilities of geometric random walk

⇒ Key observation as we’ll see next
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Risk neutral measure

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
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No arbitrage condition on geometric random walk

I Stock prices X (nh) follow geometric random walk (drift µ, variance σ2)

⇒ Risk-free investment has return α (time value of money)

I Arbitrage is not possible in stock flips if there is 0 ≤ q ≤ 1 such that

q =
eαh − e−σ

√
h

eσ
√
h − e−σ

√
h

I Notice that q satisfies the equation (which we’ll use later on)

qeσ
√
h + (1− q)e−σ

√
h = eαh

I Q: Can we have arbitrage using a more complex set of possible bets?
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General investment strategy

I Consider the following general investment strategy:

Observe: Observe the stock price at times h, 2h, . . . , nh

Compare: Is X (h) = x1,X (2h) = x2, . . . ,X (nh) = xn?

Buy: If above answer is yes, buy stock at price X (nh)

Sell: Sell stock at time mh (m > n) for price X
(
mh

)
I Possible bets are the observed values of the stock x1, x2, . . . , xn

⇒ There are 2n possible bets

I Possible outcomes are value at time mh and observed values

⇒ There are 2m possible outcomes

Introduction to Random Processes Arbitrages and pricing of stock options 19



Explanation of general investment strategy

I There are 2n possible bets:
I Bet 1 = n price increases in 1, . . . , n
I Bet 2 = price increases in 1, . . . , n − 1 and price decrease in n
I . . .

I For each bet we have 2m−n possible outcomes:
I m − n price increases in n + 1, . . . ,m
I Price increases in n + 1, . . . ,m − 1 and price decrease in m
I . . .

X (h) X (2h) X (3h) X (nh)

bet 1 eσ
√

h e2σ
√

h e3σ
√

h enσ
√

h

bet 2 eσ
√

h e2σ
√

h e3σ
√

h e(n−2)σ
√

h

bet 2n e−σ
√

h e−2σ
√

h e−3σ
√

h e−nσ
√

h

X ((n+1)h) X ((n+2)h) X (mh)

X (nh)eσ
√

h X (nh)e2σ
√

h X (nh)emσ
√

h

X (nh)eσ
√

h X (nh)e2σ
√

h X (nh)e(m−2)σ
√

h

X (nh)e−σ
√

h X (nh)e−2σ
√

h X (nh)e−mσ
√

h

outcomes per each bet
I Table assumes X (0) = 1 for simplicity
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Candidate no arbitrage probability measure

I Define the prob. distribution q over possible outcomes as follows

I Start with a sequence of i.i.d. binary RVs Yn, probabilities

P (Yn = 1) = q, P (Yn = −1) = 1− q

⇒ With q =
(
eαh − e−σ

√
h
)
/
(
eσ

√
h − e−σ

√
h
)
as in slide 18

I Joint prob. distribution q on X (h),X (2h), . . . ,X
(
mh

)
from

X
(
(n + 1)h

)
= X (nh)eσ

√
hYn

⇒ Recall this is NOT the prob. distribution of X (nh)

I Will show that expected value of earnings with respect to q is null

⇒ By arbitrage theorem, arbitrages are not possible
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Return for given outcome

I Consider a time 0 unit investment in given arbitrary outcome

I Stock units purchased depend on the price X (nh) at buying time

Units bought =
1

X (nh)e−αnh

⇒ Have corrected X (nh) to express it in time 0 values

I Cash after selling stock given by price X (mh) at sell time m

Cash after sell =
X (mh)e−αmh

X (nh)e−αnh

I Return is then ⇒ r
(
X (h), . . . ,X (mh)

)
=

X (mh)e−αmh

X (nh)e−αnh
− 1

⇒ Depends on X (mh) and X (nh) only
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Expected return with respect to measure q

I Expected value of all possible returns with respect to q is

Eq

[
r
(
X (h), . . . ,X (mh)

