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Summary Epilepsy — the world’s most common serious brain disorder — is defined by recurrent
unprovoked seizures that result from complex interactions between distributed neural popula-
tions. We explore some macroscopic characteristics of emergent ictal networks by considering
intracranial recordings from human subjects with intractable epilepsy. For each seizure, we
compute a simple measure of linear coupling between all electrode pairs (more than 2400)
to define networks of interdependent electrodes during preictal and ictal time intervals. We
analyze these networks by applying traditional measures from network analysis and identify
statistically significant global and local changes in network topology. We find at seizure onset

a diffuse breakdown in global coupling, and local changes indicative of increased throughput
of specific cortical and subcortical regions. We conclude that network analysis yields measures
to summarize the complicated coupling topology emergent at seizure onset. Using these mea-
sures, we can identify spatially localized brain regions that may facilitate seizures and may be
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Introduction

An important, perhaps fundamental, characteristic of

seizures is the emergence of macroscopic order as observed
in electrical activity recorded at the scalp and cortical sur-
face. This order appears as, for example, ripples (Grenier
et al., 2003) and beta frequency oscillations (Schiller et
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l., 1998) at seizure initiation, continues with increased
ynchronization during the middle phase of seizures (Schiff
t al., 2005), and concludes as an abrupt cessation of
ctivity (Schindler et al., 2007) at seizure termination.
or focal epilepsies these macroscopic changes begin in
patially localized regions (i.e., the epileptogenic zone)
nd spread outward to affect other parts of the brain
Braizer, 1973). When focal epilepsy does not respond to

eizure medications, the epileptogenic zone may be identi-
ed and surgically removed (Engel, 1996). Improved imaging
nd analysis techniques have refined but not substantially
ltered this procedure since the middle of the 20th century;
better understanding of how macroscopic order emerges
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rom the epileptogenic zone would help to refine surgical
echniques and perhaps produce alternative therapies.

To characterize the spatiotemporal dynamics of ictal
ctivity researchers have applied linear and nonlinear mea-
ures to recordings from individual electrodes (e.g., the
ower spectrum and correlation dimension) and from elec-
rode pairs (e.g., coherence and phase synchronization).
or a small number of electrodes, the latter results are
asily displayed and interpreted. For example, one may
ompute the cross-correlation or coherence to infer prop-
rties of seizure propagation between a few electrode pairs
Braizer, 1973; Bertashius, 1991; Kramer et al., 2007). But,
s the number of electrodes increases, interpreting the cou-
ling results becomes much more complicated: the zero
ag cross-correlation between all electrode pairs from an
-by-8 subdural electrode grid produces (64 × 63)/2 = 2016
alues. How does one analyze the topological organization
f these results and deduce the brain regions important
or seizure facilitation or propagation? Similar challenges
ow face many neuroscientists as improved imaging and
cquisition techniques yield ever-expanding quantities of
ultivariate, coupled data.
Network analysis provides many techniques to interpret

uch complicated coupling topologies. It has been used to
haracterize, for example, the network of electric power
rids in the western United States (Watts and Strogatz, 1998)
nd the network of hyperlinks between different Internet
eb pages (Broder et al., 2000). In both cases, the network
f interactions — among hundreds or millions of entities

is quite complex, yet has a topology whose structure
s amenable to natural forms of summary and characteri-
ation. Recent studies suggest that networks derived from
rain activity possess a ‘‘small-world’’ topology in which
ost connections are local and few are distant (Bassett and
ullmore, 2006; Ponten et al., 2007). Bispectral analysis
f human intracranial EEG recordings has shown that the
mall-world characteristics of macroscopic neural activity
ncrease at seizure onset (Wu et al., 2006), and simulation
tudies suggest that small-world networks better support
hase synchronization and seizure-like activity (Percha et
l., 2005; Netoff et al., 2004). Yet the role of small-world
opology in seizures remains unclear; an in vitro model
f stroke-induced epilepsy suggests that seizure-like dis-
harges occur more frequency in random (not small-world)
etworks (Srinivas et al., 2007). In this manuscript, we
ttempt to further characterize the topological properties of
he seizing human cortex. To do so, we apply a variety of net-
ork analysis measures to high-dimensional, multivariate
lectrocorticographic (ECoG) data recorded simultaneously
rom more than 70 electrodes in each of four human subjects
ith epilepsy. We show how — in this small group of sub-

ects — the emergent coupling between electrodes changes
t seizure onset and warrants further study. We also propose
otential targets for therapeutic intervention identifiable
nly in the context of the entire network of coupled activity.

ethods
n this section we describe the human subject data and define the
oupling measure and six measures of network analysis. For the
rimary subject, we show an example of the coupling between elec-
rodes preceding and immediately following seizure onset, and note
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he qualitative differences. We apply the network analysis measures
o quantify the changes in coupling that occur at seizure onset in
he primary subject and in the aggregate group of four subjects in
esults.

ecording equipment

ntracranial EEG were collected using the Viasys Nicolet BMSI 6000
T Long Term Monitoring System (Viasys, Madison, WI, USA). Data
ere recorded from up to 128 channels at a fixed sampling rate
f 400 Hz and bandpass filtered at a frequency range of 0.5—50 Hz
Butterworth filter) for later processing. A board-certified neuro-
hysiologist (HEK) reviewed each dataset and verified the integrity
f the recording. No artifacts (e.g., due to faulty electrode or
ecording cable performance) were identified.

uman subject data

ata were collected from four subjects with intractable epilepsy
ho had undergone electrode implantation as part of clinical care
t the University of California, San Francisco (UCSF) Epilepsy Cen-
er. The implanted electrodes consisted of: a single 8-by-8 subdural
lectrode grid supplemented by subdural electrode strips and/or
epth electrodes. All strip and grid electrodes were 4 mm diame-
er platinum—iridium discs embedded in 1.5 mm thick silastic sheet
ith 2.3 mm diameter exposed surfaces and 10 mm spacing between

he discs. Depth electrodes were 1 mm in diameter and had four
r six platinum contacts spaced 10 mm apart. To observe multiple
eizures, physicians recorded ECoG data continuously for several
ays. For each subject, ictal data were extracted from the clinical
ecord and analyzed for research purposes in accordance with UCSF
nd Boston University human subjects guidelines.

