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M
any scientific fields study data with an underlying 
structure that is non-Euclidean. Some examples 
include social networks in computational social sci-
ences, sensor networks in communications, func-

tional networks in brain imaging, regulatory networks in 
genetics, and meshed surfaces in computer graphics. In 
many applications, such geometric data are large and com-
plex (in the case of social networks, on the scale of billions) 
and are natural targets for machine-learning techniques. 
In particular, we would like to use deep neural networks, 
which have recently proven to be powerful tools for a broad 
range of problems from computer vision, natural-language 
processing, and audio analysis. However, these tools have 
been most successful on data with an underlying Euclidean or 
grid-like structure and in cases where the invariances of these 
structures are built into networks used to model them.

Geometric deep learning is an umbrella term for emerging 
techniques attempting to generalize (structured) deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The 
purpose of this article is to overview different examples of geometric 
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning
Deep learning refers to learning complicated concepts by building them from 
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are 
popular realizations of such deep multilayer hierarchies. In the past few years, the growing 
computational power of modern graphics processing unit (GPU)-based computers and the avail-
ability of large training data sets have allowed successfully training neural networks with many layers 
and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from 
speech recognition [2], [3] and machine translation [4] to image analysis and computer vision [5]–[11] (see [12] 
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and [13] for many additional examples of successful applications of deep learning). Today, deep learning 
has matured into a technology that is widely used in commercial applications, including Siri speech recog-

nition in Apple iPhone, Google text translation, and Mobileye vision-based technology for autonomously 
driving cars.

One of the key reasons for the success of deep neural networks is their ability to leverage sta-
tistical properties of the data, such as stationarity and compositionality through local statistics, 

which are present in natural images, video, and speech [14], [15]. These statistical properties 
have been related to physics [16] and formalized in specific classes of convolutional neural 

networks (CNNs) [17]–[19]. In image analysis applications, one can consider images as 
functions on the Euclidean space (plane), sampled on a grid. In this setting, stationarity 

is owed to shift invariance, locality is due to the local connectivity, and compositional-
ity stems from the multiresolution structure of the grid. These properties are exploited 
by convolutional architectures [20], which are built of alternating convolutional and 
downsampling (pooling) layers. The use of convolutions has a twofold effect. First, it 
allows extracting local features that are shared across the image domain and great-
ly reduces the number of parameters in the network with respect to generic deep 
architectures (and thus also the risk of overfitting), without sacrificing the expres-
sive capacity of the network. Second, the convolutional architecture itself imposes 
some priors about the data, which appear very suitable especially for natural images 
[17]–[19], [21].

While deep-learning models have been particularly successful when dealing 
with speech, image, and video signals, in which there are an underlying Euclide-
an structure, recently there has been a growing interest in trying to apply learning 
on non-Euclidean geometric data. Such kinds of data arise in numerous applica-

tions. For instance, in social networks, the characteristics of users can be modeled 
as signals on the vertices of the social graph [22]. Sensor networks are graph models 

of distributed interconnected sensors, whose readings are modeled as time-depen-
dent signals on the vertices. In genetics, gene expression data are modeled as signals 

defined on the regulatory network [23]. In neuroscience, graph models are used to rep-
resent anatomical and functional structures of the brain. In computer graphics and vision, 

three-dimensional (3-D) objects are modeled as Riemannian manifolds (surfaces) endowed 
with properties such as color texture.

The non-Euclidean nature of such data implies that there are no such familiar properties as 
global parameterization, common system of coordinates, vector space structure, or shift 

invariance. Consequently, basic operations like convolution that are taken for granted in 
the Euclidean case are even not well defined on non-Euclidean domains. The purpose 

of this article is to show different methods of translating the key ingredients of suc-
cessful deep-learning methods, such as CNNs, to non-Euclidean data.

Geometric learning problems
Broadly speaking, we can distinguish between two classes of geometric 
learning problems. In the first class of problems, the goal is to characterize 
the structure of the data. The second class of problems deals with analyz-
ing functions defined on a given non-Euclidean domain. These two class-
es are related, because understanding the properties of functions defined 
on a domain conveys certain information about the domain, and vice 
versa, the structure of the domain imposes certain properties on the func-
tions on it.

Structure of the domain
As an example of the first class of problems, assume to be given a set of 

data points with some underlying low-dimensional structure embedded into a 
high-dimensional Euclidean space. Recovering that low-dimensional structure 

is often referred to as manifold learning or nonlinear dimensionality reduction 
and is an instance of unsupervised learning (note that the notion of manifold in this 

setting can be considerably more general than a classical smooth manifold; see, e.g., 
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[24] and [25]). Many methods for nonlinear dimensionality 
reduction consist of two steps: first, they start with con-
structing a representation of local affinity of the data points 
(typically, a sparsely connected graph). Second, the data 
points are embedded into a low-dimensional space, trying to 
preserve some criterion of the original affinity. For example, 
spectral embeddings tend to map points with many connec-
tions between them to nearby locations, and multidimension-
al scaling (MDS)-type methods try to 
preserve global information, such as graph 
geodesic distances. Examples of manifold 
learning include different flavors of MDS 
[26], locally linear embedding [27], sto-
chastic neighbor embedding [28], spectral 
embeddings, such as Laplacian eigenmaps 
[29] and diffusion maps [30], and deep models [31]. Instead 
of embedding the vertices, the graph structure can be pro-
cessed by decomposing it into small subgraphs called motifs 
[36] or graphlets [37]. Finally, most recent approaches [32]–
[34] tried to apply the successful word-embedding model 
[35] to graphs.

In some cases, the data are presented as a manifold or 
graph at the outset, and the first step of constructing the affin-
ity structure described previously is unnecessary. For instance, 
in computer graphics and vision applications, one can analyze 
3-D shapes represented as meshes by constructing local geo-
metric descriptors capturing, e.g., curvature-like properties 
[38], [39]. In social network analysis applications the topologi-
cal structure of the social graph representing the social rela-
tions between people carries important insights allowing, e.g., 
to classify the vertices and detect communities [40]. In natural-
language processing, words in a corpus can be represented by 
the co-occurrence graph, where two words are connected if 
they often appear near each other [41].

Data on a domain
Our second class of problems deals with analyzing functions 
defined on a given non-Euclidean domain. We can further 
break down such problems into two subclasses: problems 
where the domain is fixed and those where multiple domains 
are given. For example, assume that we are given the geo-
graphic coordinates of the users of a social network, represent-
ed as a time-dependent signal on the vertices of the social 
graph. An important application in location-based social net-
works is to predict the position of the user given his or her 
past behavior as well as that of his or her friends [42]. In this 
problem, the domain (social graph) is assumed to be fixed; 
methods of signal processing on graphs, which have previous-
ly been reviewed in IEEE Signal Processing Magazine [43], 
can be applied to this setting, in particular, to define an 
operation similar to convolution in the spectral domain. This, 
in turn, allows generalizing CNN models to graphs [44], [45]. 
In computer graphics and vision applications, finding similari-
ty and correspondence between shapes are examples of the 
second subclass of problems: each shape is modeled as a man-
ifold, and one has to work with multiple such domains. In this 

setting, a generalization of convolution in the spatial domain 
using local charting [46]–[48] appears to be more appropriate.