)]
= Eq

[
X (mh)e−αmh

X (nh)e−αnh
− 1

]
I Condition on observed values X (h), . . . ,X (nh)

Eq

[
r
(
X (h), . . . ,X (mh)

)]
= Eq(1:n)

[
Eq(n+1:m)

[
X (mh)e−αmh

X (nh)e−αnh
− 1

∣∣X (h), . . . ,X (nh)

]]
I In innermost expectation X (nh) is given. Furthermore, process X is

Markov, so conditioning on X (h), . . . ,X ((n − 1)h) is irrelevant. Thus

Eq

[
r
(
X (h), . . . ,X (mh)

)]
= Eq(1:n)

[
Eq(n+1:m)

[
X (mh)

∣∣X (nh)
]
e−αmh

X (nh)e−αnh
− 1

]
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Expected value of future values (measure q)

I Need to find expectation of future value Eq(n+1:m)

[
X (mh)

∣∣X (nh)
]

I From recursive relation for X (nh) in terms of Yn sequence

X (mh) = X
(
(m − 1)h

)
eσ

√
hYm−1

= X
(
(m − 2)h

)
eσ

√
hYm−1eσ

√
hYm−2

...

= X
(
nh

)
eσ

√
hYm−1eσ

√
hYm−2 . . . eσ

√
hYn

I All the Yn are independent. Then, upon taking expectations

Eq(n+1:m)

[
X (mh)

∣∣X (nh)
]
= X

(
nh

)
E
[
eσ

√
hYm−1

]
E
[
eσ

√
hYm−2

]
. . .E

[
eσ

√
hYn

]
I Need to determine expectation of relative price change E

[
eσ

√
hYn

]
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Expectation of relative price change (measure q)

I The expected value of the relative price change E
[
eσ

√
hYn

]
is

E
[
eσ

√
hYn

]
= eσ

√
h Pr [Yn = 1] + e−σ

√
h Pr [Yn = −1]

I According to definition of measure q, it holds

Pr [Yn = 1] = q, Pr [Yn = −1] = 1− q

I Substituting in expression for E
[
eσ

√
hYn

]
E
[
eσ

√
hYn

]
= eσ

√
h q + e−σ

√
h (1− q) = eαh

⇒ Follows from definition of probability q [cf. slide 18]

I Reweave the quilt:

(i) Use expected relative price change to compute expected future value
(ii) Use expected future value to obtain desired expected return
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Reweave the quilt

I Plug E
[
eσ

√
hYn

]
= eαh into expression for expected future value

Eq(n+1:m)

[
X (mh)

∣∣X (nh)
]
= X

(
nh

)
eαheαh . . . eαh = X

(
nh

)
eα(m−n)h

I Substitute result into expression for expected return

Eq

[
r
(
X (h), . . . ,X (mh)

)]
= Eq(1:n)

[
X
(
nh

)
eα(m−n)he−αmh

X (nh)e−αnh
− 1

]

I Exponentials cancel out, finally yielding

Eq

[
r
(
X (h), . . . ,X (mh)

)]
= Eq(1:n) [1− 1] = 0

⇒ Arbitrage not possible if 0 ≤ q ≤ 1 exists (true for small h)
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What if prices follow a geometric Brownian motion?

I Suppose stock prices follow a geometric Brownian motion, i.e.,

X (t) = X (0)eY (t)

⇒ Y (t) Brownian motion with drift µ and variance σ2

I Q: What is the no arbitrage condition?