We begin with a description of the primary human subject (a
9-year-old right handed woman with medically refractory com-
lex partial seizures) whose ECoG data we analyze in detail. Scalp
ideo-EEG telemetry captured nine seizures that all arose from the
eft frontotemporal region (this was her dominant hemisphere for
anguage) with some semiological features atypical for mesial tem-
oral onset. Because of the relatively diffuse scalp localization and
he origin in the language dominant hemisphere, it was decided to
mplant subdural electrodes to better determine focal ictal onset
nd to map functional brain regions. We show the craniotomy for
his subject in Fig. 1a. In this figure, the left hemisphere of the
rain is exposed. Approximately 44 of the 64 grid electrodes over
he left frontotemporal region are visible; the remaining 20 elec-
rodes are hidden below the edge of the craniotomy. The tails for
he electrode strip (over the left suborbital frontal lobe) and of two,
ix-contact, left hippocampal depth electrodes are visible at the
iddle left and lower right portions of the figure, respectively; we

ndicate the location of these electrodes in the X-ray image shown
n Fig. 1b. In Fig. 1c we show a three-dimensional reconstruction of
he subject’s cortex with the 8-by-8 electrode grid superimposed.
or simplicity the strip and depth electrodes are not shown in this
gure.

Physicians recorded ECoG data continuously from the primary
ubject for 5 days and detected nine seizures. Each seizure began
ear the distal end of both depth electrodes in the hippocampus
nd, approximately 15 s later, was observed on the (cortical) elec-
rode grid. ECoG epochs containing eight of the patient’s seizures
nd recorded simultaneously at 76 electrodes were extracted from
he clinical record and saved for further analysis. (We note that one
rchived seizure data file was corrupted and no longer available for

xtraction, and that we omitted from analysis one set of six-contact
epth electrodes that was saturated throughout the recording.)

For the primary subject, we analyze the eight recorded seizures
n detail. We also apply three summary measures to three addi-
ional human subjects described below. The first was a 31-year-old
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Figure 1 (a) Craniotomy for the primary subject. The frontal
lobe is to the left in this figure and the left hemisphere is
exposed. Visible are a portion of the 8-by-8 electrode grid, the
insertion point of one subdural electrode strip (to the left) and
two depth electrodes (at the bottom) that pierce the cortex
orthogonal to its surface and record voltage activity from mesial
temporal structures. (b) A skull X-ray of the subject following
electrode implantation. We indicate the location of the (curved)
electrode strip and the anterior depth electrode. (c) A three-
dimensional reconstruction of the brain for this subject with the
electrode grid superimposed.
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ight-handed woman with a 10-year history of medically refractory
eizures. She had complex partial seizures with an aura of déjà
u and aphasia; they rarely secondarily generalized. Brain MRI was
ormal and routine EEG showed bitemporal sharp waves. She had
calp video-EEG telemetry and four seizures with posterior tempo-
al origin were recorded. Physicians recorded ECoG data from an
-by-8 electrode grid over her left frontotemporal region, and two,
ix-contact subdural electrode strips curled under her left anterior
nd left posterior temporal lobe for 14 days. Three seizures were
nitially captured. Midway through this recording period, the sur-
eon inserted an additional six-contact depth electrode into the
eft hippocampus. After this, three more seizures were recorded.
ach seizure began in the distal end of the posterior left subtempo-
al electrode strip, and then spread to the distal end of the anterior
ubtemporal strip (as well as to the hippocampal depth electrode for
he last three seizures). After a 60 s delay, seizure activity appeared
n the electrode grid at the frontal portions of the superior and mid-
le temporal gyri. We analyze three of the subject’s seizures (two
rom the initial recording period and one from the later recording
eriod). The patient went on to have a tailored resection of the
eft inferior temporal and fusiform gyri. She was initially seizure-
ree for 1.5 years but her seizures recurred after she tapered off
ne of her antiseizure medications.

The second additional subject was a 45-year-old right handed
oman with medically intractable seizures since the age of 12,
haracterized by right body clonic movements out of sleep. Scalp
ideo-EEG telemetry captured four seizures with broad left tem-
oral onset but also showed frequent anterior frontal spikes. Brain
RI showed left perisylvian atrophy and cortical abnormalities in the

ame region, with a sclerotic left hippocampus. Given the breadth
f the imaging abnormalities and the broad dominant hemisphere
ocalization on scalp EEG, she went on to have implantation of an 8-
y-8 electrode grid over her left frontotemporal region for seizure
nset localization and for functional mapping. She also had a four-
ontact depth in her left amygdala, and a four-contact depth in her
eft hippocampus. Recording over 6 days captured three seizures.
he first and third seizure were her typical seizure and arose from
small region of the left frontal lobe and then spread over several
inutes to involve left temporal and parietal areas. The second

eizure was clinically atypical for the patient and had a diffuse
nset; we omit this seizure from analysis here. She had a resection
f the left frontal lobe including orbitofrontal cortex to the frontal
ole, sparing the gyrus rectus. The left mesial temporal structures
ere also removed. Pathological examination of the resected cor-

ex was consistent with cortical dysplasia. Postoperatively she had
ome transient anomia that passed. She was seizure free for a brief
eriod and then her seizures recurred, albeit at a reduced frequency
rom before.

The third additional subject was a 37-year-old ambidextrous
an with refractory seizures since the age of seven. These are

octurnal events that involve right face and arm twitching. Scalp
ideo-EEG telemetry was poorly lateralizing and localizing though
emiology suggested left frontal origin. He went on to have implan-
ation of an 8-by-8 electrode grid centered over his left parietal
egion, a four-contact left orbitofrontal strip, and a four-contact
eft subtemporal strip. Six typical seizures were recorded over 6
ays, and all had onset in the suprasylvian frontal—parietal junc-
ion with low amplitude high-frequency activity followed several
econds later by a decrement lasting several tenths of a second,
ollowed by high-amplitude, lower frequency activity in the same
istribution. Three such seizures were analyzed for this study. The
atient had a resection of a portion of the frontal operculum but
as limited because the areas with epileptiform activity overlapped
unctional motor and speech regions. His course was complicated
y a small venous infarct superior to the region of resection that
aused some left hemiparesis and expressive aphasia that improved
ignificantly over the ensuing months. He has been seizure free to
ate (1 year postoperatively).
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oupling measure

o apply techniques from network analysis we must first define the
odes and edges of an appropriate network. For the ECoG data
f interest in this work the nodes are the individual electrodes.
e define an edge to exist between two nodes if the voltage data

ecorded at the two nodes (i.e., the voltage data recorded at the
wo electrodes) are sufficiently coupled. There exist many measures
o determine the coupling between two time series of voltage data
Pereda et al., 2005). Here we choose to use a simple measure of
inear coupling: the cross-correlation. We chose this measure (and
ot more sophisticated synchronization techniques) because recent
esearch suggests that — for the analysis of ictal and interictal (i.e.,
etween seizure) ECoG data — linear measures perform similar to
onlinear measures (Mormann et al., 2005; Ansari-Asl et al., 2006).