Brief history
The main focus of this review is on this second class of prob-
lems, namely, learning functions on non-Euclidean structured 
domains, and, in particular, attempts to generalize the popular 
CNNs to such settings. The first attempts to generalize neural 

networks to graphs we are aware of are due 
to Gori et al. [49], who proposed a scheme 
combining recurrent neural networks (RNNs) 
and random walk models. This approach 
went almost unnoticed, reemerging in a 
modern form in [50] and [51] due to the 
renewed recent interest in deep learning. 

The first formulation of CNNs on graphs is due to Bruna et al. 
[52], who used the definition of convolutions in the spectral 
domain. Their article, while being of conceptual importance, 
came with significant computational drawbacks that fell short 
of a truly useful method. These drawbacks were subsequently 
addressed in the follow-up works of Henaff et al. [44] and 
Defferrard et al. [45]. In the latter article, graph CNNs (GCNNs) 
allowed achieving some state-of-the-art results.

In a parallel effort in the computer vision and graphics 
community, Masci et al. [47] showed the first CNN model on 
meshed surfaces, resorting to a spatial definition of the convo-
lution operation based on local intrinsic patches. Among other 
applications, such models were shown to achieve state-of-the-
art performance in finding correspondence between deformable 
3-D shapes. Follow-up works proposed different construction of 
intrinsic patches on point clouds [48], [53] and general graphs [54].

The interest in deep learning on graphs or manifolds has 
exploded in the past year, resulting in numerous attempts to 
apply these methods to a broad spectrum of problems ranging 
from biochemistry [55] to recommender systems [56]. Because 
such applications originate in different fields that usually do 
not cross-fertilize, publications in this domain tend to use dif-
ferent terminology and notation, making it difficult for a new-
comer to grasp the foundations and current state-of-the-art 
methods. We believe that our article comes at the right time, 
attempting to systemize and bring some order into the field.

Signal processing, differential geometry,  
and graph theory
Geometric deep-learning frameworks dealt with in this paper are 
based on notions in differential geometry and graph theory. 
Unfortunately, these topics are insufficiently known in the signal 
processing community, and to our knowledge, there is no intro-
ductory-level reference treating these so different structures in a 
common way. One of our goals is to provide an accessible over-
view of these models, resorting as much as possible to the 
intuition of traditional signal processing.

One of the key differences between Euclidean and non-
Euclidean learning settings is the lack of traditional opera-
tions such as convolutions. Various non-Euclidean convolutional 
architectures differ in the way a convolution-like operation is 

Today, deep learning has 
matured into a technology 
that is widely used in 
commercial applications.
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formulated on graphs and manifolds. One way is to resort to the 
analogy of the convolution theorem, defining the convolution in 
the spectral domain. An alternative is to think of the convolu-
tion as a template matching in the spatial domain. Such a distinc-
tion is, however, far from being clear-cut: as we will see, some 
approaches draw their formulation from the spectral domain, 
essentially boiling down to applying filters in the spatial domain. 
It is also possible to combine these two approaches, resorting 
to spatio-frequency analysis techniques, such as wavelets or 
the windowed Fourier transform. We have provided sidebars  to 
illustrate important concepts, and Table 1 lists the notations used 
throughout the article. Additional materials, data, and examples 
of code are available at geometricdeeplearning.com. Table 2 pro-
vides a summary of the geometric deep-learning methods pre-
sented in this article.

Deep learning on Euclidean domains

Geometric priors
Consider a compact d-dimensional Euclidean domain 

[ , ]0 1 Rd d1X =  on which square-integrable functions 
( )f L2! X  are defined (e.g., in image analysis applications, 

images can be thought of as functions on the unit square 
[ , ] ) .0 1 2X =  We consider a generic supervised learning 

setting, in which an unknown function : ( )y L Y2
"X  is ob

served on a training set

	 .( ), ( )f L y y fi i i i
2

I! X = !" , � (1)

In a supervised classification setting, the target space Y  
can be thought discrete, with | |Y  being the number of classes. 
In a multiple object recognition setting, we can replace Y  by 
a multi-K-dimensional simplex, which represents the poste-
rior class probabilities ( | ) .p y x  In regression tasks, we may 
consider .RY m=  In the vast majority of computer-vision and 
speech-analysis tasks, there are several crucial prior assump-
tions on the unknown function y. As we will see in the fol-
lowing sections, these assumptions are effectively exploited by 
CNN architectures.

Stationarity
Let

	 ( ) ( ), , ,f x f x v x vTv ! X= - � (2)

be a translation operator acting on functions ( )f L2! X  [we 
assume periodic boundary conditions to ensure that the opera-
tion is well defined over ( )L2 X ]. Our first assumption is that 
the function y  is either invariant or equivariant with respect to 
translations, depending on the task. In the former case, we 
have f( ) (y yTv = )f  for any ( )f L2! X  and .v ! X  This is 
typically the case in object classification tasks. In the latter, 
we have fv v y( ) ( ),y fT T=  which is well defined when the 
output of the model is a space in which translations can act 
(e.g., in problems of object localization, semantic segmenta-
tion, or motion estimation). Our definition of invariance 

should not be confused with the traditional notion of transla-
tion invariant systems in signal processing, which corresponds 
to translation equivariance in our language (because the output 
translates whenever the input translates).

Local deformations and scale separation
Similarly, a deformation ,Lx  where : "x X X  is a smooth 
vector field, acts on ( )L2 X  as ( ) ( ( ))f x f x xL x= -x . De
formations can model local translations, changes in point 
of view, rotations, and frequency transpositions [18]. Most 
tasks studied in computer vision are not only translation 
invariant/equivariant but also stable with respect to local 
deformations [57], [18]. In tasks that are translation invari-
ant, we have

	 ( ) ( ,y f yL d. x-x )f � (3)

Table 1. The notations used in this article.