I Approximate geometric Brownian motion by geometric random walk

⇒ Approximation arbitrarily accurate by letting h → 0

I No arbitrage measure q exists for geometric random walk
I This requires h sufficiently small
I Notice that prob. distribution q = q(h) is a function of h

I Existence of the prob. distribution q := lim
h→0

q(h) proves that

⇒ Arbitrages are not possible in stock trading
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No arbitrage probability distribution

I Recall that as h → 0 ⇒ q ≈ 1

2

(
1 +

α− σ2/2

σ

√
h

)
⇒ 1− q ≈ 1

2

(
1− α− σ2/2

σ

√
h

)
I Thus, measure q := lim

h→0
q(h) is a geometric Brownian motion

⇒ Variance σ2 (same as stock price)

⇒ Drift α− σ2/2

I Measure showing arbitrage impossible a geometric Brownian motion

⇒ Which is also the way stock prices evolve as h → 0

I Furthermore, the variance is the same as that of stock prices

⇒ Different drifts ⇒ µ for stocks and α− σ2/2 for no arbitrage
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Expected investment growth

I Compute expected return on an investment on stock X (t)

⇒ Buy 1 share of stock at time 0. Cash invested is X (0)

⇒ Sell stock at time t. Cash after sell is X (t)

I Expected value of cash after sell given X (0) is

E
[
X (t)

∣∣X (0)
]
= X (0)e(µ+σ2/2)t

I Alternatively, invest X (0) risk free in the money market

⇒ Guaranteed cash at time t is X (0)eαt

I Invest in stock only if µ+ σ2/2 > α ⇒ “Risk premium” exists
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Proof of expected return formula

I Stock prices follow a geometric Brownian motion X (t) = X (0)eY (t)

⇒ Y (t) Brownian motion with drift µ and variance σ2

I Q: What is the expected return E
[
X (t)

∣∣X (0)
]
?

I Note first that E
[
X (t)

∣∣X (0)
]
= X (0)E

[
eY (t)

∣∣X (0)
]

I Using that Y (t) has independent increments

E
[
eY (t)

∣∣X (0)
]
= E

[
eY (t)

]
⇒ Next we focus on computing E

[
eY (t)

]
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Proof of expected return formula (cont.)

I Since Y (t) ∼ N (µt, σ2t)

E
[
eY (t)

]
=

1√
2πσ2t

∫ ∞

−∞
eye−

(y−µt)2

2σ2t dy

I Completing the squares in the argument of the exponential we have

y − (y − µt)2

2σ2t
=

−y2 + 2(µ+ σ2)ty − µ2t2

2σ2t

= −
(
y − (µ+ σ2)t

)2
2σ2t

+
2µσ2t2 + σ4t2

2σ2t

I The blue term does not depend on y , red integral equals 1

E
[
eY (t)

]
= e

(
µ+σ2

2

)
t × 1√

2πσ2t

∫ ∞

−∞
e−

(
y−(µ+σ2)t

)2
2σ2t dy = e

(
µ+σ2

2

)
t

I Putting the pieces together, we obtain

E
[
X (t)

∣∣X (0)
]
= X (0)E

[
eY (t)

]
= X (0)e(µ+σ2/2)t
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Risk neutral measure

I Compute expected return as if q were the actual distribution

⇒ Recall that q is NOT the actual distribution

⇒ As before, cash invested is X (0) and cash after sale is X (t)

I Expected cash value is different because prob. distribution is different

Eq

[
X (t)

∣∣X (0)
]
= X (0)e(α−σ2/2+σ2/2)t = X (0)eαt

⇒ Same return as risk-free investment regardless of parameters

I Measure q is called risk neutral measure

⇒ Risky stock investments yield same return as risk-free one

⇒ “Alternate universe”, investors do not demand risk premiums

I Pricing of derivatives, e.g., options, is always based on expected returns
with respect to risk neutral valuation (pricing in alternate universe)

⇒ Basis for Black-Scholes formula for option pricing
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Martingale as basis for fair pricing

I A continuous-time process X (t) is a martingale if for t, s ≥ 0

E
[
X (t + s)

∣∣X (u), 0 ≤ u ≤ t
]
= X (t)

⇒ Expected future value = present value, even given process history

I Model of a fair, e.g., gambling game. Excludes winning strategies

⇒ Even with prior info. of outcomes (cards drawn from the deck)

I For risk-neutral measure q, time 0 prices e−αtX (t) form a martingale

Eq

[
e−α(t+s)X (t + s)

∣∣ e−αuX (u), 0 ≤ u ≤ t
]
= e−αtX (t)

I Key principle: stock price = expected discounted payoff

X (0) = Eq

[
e−αtX (t)

∣∣X (0)
]

⇒ Fair pricing, cannot devise a winning strategy (arbitrage)
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Stock prices form a martingale under q (proof)

I Recall measure q is a geometric Brownian motion X (t) = eY (t)

⇒ Variance σ2 (same as stock price)

⇒ Drift α− σ2/2

Proof.