We determine the coupling between two nodes by computing the
ross-correlation between electrode pairs. To calculate the cross-
orrelation between two electrodes, we first bandpass filter the
CoG data at each electrode between 1 and 50 Hz. We then choose
10 s interval and divide this interval into 20, 1 s segments, so

hat each segment overlaps the previous by 0.5 s. For example, if
he 10 s interval extends from t = 0 to t = 10 s, then the duration
f the first segment would be t = {0.0, 1.0 s}, the duration of the
econd segment would be t = {0.5, 1.5 s}, the third t = {1.0, 2.0 s},
nd so on. Next, we compute the cross-correlation between the
wo electrodes within each 1 s segment. We choose to calculate the
ross-correlation within the 1 s segments — rather than over the
ntire 10 s interval — to preserve (at least approximately) the sta-
ionarity of the ECoG data. We then examine the cross-correlation
alues for time shifts less than 250 ms and determine the maximum
f the absolute value of the cross-correlation for each segment. We
elect the largest of these 20 values to define the coupling between
he electrode pair. If the maximum of the absolute value of the
ross-correlation exceeds 0.75 and occurs at a time shift less than
50 ms, then we declare the electrode pair coupled and connect
he two electrodes (i.e., nodes) with an edge. (We have repeated
he analysis using threshold values of 0.70 and 0.80 and found sim-
lar results for the network summary measures as we describe in
iscussion). Otherwise we consider the electrode pair uncoupled
nd do not draw an edge between them. We note that an edge
etween two nodes could represent either a strong correlation or
strong anti-correlation between the voltage data recorded at the
lectrode pair, and that our network is defined to be unweighted
i.e., two nodes are either connected or not, with edge weights of
or 0, respectively).

We show a representation of the ECoG data as nodes and edges
n Fig. 2a and b. To create Fig. 2a we compute the coupling mea-
ure as described above for a 10 s interval preceding the second
eizure recorded from the primary subject; we call this the preictal
nterval. We indicate each node (i.e., electrode) with a filled cir-
le in Fig. 2a; the orientation of the 8-by-8 electrode grid matches
hat shown in Fig. 1. We represent the six-contact electrode strip
s the column of circles at the left of the subfigure and the six-
ontact depth electrode as the row of circles at the bottom of the
gure. We connect each pair of coupled nodes with an edge drawn
s a black curve. The topology of the network connections is quite
omplicated and not intuitively obvious.

We create Fig. 2b in a similar way, except that we choose the
0 s interval of ECoG data to begin immediately after onset of the
econd seizure; we call this the ictal interval. To define ictal onset
n a reproducible way we implement the following procedure for
ach seizure from each subject. First, a board-certified neurolo-
ist and neurophysiologist (HEK) reviewed the ECoG recordings from

ach subject and identified the initial manifestation of rhythmic
igh frequency, low voltage focal activity thought to characterize
he earliest appearance of a seizure (Fisher et al., 1992; Alarcon
t al., 1995). A section of data including this high frequency, low
mplitude, focal activity; the clinical seizure onset; and the clin-
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cal seizure cessation were extracted from the entire ECoG trace.
ext, we divide the ECoG data recorded at each electrode into
verlapping windows of 1 s duration as described above. Then we
ompute the average spectral power between 5 Hz and 15 Hz within
ach window. We chose this frequency band to encompasses the
arge amplitude, low frequency activity typically observed during
ntracranially recorded seizures (e.g., the after discharge period
dentified in (Wendling et al., 2003; Kramer et al., 2007). Finally,
e average the resulting low frequency power spectra over all
lectrodes. We show the results of this procedure for the primary
ubject’s second seizure in the upper trace of Fig. 2c and note the
ramatic increase in low frequency power between 30 and 35 s com-
ared to the initial portion of the trace. To define ictal onset, we
dentify by visual inspection this dramatic increase in the average
ow-frequency power; for each seizure studied, this increase corre-
ponds to more than a 10-fold increase from the preictal interval.
e indicate the ictal interval between the solid vertical lines in

ig. 2c. For reference, we also show ECoG data recorded at a sin-
le grid electrode (lower trace) and indicate the preictal interval
etween the dashed vertical lines. We note that other quantitative
ethods exist to define seizure onset (e.g., Schindler et al., 2007).
n inspection of Fig. 2a and b suggests that the structure of the net-
ork changes at seizure onset; in particular, there are fewer edges
rawn in Fig. 2b than in Fig. 2a.

We follow the same procedure to compute similar networks for
ach seizure from each subject. For the primary subject, the 10 s
reictal intervals for the eight total seizures begin between 27 and
1 s (mean 39 s) before seizure onset. For all subjects, the 10 s pre-
ctal intervals for the sixteen total seizures begin between 22 and
80 s (mean 55 s) before seizure onset. We find (but do not show
ere) that each graph exhibits a complicated correlation structure
ike those shown in Fig. 2a and b. To quantify in a natural way the
opology of the correlation structure, we employ six measures from
etwork analysis: average path length, betweenness centralization,
egree, closeness, clustering coefficient, and betweenness central-
ty. Two of these measures — the average path length and clustering
oefficient — characterize the small-world properties of the seizing
etwork, as recently described in (Ponten et al., 2007). The other
easures (betweenness centrality in particular) characterize how

nformation may propagate in the network. We provide brief def-
nitions for these measures in the next subsection; more detailed
iscussions may be found in the literature (e.g., Wasserman and
aust, 1994; Nooy et al., 2005; Boccaletti et al., 2006).

etwork analysis measures

easures to characterize network topology are useful in many appli-
ations, for example, studies of information flow through the World
ide Web and monetary flow between nations. Here we employ six
easures to characterize the network topology defined by the ECoG
ata. Two measures — the betweenness centralization and average
ath length — summarize the topological properties of the entire
etwork. The other four measures — degree, closeness, clustering
oefficient, and betweenness centrality — reveal changes specific
o each node. We chose to apply six different measures because
ach illuminates different topological properties of the network.
e compute each of these measures using the software package

ajek (Nooy et al., 2005) or algorithms written in the IDL software
ackage (ITT Visual Information Solutions, Boulder, CO, USA) and
tudy in detail how the topology of the graphs change at seizure
nset in Results.