Notation 

Rm  m -dimensional Euclidean space 

, ,a Aa  Scalar, vector, matrix 

ar  Complex conjugate of a

,xX  Arbitrary domain, coordinate on it 

( )Lf 2! X  Square-integrable function on X

( ),xx ijd dl  Delta function at xl, Kronecker delta 

{ , }f yi i i I!  Training set 

Tv  Translation operator 

,Lx x  Deformation field, operator 

ft  Fourier transform of f

f g*  Convolution of f  and g

, ,T TX X Xx  Manifold, its tangent bundle, tangent space at x

, ·,· TXG H  Riemannian metric 

( )f L X2!  Scalar field on manifold X  

( )F L TX2!  Tangent vector field on manifold X  

A*  Adjoint of operator A

, ,divd D  Gradient, divergence, Laplace operators 

, ,V E F  Vertices and edges of a graph, faces of a mesh 

,Wwij  Weight matrix of a graph

( )f L V2!  Functions on vertices of a graph 

( )F L E2!  Functions on edges of a graph 

,i iz m  Laplacian eigenfunctions, eigenvalues 

(·, ·)ht  Heat kernel 

kU  Matrix of first k  Laplacian eigenvectors 

kK Diagonal matrix of first k  Laplacian eigenvalues 

p Pointwise nonlinearity (ReLU)

( ),x, ,l l l lc Cl l  Convolutional filter in spatial and spectral domain 
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for all ,f x . Here, dx  measures the smoothness of a given 
deformation field. In other words, the quantity to be predicted 
does not change much if the input image is slightly deformed. 
In tasks that are translation equivariant, we have

	 .( ) (y f yL L d. x-x x )f � (4)

This property is much stronger than the previous one, because 
the space of local deformations has a high dimensionality, as 
opposed to the d-dimensional translation group. It follows 
from (3) that we can extract sufficient statistics at a lower spa-
tial resolution by downsampling demodulated localized filter 
responses without losing approximation power. An important 
consequence of this is that long-range dependencies can be 
broken into multiscale local interaction terms, leading to hier-
archical models in which spatial resolution is progressively 
reduced. To illustrate this principle, denote by

	 ( , ; ) ( ( ) ( ) )Y x x v f u x f u v xProb and1 2 1 2= = + = � (5)

the joint distribution of two image pixels at an offset v from 
each other. In the presence of long-range dependencies, 
this joint distribution will not be separable for any v. 
However, the deformation stability prior states that 
( , ; ) ( , ; ( ))Y x x v Y x x v 11 2 1 2. e+  for small .e  In other words, 

CNNs are currently among the most successful deep-learn-
ing architectures in a variety of tasks; in particular, in com-
puter vision. A typical CNN used in computer-vision 
applications (see Figure S1) consists of multiple convolu-
tional layers (6), passing the input image through a set of 
filters C followed by pointwise nonlinearity p  (typically, 
half-rectifiers ( ) ( , )maxz z0p =  are used, although practi-
tioners have experimented with a diverse range of choices 
[13]). The model can also include a bias term, which is 
equivalent to adding a constant coordinate to the input.

A network composed of K  convolutional layers put 
together ( ) (  ) ( )U f C C C f( ( ) ( )K 2 1% %f= C C C)  produces pixel-
wise features that are covariant with respect to translation 
and approximately covariant to local deformations. 

Typical computer-vision applications requiring covari-
ance are semantic image segmentation [8] or motion 
estimation [59].

In applications requiring invariance, such as image clas-
sification [7], the convolutional layers are typically inter-
leaved with pooling layers (8) progressively reducing the 
resolution of the image passing through the network. 
Alternatively, one can integrate the convolution and 
downsampling in a single linear operator (convolution 
with stride). Recently, some authors have also experiment-
ed with convolutional layers that increase the spatial reso-
lution using interpolation kernels [60]. These kernels can 
be learned efficiently by mimicking the so-called algo­
rithme à trous [61], also referred to as dilated convolution.

CNN Architecture

Input Image Convolutions
+ ReLU 

Convolutions
+ ReLU 

Convolutions
+ ReLU 

Max
Pooling

Max
Pooling ...

Airedale Terrier (16)

Fox Terrier (5.7)

Pomeranian (2.7)

Arctic Fox (1.0)

Eskimo Dog (0.6)

Wolf (0.4)

Siberian Husky (0.4)

FIGURE S1. The typical CNN architecture used in computer-vision applications such as image classification.

Table 2. The dichotomy of geometric deep-learning methods.

Method Type Data 

SCNN [52] Spectral Graph 

GCNN/ChebNet [45] Spectrum free Graph 

GCN [77] Spectrum free Graph 

GNN [78] Spectrum free Graph 

Geodesic CNN [47] Charting Mesh 

Anisotropic CNN [48] Charting Mesh/point cloud 

MoNet [54] Charting Graph/mesh/point cloud 

Localized SCNN [89] Combined Mesh/point cloud 



23IEEE Signal Processing Magazine   |   July 2017   |

whereas long-range dependencies indeed exist in natural 
images and are critical to object recognition, they can be 
captured and downsampled at different scales. This princi-
ple of stability to local deformations has been exploited in 
the computer-vision community in models other than 
CNNs, for instance, deformable parts models [58]. In prac-
tice, the Euclidean domain Ω is discretized using a regular 
grid with n points; the translation and deformation operators 
are still well defined so the above properties also hold in the 
discrete setting.

CNNs
Stationarity and stability to local translations are both lever-
aged in CNNs (see “CNN Architecture” and [1], [12], [13], 
and references therein for a more in-depth review of CNNs 
and their applications.) A CNN consists of several con
volutional layers of the form (g fC= C ),  acting on a 
p-dimensional input ( ) (f x p1= ( ),  , ( ))f x f xf  by applying a 
bank of filters ( ), , , , , ,l q l p1 1,l l f fcC = = =ll  and point-
wise nonlinearity ,p

	 ( ) ( ,) ( )g x f x,l l l l
l

p

1

*p c=
=

l l

l

e o/ � (6)

producing a q-dimensional output ( ) ( ( ),  , ( ))g x g x g xq1 f=  
often referred to as the feature maps. Here,

	 ( ) ( ) ( ) ( )f x f x x x dx* c c= -
X

l l l# � (7)

denotes the standard convolution. According to the local 
deformation prior, the filters C  have compact spatial support.

Additionally, a downsampling or pooling layer (g fP= ) 
may be used, defined as

	 ( ) ({ ( ): ( )}), , , ,g x P f x x x l q1Nl l f!= =l l � (8)

where ( )xN 1 X is a neighborhood around x and P is a per-
mutation-invariant function, such as an Lp -norm (in the latter 
case, the choice of p = 1, 2, or 3 results in average, energy, or 
max pooling).

A convolutional network is constructed by composing sev-
eral convolutional and optionally pooling layers, obtaining a 
generic hierarchical representation

	 ( ) ( ) ( )U f C P C C f( ) ( ) ( )K 2 1% %g g= C C CH ,� (9)

where ,  ,( ) ( )K1 fC CH = " , is the hypervector of the network 
parameters (all the filter coefficients). The model is said to be 
deep if it comprises multiple layers, though this notion is 
rather vague, and one can find examples of CNNs with as few 
as a couple and as many as hundreds of layers [11]. The output 
features enjoy translation invariance/covariance depending on 
whether spatial resolution is progressively lost by means of 
pooling or kept fixed. Moreover, if one specifies the convolu-
tional tensors to be complex wavelet decomposition operators 

and uses complex modulus as pointwise nonlinearities, one 
can provably obtain stability to local deformations [17]. 
Although this stability is not rigorously proved for generic 
compactly supported convolutional tensors, it underpins the 
empirical success of CNN architectures across a variety of 
computer-vision applications [1].

