

Project title

Your name Your department University of Rochester email@rochester.edu http://www.rochester.edu/~your_website/

February 18, 2015

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Section title. Will show up in the table of contents

ork Science Analytics

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Including a figure

The worldwide air transportation network and its "skeleton"

- \blacktriangleright Vertices are \sim 1000 airports, edges are \sim 35000 commercial routes
- ▶ Picture created by D. Grady and collaborators in 2012

◆□> ◆□> ◆三> ◆三> ・三 のへで

- A statistical model specifies a set \mathcal{F} of CDFs to which F may belong
- A common parametric model is of the form $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$
- Parameter(s) θ are unknown, take values in parameter space Θ
- ▶ Space Θ has dim $(\Theta) < \infty$, not growing with the sample size *n*
- Ex: Data come from a Gaussian distribution

$$\mathcal{F}_{N} = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, \ \mu \in \mathbb{R}, \ \sigma > 0 \right\}$$

- ▶ This is a two-parameter model: $\theta = [\mu, \sigma]^T$ and $\Theta = \mathbb{R} \times \mathbb{R}_+$
- A nonparametric model has dim(Θ) = ∞, or dim(Θ) grows with n
 Ex: F_{All} = {All CDFs F}

Network	Vertex	Edge
Internet	Computer/router	Cable or wireless link
Metabolic network	Metabolite	Metabolic reaction
WWW	Web page	Hyperlink
Food web	Species	Predation
Gene-regulatory network	Gene	Regulation of expression
Friendship network	Person	Friendship or acquaintance
Power grid	Substation	Transmission line
Affiliation network	Person and club	Membership
Protein interaction	Protein	Physical interaction
Citation network	Article/patent	Citation
Neural network	Neuron	Synapse

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Theorem Your fancy result

Proof. Which you prove here

Example

And illustrate with an example

◆□> ◆□> ◆三> ◆三> ・三 のへで