We begin with an illustrative example of network analysis. Con-

ider the network defined by the airports and flight paths of a
articular airline. In this example, the airports act as nodes in the
etwork. An edge exists between two nodes (e.g., between Boston
nd San Francisco) if the airline flies between the two cities. Most
ights involve stops at multiple nodes (i.e., no airline flies to all
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Figure 2 Two networks constructed from ECoG data recorded during the second seizure of the primary subject. We indicate the
nodes (i.e., electrodes) as solid circles and draw edges between pairs of coupled nodes. We have positioned the 8-by-8 electrode
grid to match the orientation in Fig. 1. The column of nodes at the left of each subfigure represents the six-contact orbitofrontal
electrode strip, and the row of electrodes at the bottom of each figure represents the anterior six-contact depth electrode. (a)
Network computed for the preictal interval. (b) Network computed for the ictal interval. We note that the number of edges appears
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to decrease during the ictal interval compared to the preictal
trace) and the average low-frequency power of all electrodes (up
the vertical dashed lines and between the vertical solid lines, r

airports from each airport) so that the path between two nodes is
often indirect. For example, the path from San Francisco to Oslo,
Norway involves stops at both Boston and London. For this airline
(and many others) the node London has particular importance. This
node possesses a high degree (many edges end in London), closeness
(most destinations are efficiently reached when travel begins in Lon-
don), and betweenness centrality. To illustrate the latter measure,
we note that the shortest path from San Francisco to Oslo involves
a stop at London. In this case, the node London lies between the
two nodes San Francisco and Oslo. In fact, the node London lies
between many nodes, especially nodes on opposite sides of the
Atlantic Ocean. Thus the betweenness centrality of the node Lon-
don is high. If something were to happen to this node, the airline
network would be severely disrupted. In general, if the between-
ness centrality of a node is large, then this node represents a point
of particular importance for communication in the network. Disrupt
this node, and large regions of the network may no longer commu-
nicate. In what follows, we show that the betweenness centrality

measure may be particularly important for assessing which brain
regions propagate seizures.

We now define the network analysis measures. To illustrate these
definitions and to introduce network analysis terminology we use
the simple five node networks shown in Fig. 3. In Fig. 3a we have

T
a

o
b

rval. (c) ECoG data recorded at a single grid electrode (lower
trace). We indicate the 10 s preictal and ictal intervals between
ctively. The vertical axis is arbitrary.

abeled two of the nodes j and k. To travel from node j to node k,
e start at node j and traverse the graph by following a sequence of
dges (the black lines) and nodes (the filled circles) until we reach
ode k. The length of this path is defined as the number of edges
n the sequence, and the geodesic is the shortest path between
odes j and k. We define each edge to have length 1 so that, in this
ase, the geodesic has length 2. A measure to quantify the average
ength of geodesics throughout the entire network is the average
ath length. The average path length is defined as the mean length
f geodesics over all pairs of reachable nodes in the network. (A
air of nodes is defined as reachable if a path exists between the
wo nodes.) In Fig. 3a—c the average path lengths are 1.6, 2.0, and
.4, respectively. We note that this measure applies to the entire
etwork, not to any node in particular.

The second measure we define is the degree. The degree of a
ode is the number of edges incident with the node. Because each
dge connects two nodes, a node with high degree connects to many
ther nodes. In Fig. 3, we have labeled one node i in each network.

he degree of this node is 4, 2, and 4 in the K-network, V-network,
nd B-network, respectively.

The third measure we consider is the closeness. The closeness
f node i is defined as the number of nodes reachable from i divided
y the summed distance to these reachable nodes. We note that,
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We begin by considering the two global measures: the
average path length and betweenness centralization. An
inspection of the complicated network topology shown in
Fig. 2 suggests that the average path length increases at

Table 1 Summary of the network analysis results for the
primary human subject

Measure Change at seizure onset

Average path length ↑
Betweenness centralization ↑
Betweenness centrality ↑↓
Clustering coefficient ↑↓
Closeness ↓
Degree ↓
We list the measures in the first column and the change at
seizure onset observed for each measure (averaged over eight
seizures) in the second column. The average path length and
betweenness centralization are summary measures of network
Figure 3 Simple five node networks: (a) the K

n computing the closeness, only nodes reachable from i are con-
idered. If the closeness of a node is large, then the distance from
his node to other (reachable) nodes is small and information (e.g.,
oney, gossip, voltage activity) may easily reach it. In Fig. 3 the

ode labeled i has the largest closeness value in each example. In
he K-network and B-network, the node i is one edge from all other
odes, and in the V-network the node i is one edge from two nodes,
nd two edges from two nodes. The closeness of node i in the K-
etwork and B-network is 1.0 and in the V-network is 0.67. In the
ormer two networks, this node is directly linked (and therefore
lose) to all other nodes.

The clustering coefficient measures the number of triangles in
hich a node participates, relative to the total number in which

t could participate, given its neighboring nodes. A triangle exists
hen three nodes (a triad) interconnect through edges. Applied

o acquaintance networks, the clustering coefficient measures the
ikelihood of two individuals with a common friend also knowing one
nother (and thus completing the triangle). In both the K-network
nd V-network, the clustering coefficient of each node is zero; no
riangles exist in these networks. In the B-network, the clustering
oefficient of node i is 0.33 and 1.0 for all other nodes. The higher
egree of node i decreases its clustering coefficient because this
ode could participate in many more triangles.