In supervised learning tasks, one can obtain the CNN 
parameters by minimizing a task-specific cost L on the train-
ing set , ,f yi i i I!" ,
	 f( ( ), ),min L U y

i
i i

I!
H

H/ � (10)

for instance, .( , )L x y x y= -  If the model is sufficiently 
complex and the training set is sufficiently representative, 
when applying the learned model to previously unseen data, 
one expects ( ) (U y.f f .)  Although (10) is a nonconvex 
optimization problem, stochastic optimization methods offer 
excellent empirical performance. Understanding the structure 
of the optimization problems (10) and finding efficient strate-
gies for its solution is an active area of research in deep 
learning [62]–[66].

A key advantage of CNNs explaining their success in nu
merous tasks is that the geometric priors on which CNNs are 
based result in a learning complexity that avoids the curse of 
dimensionality. Thanks to the stationarity and local defor-
mation priors, the linear operators at each layer have a con-
stant number of parameters, independent of the input size 
n (number of pixels in an image). Moreover, thanks to the 
multiscale hierarchical property, the number of layers grows 
at a rate ( ),lognO  resulting in a total learning complexity of 
( )lognO  parameters.

The geometry of manifolds and graphs
Our main goal is to generalize CNN-type constructions to 
non-Euclidean domains. In this article, by non-Euclidean 
domains, we refer to two prototypical structures: manifolds 
and graphs. While arising in very different fields of mathemat-
ics (differential geometry and graph theory, respectively), in 
our context, these structures share several common character-
istics that we will try to emphasize throughout our review.

Manifolds
Roughly, a manifold is a space that is locally Euclidean. One 
of the simplest examples is a spherical surface modeling our 
planet: around a point, it seems to be planar, which has 
led  generations of people to believe in the flatness of the 
Earth. Formally speaking, a (differentiable) d-dimensional 
manifold X  is a topological space where each point x has a 
neighborhood that is topologically equivalent (homeomor-
phic) to a d-dimensional Euclidean space, called the tangent 
space and denoted by T Xx  [see Figure 1(a)]. The collection 
of tangent spaces at all points (more formally, their disjoint 
union) is referred to as the tangent bundle and denoted by 

.TX  On each tangent space, we define an inner product 
, · : ,T T· RX XT x xXx "#G H  which is additionally assumed to 

depend smoothly on the position x. This inner product is 
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called a Riemannian metric in differential geometry and 
allows performing local measurements of angles, distances, 
and volumes. A manifold equipped with a metric is called a 
Riemannian manifold.

It is important to note that the definition of a Rieman-
nian manifold is completely abstract and does not require a 
geometric realization in any space. However, a Riemannian 
manifold can be realized as a subset of a Euclidean space (in 
which case it is said to be embedded in that space) by using the 
structure of the Euclidean space to induce a Riemannian met-
ric. The celebrated Nash embedding theorem guarantees that 
any sufficiently smooth Riemannian manifold can be realized 
in a Euclidean space of sufficiently high dimension [67]. An 
embedding is not necessarily unique; two different realizations 
of a Riemannian metric are called isometries.

Two-dimensional (2-D) manifolds (surfaces) embedded 
into R3  are used in computer graphics and vision to describe 
boundary surfaces of 3-D objects, colloquially referred to as 
3-D shapes. This term is somewhat misleading because 3-D 
here refers to the dimensionality of the embedding space rath-
er than that of the manifold. Thinking of such a shape as made 
of infinitely thin material, inelastic deformations that do not 
stretch or tear it are isometric. Isometries do not affect the met-
ric structure of the manifold, and consequently, they preserve 
any quantities that can be expressed in terms of the Rieman-
nian metric (called intrinsic). Conversely, properties pertain-
ing to the specific realization of the manifold in the Euclidean 
space are called extrinsic. As an intuitive illustration of this 
difference, imagine an insect that lives on a 2-D surface [Fig-
ure 1(b)]. The surface can be placed in the Euclidean space 
in any way, but as long as it is transformed isometrically, the 

insect would not notice any difference. The insect in fact does 
not even know of the existence of the embedding space, as its 
only world is 2-D. This is an intrinsic viewpoint. A human 
observer, on the other hand, sees a surface in 3-D space—this 
is an extrinsic point of view.

Calculus on manifolds
Our next step is to consider functions defined on manifolds. 
We are particularly interested in two types of functions: A sca-
lar field is a smooth real function :f RX "  on the manifold. 
A tangent vector field :F TXX "  is a mapping attaching a 
tangent vector ( )F x T Xx!  to each point x. As we will see in 
the following, tangent vector fields are used to formalize the 
notion of infinitesimal displacements on the manifold. We 
define the Hilbert spaces of scalar and vector fields on mani-
folds, denoted by L X2 ^ h and ,L TX2 ^ h  respectively, with the 
following inner products:

	 , ( ) ( ) ,f g f x g x dxL
X

( )
2
XG H = # � (11)

	 ., ( ), ( ) dxF G F x G x( )L T T
X

XX x
2G H G H= # � (12)

Here, dx denotes a d-dimensional volume element induced by 
the Riemannian metric.

In calculus, the notion of derivative describes how the 
value of a function changes with an infinitesimal change of 
its argument. One of the big differences distinguishing clas-
sical calculus from differential geometry is a lack of vector 
space structure on the manifold, prohibiting us from naively 
using expressions like ( )f x dx+ . The conceptual leap that is 
required to generalize such notions to manifolds is the need to 
work locally in the tangent space.

To this end, we define the differential of f as an opera-
tor :df T RX "  acting on tangent vector fields. At each 
point x, the differential can be defined as a linear functional 
( ) ( ), ·df x f x T XxdG H=  acting on tangent vectors ( ) ,F x T Xx!  

which model a small displacement around x. The change 
of the function value as the result of this displacement 
is given by applying the functional to the tangent vector, 
( ) ( ) ( ), ( ) ,df x F x f x F x T XxdG H=  and can be thought of as an 

extension of the notion of the classical directional derivative.
The operator : ( ) (f L L TXX2 2

"d ) in the previous defi-
nition is called the intrinsic gradient and is similar to the 
classical notion of the gradient defining the direction of the 
steepest change of the function at a point, with the only dif-
ference that the direction is now a tangent vector. Similarly, 
the intrinsic divergence is an operator : ( (L T Ldiv XX2 2

") ) 
acting on tangent vector fields and is (formal) adjoint to the 
gradient operator [71],

	 , , , .F f F f F fdiv( * ( ) ()L T L LX XX2 2 2d dG H G H G H= = - ) � (13)

Physically, a tangent vector field can be thought of as a flow 
of material on a manifold. The divergence measures the net 
flow of a field at a point, allowing to distinguish between field 
sources and sinks. Finally, the Laplacian (or Laplace–Beltrami 