Eq

[
e−α(t+s)eY (t+s)

∣∣ e−αueY (u), 0 ≤ u ≤ t
]

= Eq

[
e−α(t+s)eY (t+s)

∣∣ e−αteY (t)
]

Y (t) is Markov

= Eq

[
e−α(t+s)e [Y (t+s)−Y (t)]+Y (t)

∣∣ e−αteY (t)
]

Add and subtract Y (t)

= e−αteY (t)Eq

[
e−αse [Y (t+s)−Y (t)]

]
Independent increments

= e−αtX (t)Eq

[
e−αseY (s)

]
Stationary increments

= e−αtX (t) Eq

[
eY (s)

]
= e(µ+σ2/2)s = eαs
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Black-Scholes formula for option pricing

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
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Options

I An option is a contract to buy shares of a stock at a future time
I Strike time t = Convened time for stock purchase
I Strike price K = Price at which stock is purchased at strike time

I At time t, option holder may decide to

⇒ Buy a stock at strike price K = exercise the option

⇒ Do not exercise the option

I May buy option at time 0 for price c

I Q: How do we determine the option’s worth, i.e., price c at time 0?

I A: Given by the Black-Scholes formula for option pricing
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Stock price model

I Let eαt be the compounding of a risk-free investment

I Let X (t) be the stock’s price at time t

⇒ Modeled as geometric Brownian motion, drift µ, variance σ2

I Risk neutral measure q is also a geometric Brownian motion

⇒ Drift α− σ2/2 and variance σ2
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Return of option investment

I At time t, the option’s worth depends on the stock’s price X (t)

I If stock’s price smaller or equal than strike price ⇒ X (t) ≤ K

⇒ Option is worthless (better to buy stock at current price)

I Since had paid c for the option at time 0, lost c on this investment

⇒ Return on investment is r = −c

I If stock’s price larger than strike price ⇒ X (t) > K

⇒ Exercise option and realize a gain of X (t)− K

I To obtain return express as time 0 values and subtract c

r = e−αt
(
X (t)− K

)
− c

I May combine both in single equation ⇒ r = e−αt
(
X (t)− K

)
+
− c

⇒ (·)+ := max(·, 0) denotes projection onto positive reals R+
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Option pricing

I Select option price c to prevent arbitrage opportunities

Eq

[
e−αt

(
X (t)− K

)
+
− c

]
= 0

⇒ Expectation is with respect to risk neutral measure q

I From above condition, the no-arbitrage price of the option is

c = e−αtEq

[(
X (t)− K

)
+

]
⇒ Source of Black-Scholes formula for option valuation

⇒ Rest of derivation is just evaluating Eq

[(
X (t)− K

)
+

]
I Same argument used to price any derivative of the stock’s price
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Use fact that q is a geometric Brownian motion

I Let us evaluate Eq

[(
X (t)− K

)
+

]
to compute option’s price c

I Recall q is a geometric Brownian motion ⇒ X (t) = X0e
Y (t)

⇒ X0 = price at time 0

⇒ Y (t) BMD, µ (= α− σ2/2) and variance σ2

I Can rewrite no arbitrage condition as

c = e−αtEq

[(
X0e

Y (t) − K
)
+

]
I Y (t) is a Brownian motion with drift. Thus, Y (t) ∼ N (µt, σ2t)

c = e−αt 1√
2πσ2t

∫ ∞

−∞
(X0e

y − K )+ e−(y−µt)2/(2σ2t) dy
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Evaluation of the integral