To define the last two measures — betweenness centrality and
etweenness centralization — we consider a node n that exists in
graph. The betweenness centrality of n is a measure of the num-
er of geodesics between all other nodes that pass through n. We
ote that betweenness centrality is a local measure that applies to
ach node in the network. Betweenness centralization is a summary
easure of the variation in betweenness centrality over the entire

etwork. Specifically, the betweenness centralization is the varia-
ion in the betweenness centrality of nodes divided by the maximum
ariation in the betweenness centrality values possible in a network
f the same size (Nooy et al., 2005).

In the K-network node i has a betweenness centrality value of
.0; all geodesics between other nodes in the network pass through
ode i. The exterior nodes — which do not serve as intermediate
odes along any geodesics in the network — have zero betweenness
entrality. The entire K-network has a betweenness centralization
alue of 1.0; this network possesses the maximum possible varia-
ion in betweenness centrality for a network of five nodes. In the
-network three nodes possess a nonzero betweenness centrality
with values of 0.5, 0.5, and 0.67). The betweenness centraliza-
ion for the entire network has a value of 0.42, less than that of
he K-network because variation in the betweenness centrality of
he nodes in the V-network is reduced. Finally, for the B-network,
he betweenness centralization is 1.0 and betweenness centrality
f node i is 1.0. No other nodes in the B-network are intermedi-

te to any geodesic; therefore, these nodes possess a betweenness
entrality of zero. In general, if the betweenness centrality of an
ndividual node is large, then this node represents a point of par-
icular importance for ‘‘communication’’ — or similar notions of
nformation exchange — in the network. For example, if we remove
work, (b) the V-network and (c) the B-network.

ode i from the K-network, we disrupt all communication in that
etwork. In what follows, we show that the betweenness centrality
easure may be particularly important for assessing which brain

egions propagate seizures.

esults

n this section we apply the six network analysis measures
o the ECoG data recorded from the primary human subject.
e show that the two summary measures — the average
ath length and the betweenness centralization — increase
t seizure onset, and that the degree and closeness of most
lectrodes tend to decrease at seizure onset. The between-
ess centrality and clustering coefficient results do not
xhibit such uniform change. We summarize these results
n Table 1. We then apply three global measures to the
CoG data recorded from the 8-by-8 electrode grids of four
uman subjects. We again find that all three global measures
ncrease at seizure onset.

nalysis of ECoG data: primary human subject
topology; the betweenness centrality, clustering coefficient,
closeness, and degree are local measures that apply to each
node. The degree and closeness decrease for nearly all elec-
trodes. Both increases and decreases occur for the betweenness
centrality and clustering coefficient, depending on the node.
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Emergent network topology at seizure onset in humans

seizure onset; fewer edges exist in the ictal network, and
we expect that the shortest path between any two nodes
is less direct and therefore longer compared to the cor-
responding path in the preictal network. We compute the
average path length for the preictal and ictal intervals deter-
mined for the eight seizures and find values of 2.0 ± 0.4
and 2.6 ± 0.2, respectively. The difference in the means of
these values is statistically significant (p < 0.005). We com-
pute the betweenness centralization of the preictal and ictal
networks, average the results from the eight seizures, and
find values of 0.05 ± 0.05 and 0.14 ± 0.04, respectively. The
difference in the means of these values is also statistically
significant (p < 0.005). We conclude that both the aver-
age path length and betweenness centralization increase at
seizure onset. The latter result indicates that the between-
ness centrality of the nodes becomes less uniform at seizure
onset; some nodes acquire larger betweenness centrality
values while others acquire smaller values. We note that —
although the number of edges decreases at seizure onset
— nearly all nodes remain connected to the network. At
most four nodes separate from the network completely,
and for seven preictal and six ictal intervals one or fewer
nodes separate. The remaining nodes form a single con-
nected component in which each node is reachable from
every other node. We also note that — for each individual
seizure — the average path length increases, and for seven
(of eight) seizures the betweenness centralization increases
at ictal onset. Both measures provide a single scalar value
that summarizes the complicated preictal and ictal network
topologies.

An inspection of Fig. 2 also suggests that the degree of
most nodes decreases at seizure onset; we observe fewer
edges in the ictal network compared to the preictal net-
work. To quantify this change, we compute the degree of

each node during the preictal and ictal intervals. We show
the results for the preictal and ictal intervals in Fig. 4a
and b, respectively. In each subfigure (and those that fol-
low) we arrange the nodes as in Fig. 2 and indicate the

f
o

c

Figure 4 Results for the degree calculation of the primary subject.
the value of the degree by the radius of the circle during (a) the preic
at seizure onset in (c). In this subfigure, the radius of the circle indi
the sign; a white (grey) circle denotes a decrease (increase) in degre
in all three subfigures. We find that the average degree of most nod
179

alue of the measure by the radius of the circle. To deter-
ine the change in degree at seizure onset, we compute

he difference in degree at each node between the ictal
nd preictal states by subtracting the preictal values from
he ictal values. We average these differences over the
ight seizures and show the results in Fig. 4c. In this fig-
re, the radius of the circle indicates the magnitude of the
egree difference, and the shading the sign. If the aver-
ge degree of a node decreases at seizure onset, then the
ode is white; otherwise, we shade the node grey. We use
his shading scheme in all figures that follow. We find that

for all nodes — the average degree decreases or remains
early unchanged at seizure onset. The magnitude of this
ecrease tends to be larger for nodes in the lower half of
he figure. We interpret the wide-spread decrease in degree
o indicate that the connectivity of the network tends to
ecrease at seizure onset, especially for nodes in the lower
alf of the figure. The degree measure allows us to inter-
ret the complicated network topology (illustrated in Fig. 2)
s reflected locally in each node in a natural and obvious
ay.

For the fourth measure we compute the closeness of
ach node during the preictal and ictal intervals and show
he results in Fig. 5a and b, respectively. We position the
odes as in the previous figures, and we indicate the value
f the closeness — averaged over the eight seizures — by
he radius of the circle. We average the difference in close-
ess between the ictal and preictal states over the eight
eizures and plot the results in Fig. 5c. We find that, for
early all nodes, the average closeness decreases at seizure
nset. The magnitude of this decrease tends to be larger
or nodes in the lower half of the figure. Like the dif-
use decrease observed in degree, the wide-spread decrease
n closeness may result from disconnection — and there-

ore increased distance — between most nodes at seizure
nset.