(a)

(b)

TxX

Tx´X

F(x)

F(x´ )

x

x´

FIGURE 1. (a) The tangent space and tangent vectors on a 2-D manifold 
(surface). (b) Examples of isometric deformations.
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operator in differential geometric jargon) : ( (L LX X2 2
"D ) ) is 

an operator,

	 (f fdiv dD =- ),� (14)

acting on scalar fields. Employing relation (13), it is easy to 
see that the Laplacian is self-adjoint (symmetric),

	 , , , .f f f f f f( ( (L T L LX XX2 2 2d dG H G H G HD D= =) )) � (15)

The left-hand-side in (15) is known as the Dirichlet energy 
in physics and measures the smoothness of a scalar field on 
the manifold (see “Physical Interpretation of Laplacian Eigen
functions”). The Laplacian can be interpreted as the differ-
ence between the average of a function on an infinitesimal 

Given a function f  on the domain ,X  the Dirichlet energy

	 ( ) ( ) ( ) ( ) ,f f x dx f x f x dxDir
Tx

2

X X X
d Tf = =# # � (S1)

measures how smooth it is [the last identity in (S1) stems 
from (15)]. We are looking for an orthonormal basis on 
,X  containing k  smoothest possible functions (Figure S2), 

by solving the optimization problem

	 ( ) , , ,
span{ ,  , } .

( )E

E

min
min i k1 1 2 1

1
s.t.
s.t.

i i

i i0 1

0 0

Dir

Dir

i

0

f

= f

z z

z z

z z z

= = -

=

-

z

z
�

(S2)

In the discrete setting, when the domain is sampled at n  
points, (S2) can be rewritten as

	 trace( ) ,Imin s.t.k k k k
Rk n k

TU U U U =<<

!U #
� (S3)

where ( , )k k0 1fz zU = - . The solution of (S3) is given by 
the first k  eigenvectors of T satisfying

	 ,k k kTU U K= � (S4)

where diag( , , )k k0 1fm mK = -  is the diagonal matrix of 
cor responding e igenva lues .  The e igenva lues 
0 k0 1 1g# #m m m= -  are nonnegative due to the posi-
tive semidefiniteness of the Laplacian and can be inter-
preted as frequencies, where const0z =  with the 
corresponding eigenvalue 00m =  plays the role of the 
direct current component.

The Laplacian eigendecomposition can be carried out 
in two ways. First, (S4) can be rewritten as a general-
ized eigenproblem ( )D W Ak k kU U K- = , resulting in 
A -orthogonal eigenvectors, A Ik kU U =< . Alternatively, 
introducing a change of variables A /

k k
1 2W U= , we can 

obtain a standard eigendecomposition problem 
( )A D W A/ /

k k k
1 2 1 2W W K- =- -  with orthogonal eigen

vectors Ik kW W =< . When A D=  is used, the matrix 
( )A D W A/ /1 2 1 2T = -- -  is referred to as the normalized 

symmetric Laplacian.

Physical Interpretation of Laplacian Eigenfunctions
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FIGURE S2. An example of the first four Laplacian eigenfunctions , ,0 3fz z  on (a) a Euclidean domain (1-D line), and (b) and (c) non-Euclidean 
domains [(b) a human shape modeled as a 2-D manifold, and (c) a Minnesota road graph]. In the Euclidean case, the result is the standard Fourier 
basis comprising sinusoids of increasing frequency. In all cases, the eigenfunction 0z  corresponding to zero eigenvalue is constant (direct current 
component).1-D: one-dimensional. 
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sphere around a point and the value of the function at the point 
itself. It is one of the most important operators in mathemati-
cal physics, used to describe phenomena as diverse as heat 
diffusion (see “Heat Diffusion on Non-Euclidean Domains”), 
quantum mechanics, and wave propagation. As we will see in 
the following, the Laplacian plays a central role in signal pro-
cessing and learning on non-Euclidean domains, as its eigen-
functions generalize the classical Fourier bases, allowing to 
perform spectral analysis on manifolds and graphs. 

It is important to note that all the previous definitions are 
coordinate free. By defining a basis in the tangent space, it is 
possible to express tangent vectors as d-dimensional vectors 
and the Riemannian metric as a d × d symmetric positive-
definite matrix.

Graphs and discrete differential operators
Another type of constructions we are interested in are graphs, 
which are popular models of networks, interactions, and 

An important application of spectral analysis and, histori-
cally, the main motivation for its development by Joseph 
Fourier, is the solution of partial differential equations. 
Here, we are particularly interested in heat propagation 
on non-Euclidean domains. This process is governed by 
the heat diffusion equation, which in the simplest setting of 
homogeneous and isotropic diffusion has the form

	
( , ) ( , )
( , ) ( ) (Initial condition)
f x t c f x t
f x f x0
t

0

T=-

=
) � (S5)

with additional boundary conditions if the domain has a 
boundary. ( , )xf t  represents the temperature at point x  at 
time .t  Equation (S5) encodes Newton’s law of cooling, 
according to which the rate of temperature change of a 
body (left-hand side) is proportional to the difference 
between its own temperature and that of the surrounding 

right-hand side. The proportion coefficient c  is referred to 
as the thermal diffusivity constant; here, we assume it to 
be equal to one for the sake of simplicity. The solution of 
(S5) is given by applying the heat operator H et t= D-  to 
the initial condition and can be expressed in the spectral 
domain as

	

( , ) ( ) , ( )

( ) ( ) ( ) .

f x t e f x f e x

f x e x x dx

(

( , )
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t
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i
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2G Hz z
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= =

=
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l
1 2 344444 44444

/

/# � (S6)

( , )h x xt l  is known as the heat kernel (Figure S3) and repre-
sents the solution of the heat equation with an initial condi-
tion ( ) ( )f x xx0 d= l , or, in signal processing terms, an impulse 
response. In physical terms, ( , )h x xt l  describes how much 
heat flows from a point x  to point xl in time .t  In the 
Euclidean case, the heat kernel is shift invariant, 
( , ) ( )h x x h x xt t= -l l , allowing to interpret the integral in (S6) 

as a convolution ( , ) ( ) ( )f x t f h xt0 *= . In the spectral domain, 
convolution with the heat kernel amounts to low-pass filtering 
with frequency response .e tm-  Larger values of diffusion time t  
result in lower effective cutoff frequency and thus smoother 
solutions in space (corresponding to the intuition that longer 
diffusion smoothes more the initial heat distribution).