I Note that
(
X0e

Y (t) − K
)
+
= 0 for all values Y (t) ≤ log(K/X0)

I Because integrand is null for Y (t) ≤ log(K/X0) can write

c = e−αt 1√
2πσ2t

∫ ∞

log(K/X0)

(X0e
y − K ) e−(y−µt)2/(2σ2t) dy

I Change of variables z = (y − µt)/
√
σ2t. Associated replacements

Variable: y ⇒
√
σ2tz + µt

Differential: dy ⇒
√
σ2t dz

Integration limit: log(K/X0) ⇒ a :=
log(K/X0)− µt√

σ2t

I Option price then given by

c = e−αt 1√
2π

∫ ∞

a

(
X0e

√
σ2tz+µt − K

)
e−z2/2 dz
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Split in two integrals

I Separate in two integrals c = e−αt(I1 − I2) where

I1 :=
1√
2π

∫ ∞

a

X0e
√
σ2tz+µte−z2/2 dz

I2 :=
K√
2π

∫ ∞

a

e−z2/2 dz

I Gaussian Φ function (ccdf of standard normal RV)

Φ(x) :=
1√
2π

∫ ∞

x

e−z2/2 dz

⇒ Comparing last two equations we have I2 = KΦ(a)

I Integral I1 requires some more work

Introduction to Random Processes Arbitrages and pricing of stock options 42



Evaluation of the first integral

I Reorder terms in integral I1

I1 :=
1√
2π

∫ ∞

a

X0e
√
σ2tz+µte−z2/2 dz =

X0e
µt

√
2π

∫ ∞

a

e
√
σ2tz−z2/2 dz

I The exponent can be written as a square minus a “constant” (no z)

−
(
z −

√
σ2t

)2

/2 + σ2t/2 = −z2/2 +
√
σ2tz−σ2t/2 + σ2t/2

I Substituting the latter into I1 yields

I1 =
X0e

µt

√
2π

∫ ∞

a

e
−
(
z−

√
σ2t

)2
/2+σ2t/2

dz

=
X0e

µt+σ2t/2

√
2π

∫ ∞

a

e
−
(
z−

√
σ2t

)2
/2
dz
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Evaluation of the first integral (continued)

I Change of variables u = z −
√
σ2t ⇒ du = dz and integration limit

a ⇒ b := a−
√
σ2t =

log(K/X0)− µt√
σ2t

−
√
σ2t

I Implementing change of variables in I1

I1 =
X0e

µt+σ2t/2

√
2π

∫ ∞

b

e−u2/2 du = X0e
µt+σ2t/2Φ(b)

I Putting together results for I1 and I2

c = e−αt(I1 − I2) = e−αtX0e
µt+σ2t/2Φ(b)− e−αtKΦ(a)

I For non-arbitrage stock prices (measure q) ⇒ α = µ+ σ2/2

⇒ Substitute to obtain Black-Scholes formula
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Black-Scholes

I Black-Scholes formula for option pricing. Option cost at time 0 is

c = X0Φ(b)− e−αtKΦ(a)

⇒ a :=
log(K/X0)− µt√

σ2t
and b := a−

√
σ2t

I Note further that µ = α− σ2/2. Can then write a as

a =
log(K/X0)−

(
α− σ2/2

)
t

√
σ2t

⇒ X0 = stock price at time 0, σ2 = volatility of stock

⇒ K = option’s strike price, t = option’s strike time

⇒ α = benchmark risk-free rate of return (cost of money)

I Black-Scholes formula independent of stock’s mean tendency µ
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Glossary

I Arbitrage

I Investment strategy

I Bets, events, outcomes

I Returns and earnings

I Arbitrage theorem

I Geometric Brownian motion

I Stock flip

I Time value of money

I Continuously-compounded interest

I Present value

I Risk-free investment

I Expected return

I Risk premium

I Risk neutral measure

I Pricing of derivatives

I Stock option

I Strike time and price

I Option price

I Stock volatility

I Black-Scholes formula
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