The fifth measure we compute is the clustering coeffi-
ient. We show the results for the preictal and ictal intervals

We arrange the nodes in the same way as in Fig. 2. We indicate
tal and (b) the ictal intervals. We show how the degree changes
cates the magnitude of the degree difference and the shading
e at seizure onset. The largest radius indicates a degree of 40

es decreases at seizure onset.
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Figure 5 Results for the closeness calculation of the primary subject. We arrange and shade the nodes in the same way as for the
previous figures. We indicate the value of the closeness by the radius of the circle during (a) the preictal and (b) the ictal intervals.
W larg
W seizu

i
F
d
d
F
c
c
o
c
b
n
c
d
a
n
I
t

d
c
—
i

t
i
f
c
o
c
n
a

F
r
o
p

e show how the closeness changes at seizure onset in (c). The
e find that the average closeness of most nodes decreases at

n Fig. 6a and b, respectively, and for the difference in
ig. 6c. We find that the clustering coefficient of most nodes
ecreases at seizure onset, but differs from the pattern of
ecrease observed in degree and closeness in two ways.
irst, we observe a dispersed spatial pattern of decreased
lustering coefficients. The largest decreases in clustering
oefficient are scattered over the nodes, not clumped in
ne region of the grid. Second, not all nodes decrease in
lustering coefficient at seizure onset. Of the 76 nodes, 32
ecome more clustered at seizure onset. To determine which
odes display a statistically significant change in clustering
oefficient in a manner that controls for the rate of false
iscoveries, we compute the q value of the results (Storey

nd Tibshirani, 2003). At the level of q = 0.05, we find zero
odes with a significant decrease in clustering coefficient.
f we instead set q = 0.20, we find a significant decrease at
hree nodes (of which we expect 3 × 0.2 < 1 to be a falsely

a
t
f
o

igure 6 Results for the clustering coefficient of the primary subj
adius of the circle during (a) the preictal and (b) the ictal interva
nset in (c). The largest radius indicates a clustering coefficient of 0
= 0.20 level at three nodes (each marked with an asterisk).
est radius indicates a closeness of 0.65 in all three subfigures.
re onset.

eclared decrease). We mark these nodes in Fig. 6c. We con-
lude that the disconnection at seizure onset destroys some

but not many — complete triangles in the network in an
nhomogeneous way.

The final measure we consider is the betweenness cen-
rality. We show the average results for the preictal and
ctal intervals in Fig. 7a and b. We plot the average dif-
erence results in Fig. 7c and find that the betweenness
entrality of some nodes increases at seizure onset, while
ther nodes exhibit no change or a decrease in betweenness
entrality. We note that the direction of change in between-
ess centrality, like the clustering coefficient, is not uniform
cross nodes. At a level of q = 0.05, we find 13 nodes with

significant change in betweenness centrality (of which we

herefore expect 13 × 0.05 = 0.65 < 1 out of these 13 to be a
alsely declared increase). We mark these nodes with single
r double asterisks.

ect. We indicate the value of the clustering coefficient by the
ls. We show how the clustering coefficient changes at seizure
.80 in all three subfigures. We find a significant decrease at the
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Figure 7 Results of the betweenness centrality analysis of the primary subject. We indicate the value of the betweenness centrality
by the radius of the circle during (a) the preictal and (b) the ictal intervals. We show how the betweenness centrality changes at
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seizure onset in (c). We mark the 13 electrodes that exhibit
asterisks. The double asterisks indicate nodes that exhibit a sta
and 0.80. The largest radius indicates a betweenness centrality

We summarize the network analysis results for the pri-
mary subject in Table 1.

Additional human subjects

In the previous section, we considered the network analysis
of ECoG data collected from a single human subject. In this
section, we analyze ECoG data recorded from the primary
subject plus three additional human subjects. For each sub-
ject, we choose to analyze only the data recorded from the
8-by-8 electrode grid (located on the left frontotemporal
area for two subjects and on the left frontotemporopari-
etal area for two subjects). We apply to these grid data
the cross-correlation measure defined in Methods to deter-
mine the coupling between electrode pairs and establish
two networks (preictal and ictal) for each seizure recorded
from each subject. We then analyze the 16 total seizures
recorded from the four subjects by applying three summary
measures of network topology. We chose to apply only sum-
mary measures for two reasons. First, we do not expect the
electrical activity of seizures to propagate in the same way
for different subjects. We may find, for example, decreased
degree at ictal onset in the lower half of the electrode grid
for one subject (as in Fig. 4) and in the center of the grid
for another subject. Therefore, although the electrode grids
cover approximately the same cortical regions we cannot
easily compare local measures (such as degree or between-
ness centrality) between subjects. Second, the summary
measures provide a single, scalar result for each seizure
from each subject. These measures summarize the compli-
cated network topology in a way that facilitates a formal
statistical comparison across subjects of changes occurring
during the transition to seizure.

We find, based on the measurements from the four human

subjects, that increases in both the average path length
and betweenness centralization are associated with seizure
onset. In particular, increases of 0.6662 in average path
length and 0.055 in betweenness centralization were found
significant at the 0.005 level (p < 0.005), controlling for vari-

g
t
n
s

tistically significant increase in betweenness centrality with
cally significant increase for coupling thresholds of 0.70, 0.75,
.13.

tion among subjects, based on a mixed effects ANOVA
nalysis. A robust version of the analysis (with observations
eplaced by their ranks) yielded similar results.