The crosstalk between two heat kernels positioned at 
points x  and xl allows to measure an intrinsic distance

	 ( , ) ( ( , ) ( , ))d x x h x y h x y dyt t t
2 2

X
= -l l# � (S7)

	            ( ))( ( ) xe xt
i i

i

2 2

0

i zz= -
$

m- l/ � (S8)

referred to as the diffusion distance [30]. Note that when 
interpreting (S7) and (S8) as spatial- and frequency-
domain norms ( )L X2$  and 2$ , , respectively, their equiv-
alence is the consequence of the Parseval identity. Unlike 
geodesic distance that measures the length of the shortest 
path on the manifold or graph, the diffusion distance has 
an effect of averaging over different paths. It is thus more 
robust to perturbations of the domain, e.g., introduction or 
removal of edges in a graph or cuts on a manifold.

Heat Diffusion on Non-Euclidean Domains

Max

0
(a)

(b)

FIGURE S3. The examples of heat kernels on non-Euclidean domains 
[(a) manifold, and (b) graph]. Observe how moving the heat kernel 
to a different location changes its shape, which is an indication of the 
lack of shift invariance.
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similarities between different objects. For simplicity, we will 
consider weighted undirected graphs, formally defined as a 
pair ( , )V E , where { ,  , }n1V f=  is the set of n vertices, and 
E V V#3  is the set of edges, where the graph being undi-
rected implies that ( , )i j E!  if ( , )j i E! . Furthermore, we 
associate a weight a 0i 2  with each vertex ,i V!  and a 
weight w 0ij $  with each edge ( , ) .i j E!

Real functions :f RV "  and :F RE "  on the vertices 
and edges of the graph, respectively, are roughly the discrete 
analogy of continuous scalar and tangent vector fields in 
differential geometry (it is tacitly assumed here that F is 
alternating, i.e., F Fij ji=- ). We define Hilbert spaces ( )L V2  
and ( )L E2  of such functions by specifying the respective inner 
products,

	 , ,f f gg a( )L i
i

i i
V

V2G H =
!

/ � (16)

	 .,F G w F G( )L ij
i

ij ij
E

E2G H =
!

/ � (17)

Let ( )f L V2!  and ( )F L E2!  be functions on the ver-
tices and edges of the graphs, respectively. We can define 
differential operators acting on such functions analogously to 
differential operators on manifolds [72]. The graph gradient is 
an operator : ( ) ( )L L EV2 2

"d  mapping functions defined on 
vertices to functions defined on edges,

	 ( ) ,f f fij i jd = - � (18)

automatically satisfying .( ) ( )ij ji=-f fd d  The graph divergence 
is an operator : ( ) ( )L Ldiv E V2 2

"  doing the converse,

	 ( ) .F
a

w F1div
:( , )

i
i

ij
j i j

ij
E

=
!

/ � (19)

It is easy to verify that the two operators are adjoint with 
respect to the inner products (16) and (17),

	 ., , ,F f F f F fdiv(
*

( ) ( ))L L LV VE2 2 2d dG H G H G H= = - � (20)

The graph Laplacian is an operator : ( (L L VV2 2
"D ) ) 

defined as .divdD =-  Combining definitions (18) and (19), it 
can be expressed in the familiar form

	 ( ( ) .f
a

w f f1
( , )

i
i

ij
i j

i j
E

D = -
!

) / � (21)

Note that (21) captures the intuitive geometric interpreta-
tion of the Laplacian as the difference between the local aver-
age of a function around a point and the value of the function 
at the point itself.

Denoting by ( )W wij=  the n × n matrix of edge weights [it is 
assumed that w 0ij =  if ( , )i j E" ], by ( , , )A a adiag n1f=  the 
diagonal matrix of vertex weights, and by D wdiag

: ijj j i
=

!
` j/  

the degree matrix, the graph Laplacian application to a function 
(f L V2! )  represented as a column vector ( , , )f f fn1 f= <  

can be written in matrix-vector form as

	 ( ) .f A D W f1D = -- � (22)

The choice of A I=  in (22) is referred to as the unnormal-
ized graph Laplacian; another popular choice is A D=  pro-
ducing the random walk Laplacian [73].

Discrete manifolds
As previously mentioned, there are many practical situations 
in which one is given a sampling of points arising from a 
manifold but not the manifold itself. In computer graphics 
applications, reconstructing a correct discretization of a man-
ifold from a point cloud is a difficult problem of its own, 
referred to as meshing (see “Laplacian on Discrete Manifolds”). 
In manifold-learning problems, the manifold is typically approxi-
mated as a graph capturing the local affinity structure. We 
stress that the term manifold as used in the context of generic 
data science is not geometrically rigorous and can have less 
structure than a classical smooth manifold we have defined 
beforehand. For example, a set of points that looks locally Eu
clidean in practice may have self-intersections, infinite curva-
ture, different dimensions depending on the scale and 
location at which one looks, extreme variations in density, 
and noise with confounding structure.

Fourier analysis on non-Euclidean domains
The Laplacian operator is a self-adjoint positive-semidefinite 
operator, admitting on a compact domain an eigendecomposi-
tion with a discrete set of orthonormal eigenfunctions 

, ,  0 1 fz z  (satisfying , )( )i j L ijX2G Hz z d=  and nonnegative real 
eigenvalues  0 0 1 f# #m m=  (referred to as the spectrum of 
the Laplacian),

	 , , ,  .i 0 1i i i fz m zD = = � (23)

[Note that in the Euclidean case, the Fourier transform of a 
function defined on a finite interval (which is a compact set) or 
its periodic extension is discrete. In practical settings, all 
domains we are dealing with are compact.]

The eigenfunctions are the smoothest functions in the 
sense of the Dirichlet energy (see “Physical Interpretation 
of Laplacian Eigenfunctions”) and can be interpreted as a 
generalization of the standard Fourier basis [given, in fact, 
by the eigenfunctions of the one-dimensional (1-D) Euclid-
ean Laplacian, d x e ei x i x2 2 2~- =~ ~` j ] to a non-Euclidean 
domain. It is important to emphasize that the Laplacian 
eigenbasis is intrinsic due to the intrinsic construction of the 
Laplacian itself.

A square-integrable function f on X  can be decomposed 
into Fourier series as

	 ( ) , ( ),f x f x( )i L

f
i

i
0

X

i

2G Hz z=
$ t
1 2 344 44
/ � (24)

where the projection on the basis functions producing a dis-
crete set of Fourier coefficients ( , , )f f0 1 ft t  generalizes the analy-
sis (forward transform) stage in classical signal processing, 
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and summing up the basis functions with these coefficients is 
the synthesis (inverse transform) stage.

A centerpiece of classical Euclidean signal processing is the 
property of the Fourier transform diagonalizing the convolu-
tion operator, colloquially referred to as the convolution theo-
rem. This property allows to express the convolution f g*  of 
two functions in the spectral domain as the elementwise prod-
uct of their Fourier transforms,

	 ( ) ( ) ( ) ( ) .f g f x e dx g x e dxi x i x* ~ =
3

3

3

3~ ~

-

-

-

-\ # # � (25)

Unfortunately, in the non-Euclidean case, we cannot even 
define the operation x x- l on the manifold or graph, so the 

notion of convolution (7) does not directly extend to this case. 
One possibility to generalize convolution to non-Euclidean 
domains is by using the convolution theorem as a definition,

	 ( ) ( ) , , ( ) .f g x f g x( ) (i L
i

i L i
0

X X2 2* G H G Hz z z=
$

)/ � (26)

One of the key differences of such a construction from the 
classical convolution is the lack of shift invariance. In terms 
of signal processing, it can be interpreted as a position-
dependent filter. While parameterized by a fixed number of 
coefficients in the frequency domain, the spatial representa-
tion of the filter can vary dramatically at different points 
(see Figure S3).