As a third summary measure, we compute the small-
orld-ness of the preictal and ictal intervals (Humphries et
l., 2006). To do so, we first construct for each seizure and
ubject 50 corresponding random graphs with 64 nodes and
he number of edges equivalent to that observed in the data.
hen, for each seizure and interval, we compute the aver-
ge path length and average clustering coefficient (averaged
ver the 64 nodes) of the random graphs and divide the aver-
ge path length (average clustering coefficient) of the data
y the average path length (average clustering coefficient)
f the corresponding random graphs. The small-world-ness
s the ratio of the clustering coefficient ratio to the aver-
ge path length ratio (Humphries et al., 2006). We find for
he preictal and ictal intervals average small-world-ness val-
es of 2.0 ± 0.8 and 3.2 ± 1.1, respectively. The increase in
mall-world-ness at ictal onset was found significant at the
.001 level (i.e., 0.0005 < p < 0.001), controlling for variation
mong subjects, based on a mixed effects ANOVA analysis.
robust version of the analysis (with observations replaced

y their ranks) yielded similar results.
We have also examined the four local measures (degree,

loseness, clustering coefficient, and betweenness central-
ty) applied to the three additional subjects and found
esults qualitatively similar to those listed in Table 1.
amely, we find that the degree and closeness — aver-
ged over the seizures recorded from a subject — tend to
ecrease at seizure onset for nearly all electrodes. The
lustering coefficient and betweenness centrality tend to
ncrease for some electrodes and decrease for others. In
ig. 8 we show all four measures applied to all four subjects.
or the additional subjects, we do not plot the electrode
ositions according to the anatomical locations. Instead we
imply show the average results recorded from the electrode

rid and strip or depth electrodes. Because we analyze only
wo or three seizures from each of these subjects, we can-
ot perform a meaningful statistical analysis of an individual
ubject’s results.
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Figure 8 The change in the four local measures observed at ictal onset in the four human subjects. Each column corresponds
to a measure, from left to right: degree, closeness, clustering coefficient, and betweenness centrality. Each row corresponds to a
subject. We show the results for the primary subject in the top row, and the additional subjects in the other three rows. For the
additional subjects, we show the results for the 8-by-8 electrode grid and the additional strip and depth electrodes. The electrode
positions do not indicate anatomical locations. The shading scheme follows that used in the previous figures.
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Emergent network topology at seizure onset in humans

Discussion

We have applied six measures from network analysis —
average path length, betweenness centralization, degree,
closeness, clustering coefficient, and betweenness central-
ity — to high-dimensional, multivariate ECoG data recorded
from a seizing human subject. We found that the two
summary measures (average path length and between-
ness centralization) increased at seizure onset. We also
found that — for most electrodes — degree and closeness
decreased at seizure onset. Changes in the clustering coeffi-
cient and the betweenness centrality tended to vary among
electrodes at seizure onset; in particular some electrodes
exhibited a sharp increase in betweenness centrality, while
others increased or decreased only slightly. We summarized
these results in Table 1. We applied the network analysis to
three additional human subjects and showed that the aver-
age path length and betweenness centralization tended to
increase at seizure onset. In addition, we found that the
small-world-ness increased at ictal onset, in agreement with
some previous studies (e.g., Netoff et al., 2004; Wu et al.,
2006), but not others (Srinivas et al., 2007).

We note the decrease in coupling observed at seizure
onset. This decoupling appeared qualitatively as a thin-
ning of edges in the network graphs and quantitatively as
a decrease in degree and closeness of nearly all nodes.
The magnitude of this decrease in both measures was
not spatially uniform. For the primary subject, the largest
decreases occurred at electrodes in the lower half of the 8-
by-8 electrode grid and for the strip and depth electrodes.
The effect of the decreased coupling may be to reveal those
brain regions facilitating the seizure. In fact, for the primary
subject, most nodes with significant increases in between-
ness centrality displayed only small decreases in degree and
closeness (compare Figs. 4c and 5c with Fig. 7c). In addition,
some of these same nodes displayed deceases in clustering
coefficient. We interpret the latter results to suggest that
at ictal onset some nodes stay connected to the network
while the neighbors of these nodes disconnect (and thus
destroy previously present triangles). Similar decreases in
coupling (i.e., decorrelation or desynchronization) during
seizure were recently observed in rat hippocampal slices
(Netoff and Schiff, 2002) and in man (Wendling et al., 2003).

In Results, we presented the mean changes in network
measures averaged over the eight seizures of the primary
subject. For each seizure we have also examined the preictal
and ictal values of the average path length and found a con-
sistent result, namely an increase in average path length at
ictal onset. For the betweenness centralization, we find an
increase at seizure onset in seven of eight seizures. We inter-
pret these results to suggest a consistent change in network
topology for each seizure. We have also visually inspected
the changes in degree and betweenness centrality for each
seizure of the primary subject. We find a qualitatively sim-
ilar pattern for each seizure. Specifically, nodes near the
center and right of the grid appear to increase in between-
ness centrality and nodes near the lower portion of the grid

appear to decrease in degree at seizure onset, as we show
in Fig. 9.

In constructing the network representations of the data,
we created an edge between two nodes if the ECoG data
recorded at the two electrodes were sufficiently coupled.

t
i
a
t
p
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e defined ‘‘sufficient coupling’’ as the maximum of the
bsolute value of the cross-correlation exceeding 0.75. The
alue of this coupling threshold is important. If we make
he threshold too large (e.g., 0.995), then we find almost
o edges in the network. A comparison between the preic-
al and ictal states — each with zero edges — is therefore
eaningless. If we make the threshold too small (e.g.,

.005), then we find edges between every node in the net-
ork and again render meaningless any comparison between

he preictal and ictal states. Therefore, we chose a cou-
ling threshold between these two extreme values. We have
epeated the analysis with threshold values of 0.70 and 0.80
nd found significant increases in the average path length
p < 0.01) and near significant increases in the betweenness
entralization (p < 0.06) at seizure onset. Moreover, of the 13
lectrodes that exhibit a significant increase (q = 0.05 level)
n betweenness centrality at seizure onset, six are identi-
al for thresholds of 0.70, 0.75, and 0.80. We mark these six
odes with a double asterisk in Fig. 7c. An improved method
o chose the coupling threshold would be of use—–ideally,
ne that would maximize the quality of information in the
etwork graph representation relative to its intended usage.

By choosing a fixed correlation threshold, we created pre-
ctal and ictal networks with different numbers of edges
compare Fig. 2a and b). We created the networks in this
ay because decreased coupling — and therefore a thinning
f edges — appears to be a physiological characteristic of the
ransition from preictal to ictal activity (Netoff and Schiff,
002; Wendling et al., 2003). If instead we create preictal
nd ictal networks with the same number of edges (by adapt-
ng the threshold in each case) we ignore this characteristic
ut establish networks with more comparable topology. We
ave repeated our analysis of the primary subject choos-
ng the 500 largest cross-correlation values to establish the
ame number of edges during each interval and for each
eizure. For the degree, closeness, clustering coefficient,
nd betweenness centrality, we find results qualitatively
imilar to those for the fixed coupling threshold of 0.75 (data
ot shown). Yet, for the average path length and between-
ess centralization we find no significant difference between
he preictal and ictal states.

In computing the coupling results we made four impor-
ant assumptions. First, we used the cross-correlation
etween electrode pairs to establish the coupling measure.
e chose to use this measure because, for the analysis of
CoG data during seizure, linear measures seem to perform
ust as well as nonlinear measures (Ansari-Asl et al., 2006;
ormann et al., 2005). Use of a different measure (e.g.,
hase synchronization) or filtering of the data into differ-
nt frequency bands may change the characteristics of the
etwork, but the same network analysis would still be appli-
able. Second, we identified the approximate time of ictal
nset to coincide with clinical and visible ECoG changes as
etermined by a clinical neurophysiologist (HEK) and refined
his approximation by computing the average low frequency
ower of all electrodes in the ECoG data. We note that
eizures often begin with a brief interval of focal low ampli-

ude, high frequency activity; in this work, we chose to focus
nstead on the large amplitude, rhythmic activity that arises
s seizures are fully underway. Future studies that consider
he topology of additional time intervals (e.g., interictal,
ost-ictal) would be of use. Third, in our analysis we have not
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Figure 9 The change in degree (upper half of figure) and betweenness centrality (lower half of figure) at ictal onset computed for
each seizure of the primary subject. Visual inspection suggests qualitatively similar changes occur for each seizure. In particular,
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e note that nodes in the lower half of the electrode grid tend
he grid tend to increase in betweenness centrality at each seiz

onsidered the temporal relationship between electrodes.
erhaps by considering the time shift at which the strongest
oupling occurs we could infer how the voltage activity prop-
gates over the entire cortex during seizure and study the
ynamic network topology (Kramer et al., 2007). Fourth,
e assume that coupling between electrodes indicates com-
unication between brain areas. This may not be the case

f, for example, a common source drives similar activity
n two disconnected neural populations. In future analyses,
pplication of imaging or neurophysiological techniques to
est for anatomical or functional connectivity would be of
se.

We conclude by suggesting that network analysis mea-

ures may indicate targets for therapeutic intervention. We
dentified at seizure onset two changes in network topology:
1) decreased connectivity of many nodes, and (2) increased
etweenness centrality of few nodes. For the former, the
isconnection is apparent in the average degree and close-
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ecrease in degree, and that nodes near the center and right of
onset.

ess measures for the primary subject shown in Figs. 4c
nd 5c. We propose that a possible anti-seizure treatment
ould functionally ‘‘reconnect’’ the disconnected regions.
his might occur through regional application of drugs that
nhance synaptic transmission (e.g., 4-aminopyridine). We
ote an important alternative interpretation: the higher
orrelation during the preictal period may instigate the
ecorrelating seizure. In this case, reconnecting cortical
egions may shorten but not prevent the seizure. For (2),
e identify 13 nodes with statistically significant increases

n betweenness centrality in Fig. 7c. We suggest that these
odes may facilitate seizure activity and that their disrup-
ion (by focal responsive electrical stimulation (Gluckman

t al., 2001), drug delivery (Stein et al., 2000) or cool-
ng (Rothman et al., 2005)) could prevent or abort ictal
ctivity. These nodes might also serve as candidates for
esective surgery especially when the epileptogenic focus
annot be removed (for example, when the seizure initi-
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Figure 10 Comparison of therapeutic targets and resected
therapeutic targets with filled black circles, and the nodes resec
boxes. Only two nodes that displayed a statistically significant i

ates in eloquent cortex or when the seizure is nonfocal and
widespread, as is often the case in neocortical seizures).

To suggest the utility of the prospective therapeutic
targets, we show in Fig. 10 the three-dimensional recon-
struction of the primary subject’s cortex and indicate both
the prospective therapeutic targets and the cortical region
removed during the subject’s anterior temporal lobectomy.
We find that — of the 13 nodes identified to increase in
betweenness centrality at seizure onset — only 2 nodes were
resected. The resection instead targeted nodes exhibit-
ing large decreases in degree and closeness at seizure
onset. Two months following surgery, the primary subject
continued to experience recurrent seizures, although less
frequently than pre-operatively. Perhaps the reduction in
seizure frequency resulted from removing nodes with dense
connectivity (and therefore higher degree) during the pre-
ictal interval. Would the resection of additional nodes (or
electrical stimulation of nodes contacting eloquent cor-
tex) improve the surgical outcome? A longitudinal study in
humans comparing surgical outcome with network analysis
measures, or invasive recordings in a simple physiological
model of epilepsy, would help disprove or validate the tech-
nique.

We note that both therapies — diffuse drug application
to enhance connectivity or localized electrical stimulation
or resection to reduce connectivity — emerge from anal-

ysis of the entire network. We could not identify these
potential targets by studying each electrode individually or
in pairs; instead, we must analyze each node within the
context of the coupled network. In both cases we target
emergent properties of the network for therapy (Faingold,

A

W
t
a

of the primary subject. We indicate the nodes identified as
uring an anterior temporal lobectomy within the shaded white

ase in betweenness centrality were removed.

004). We are, of course, cautious in identifying new types of
herapy; these ideas must be tested using longitudinal stud-
es that, for example, correlate brain removal of regions
xhibiting increased betweenness centrality with postop-
rative seizure freedom. The identification of prospective
odes as therapeutic targets is limited by the number and
xtent of clinical recording electrodes; the 76 electrodes
rom the primary subject record from only a small portion
f the cortex. Electrodes positioned at different locations
ight identify more robust targets. In addition, seizures may
ropagate along many different paths so that the disruption
f one communication hub might facilitate others and, thus,
ot prevent ictal onset.

The network analysis techniques we present here are
pplicable to many other complex datasets used in neuro-
cience, such as MEG and microelectrode arrays. All that
s required is the establishment of nodes (e.g., MEG sen-
ors or microelectrodes) and edges determined from any
ype of coupling metric (Section 6.4 of Boccaletti et al.,
006). Network analysis provides measures to summarize
omplicated network topology in a natural way and reveals
haracteristics of the network not obtainable from the study
f individual nodes alone, and thus is of increasing utility to
euroscience.
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