In computer graphics and vision applications, 2-D mani-
folds are commonly used to model 3-D shapes. There are 
several common ways of discretizing such manifolds. First, 
the manifold is assumed to be sampled at n points. Their 
embedding coordinates , ,x xn1 f  are referred to as a point 
cloud. Second, a graph is constructed upon these points, 
acting as its vertices. The edges of the graph represent the 
local connectivity of the manifold, telling whether two 
points belong to a neighborhood or not. The graph can 
be endowed, e.g., with Gaussian-edge weights

	 .w e x x /
ij

2ji
2

= v- -
2

� (S9)

This simplest discretization, however, does not correctly 
capture the geometry of the underlying continuous mani-
fold (e.g., the graph Laplacian would typically not con-
verge to the continuous Laplacian operator of the 
manifold with the increase of the sampling density [68]). 
A geometrically consistent discretization is possible with 
an additional structure of faces ,F V V V# #!  where 
( , , )i j k F!  implies ( , ), ( , ), ( , ) .i j i k k j E!  The collection of 
faces represents the underlying continuous manifold as 

a polyhedral surface consisting of small triangles glued 
together. The triplet ( , , )V E F  is referred to as tri ­
angular mesh. To be a correct discretization of a mani-
fold (a manifold mesh), every edge must be shared by 
exactly two triangular faces; if the manifold has a 
boundary, any boundary edge must belong to exactly 
one triangle.

On a triangular mesh, the simplest discretization of the 
Riemannian metric is given by assigning each edge a 
length 0ij, 2 , which must additionally satisfy the triangle 
inequality in every triangular face. The mesh Laplacian is 
given by (21) with

	 ;w a a8 8ij
ijk

ij jk ik

ijh

ij jh ih
2 2 2 2 2 2, , , , ,,

=
- + +

+
- + +

� (S10)

	 ,a a3
1

:( , , )
i ijk

jk i j k F

=
!

/ � (S11)

where ( ) ( ) ( )a s s s sijk ijk ijk ij ijk jk ijk ik, , ,= - - -  is the area of 
triangle ijk given by the Heron formula, and 

/ ( )s 1 2ijk ij jk ki, , ,= + +^ h  is the semiperimeter of triangle 
ijk. The vertex weight ai is interpreted as the local area 
element (shown in red in Figure S4). Note that the weights 
(S10) and (S11) are expressed solely in terms of the dis-
crete metric ,  and are thus intrinsic. When the mesh is infi-
nitely refined under some technical conditions, such a 
construction can be shown to converge to the continuous 
Laplacian of the underlying manifold [69].

An embedding of the mesh (amounting to specifying the 
vertex coordinates x x, , n1 f ) induces a discrete metric 

x xij i j, = - 2, whereby (S10) become the cotangent 
weights

	 cot cotw 2
1

ij ij ija b= +^ h� (S12)

ubiquitously used in computer graphics [70].

Laplacian on Discrete Manifolds
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FIGURE S4. The two commonly used discretizations of a 2-D manifold: 
(a) an undirected graph and (b) a triangular mesh.
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The previous discussion also applies to graphs instead of 
manifolds, where one only has to replace the inner product in 
(24) and (26) with the discrete one (16). All of the sums over 
i would become finite, as the graph Laplacian matrix T  has n 
eigenvectors. In matrix-vector notation, the generalized convo-
lution f g*  can be expressed as ( )Gf g fdiag UU= < ,t  where 

( , , )g g gn1 f=t t t  is the spectral representation of the filter, 
and ( , , )n1 fz zU =  denotes the Laplacian eigenvectors (S8). 
The lack of shift invariance results in the absence of circulant 
(Toeplitz) structure in the matrix G, which characterizes the 
Euclidean setting. Furthermore, it is easy to see that the convo-
lution operation commutes with the Laplacian, .G f GfT T=

Uniqueness and stability
Finally, it is important to note that the Laplacian eigenfunctions 
are not uniquely defined. To start with, they are defined up to 
sign, i.e., ( ) ( ) .! !z m zD =  Thus, even isometric domains 
might have different Laplacian eigenfunctions. Furthermore, if 
a Laplacian eigenvalue has multiplicity, then the associated 
eigenfunctions can be defined as orthonormal basis spanning 
the corresponding eigensubspace (or said differently, the eigen-
functions are defined up to an orthogonal transformation in the 

In situations where the graph is constructed from the data, 
a straightforward choice of the edge weights (S9) of the 
graph is the covariance of the data Let F denote the input 
data distribution and

	 (F F) (F F)E E ER = - - < � (S13)

be the data covariance matrix. If each point has the same 
variance ,ii

2v v=  then diagonal operators on the 
Laplacian simply scale the principal components of F.

In natural images, because their distribution is approxi-
mately stationary, the covariance matrix has a circulant 
structure ij i j.v v -  and is thus diagonalized by the 
standard discrete cosine transform (DCT) basis. It 
follows that the principal components of F roughly corre-
spond to the DCT basis vectors ordered by frequency. 
Moreover, natural images exhibit a power spectrum 

~fE 2
~

-
~

2t^ h , because nearby pixels are more corre-
lated than faraway pixels [14]. It results that principal 
components of the covariance are essentially ordered 
from low to high frequencies, which is consistent with 
the standard group structure of the Fourier basis. When 
applied to natural images represented as graphs with 
weights defined by the covariance, the SCNN construc-
tion recovers the standard CNN, without any prior 
knowledge [76] (Figure S5). Indeed, the linear operators 

,l lUC U<l  in (27) are by the previous argument diagonal 

in the Fourier basis, hence translation invariant, hence 
classical convolutions. Furthermore, the “Spectrum-Free 
Methods” section explains how spatial subsampling can 
also be obtained via dropping the last part of the spec-
trum of the Laplacian, leading to pooling, and ultimately 
to standard CNNs.

Rediscovering Standard CNNs Using Correlation Kernels

(a) (b)

FIGURE S5. The 2-D embedding of pixels in 16 × 16 image patches 
using a Euclidean radial basis function (RBF) kernel. The RBF kernel is 
constructed as in (S9), by using the covariance ijv  as Euclidean dis-
tance between two features. The pixels are embedded in a 2-D space 
using the first two eigenvectors of the resulting graph Laplacian. The 
colors in (a) and (b) represent the horizontal and vertical coordinates 
of the pixels, respectively. The spatial arrangement of pixels is roughly 
recovered from correlation measurements.

Domain
Basis
Signal

X X Y

f
(a) (b) (c)

Γ Tf Γ Tf

FIGURE 2. A toy example illustrating the difficulty of generalizing spectral 
filtering across non-Euclidean domains. (a) A function defined on a mani-
fold (function values are represented by color). (b) The result of the ap-
plication of an edge-detection filter in the frequency domain. (c) The same 
filter applied on the same function but on a different (nearly isometric) 
domain produces a completely different result. The reason for this 
behavior is that the Fourier basis is domain dependent and the filter 
coefficients learned on one domain cannot be applied to another one  
in a straightforward manner.
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eigensubspace). A small perturbation of the domain can lead to 
very large changes in the Laplacian eigenvectors, especially 
those associated with high frequencies. At the same time, the 
definition of heat kernels (S6) and diffusion distances (S8) 
does not suffer from these ambiguities, e.g., the sign ambiguity 
disappears as the eigenfunctions are squared. Heat kernels also 
appear to be robust to domain perturbations.

Spectral methods
We have now finally gotten to our main goal, namely, con-
structing a generalization of the CNN architecture on non-
Euclidean domains. We will start with the assumption that the 
domain on which we are working is fixed, and for the rest of 

this section, we will use the problem of classification of a sig-
nal on a fixed graph as the prototypical application. We have 
seen that convolutions are linear operators that commute with 
the Laplacian operator. Therefore, given a weighted graph, a 
first route to generalize a convolutional architecture is by first 
restricting our interest to linear operators that commute with 
the graph Laplacian. This property, in turn, implies operating 
on the spectrum of the graph weights, given by the eigenvec-
tors of the graph Laplacian.

Spectral CNN
Similarly to the convolutional layer (6) of a classical 
Euclidean CNN, Bruna et al. [52] define a spectral convolu-
tional layer as

	 g f,l k
l

q

l l k l
1

p U C U= <

=

,
l

l le o/ � (27)

where the n p#  and n q#  matrices ( , , )F f fp1 f=  and 
( ,  , )G g gq1 f=  represent the p- and q-dimensional input and 

output signals on the vertices of the graph, respectively (we 
use n V=  to denote the number of vertices in the graph), 

,l lC l  is a k k#  diagonal matrix of spectral multipliers 
representing a filter in the frequency domain, and p  is a 
nonlinearity applied on the vertex-wise function values. Using 
only the first k  eigenvectors in (27) sets a cutoff frequency that 
depends on the intrinsic regularity of the graph and also the 
sample size. Typically, ,k n%  because only the first Laplacian 
eigenvectors describing the smooth structure of the graph are 
useful in practice.

If the graph has an underlying group invariance, such a 
construction can discover it. In particular, standard CNNs 
can be redefined from the spectral domain (see “Rediscover-
ing Standard CNNs Using Correlation Kernels”). However, 
in many cases the graph does not have a group structure, or 
the group structure does not commute with the Laplacian, 
and so we cannot think of each filter as passing a template 
across V  and recording the correlation of the template with 
that location.

We should stress that a fundamental limitation of the 
spectral construction is its restriction to a single domain. The 
reason is that spectral filter coefficients (27) are basis depen-
dent. It implies that if we learn a filter with respect to basis 

kU  on one domain, and then try to apply it on another domain 
with another basis kW , the result could be very different (see 
Figure 2). It is possible to construct compatible orthogonal bases 
across different domains resorting to a joint diagonalization 
procedure [74], [75]. However, such a construction requires the 
knowledge of some correspondence between the domains. In 
applications like social network analysis, e.g., where dealing 
with two time instances of a social graph in which new ver-
tices and edges have been added, such a correspondence can 
be easily computed and is therefore a reasonable assumption. 
Conversely, in computer graphics applications, finding cor-
respondence between shapes is in itself a very hard problem, 
so assuming known correspondence between the domains is a 
rather unreasonable assumption.

The CORA citation network [90] is a graph containing 
2,708 vertices representing articles and 5,429 edges 
representing citations (Figure S6). Each article is 
described by a 1,433-dimensional bag-of-words feature 
vector and belongs to seven classes. For simplicity, the 
network is treated as an undirected graph. Applying the 
SCNN with two spectral convolutional layers parame-
terized according to (37), the authors of [77] obtained 
classification accuracy of 81.6% (compared to the pre-
vious best result of 75.7%). In [54], this result was slight-
ly improved further, reaching 81.7% accuracy with the 
use of MoNet architecture.

Citation Network Analysis Application

FIGURE S6. The classifying of a research article in the CORA data 
set with MoNet. Shown is the citation graph, where each node 
is an article and an edge represents a citation. Vertex fill and 
outline colors represent the predicted and ground-truth labels, 
respectively; ideally, the two colors should coincide. (Figure 
reproduced from [54].)
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Assuming that ( )k O n=  eigenvectors of the Laplacian 
are kept, a convolutional layer (27) requires ( )pqk O n=  
parameters to train. We will see next how the global and 
local regularity of the graph can be combined to produce 
layers with constant number of parameters (i.e., such that 
the number of learnable parameters per layer does not depend 
upon the size of the input), which is the case in classical 
Euclidean CNNs.

The non-Euclidean analogy of pooling is graph coarsen-
ing, in which only a fraction 11a  of the graph vertices is 
retained. The eigenvectors of graph Laplacians at two differ-
ent resolutions are related by the following multigrid property: 
let ,UU u  denote the n n#  and n n#a a  matrices of Laplacian 
eigenvectors of the original and the coarsened graph, respec-
tively. Then,

	 ,P
I
0
n

.U U
au c m � (28)

where P is an n n#a  binary matrix whose ith row encodes the 
position of the ith vertex of the coarse graph on the original 
graph. It follows that strided convolutions can be generalized 
using the spectral construction by keeping only the low-fre-
quency components of the spectrum. This property also allows 
us to interpret (via interpolation) the local filters at deeper lay-
ers in the spatial construction to be low frequency. However, 
because in (27) the nonlinearity is applied in the spatial 
domain, in practice one has to recompute the graph Laplacian 
eigenvectors at each resolution and apply them directly after 
each pooling step.

The spectral construction (27) assigns a DoF for each 
eigenvector of the graph Laplacian. In most graphs, indi-
vidual high-frequency eigenvectors become highly unstable. 
However, similarly as the wavelet construction in Euclidean 
domains, by appropriately grouping high-frequency eigenvec-
tors in each octave, one can recover meaningful and stable 
information. As shown next, this principle also entails better 
learning complexity.

Spectral CNN with smooth spectral multipliers
To reduce the risk of overfitting, it is important to adapt the 
learning complexity to reduce the number of free parameters 
of the model [44], [52]. On Euclidean domains, this is 
achieved by learning convolutional kernels with small spatial 
support, which enables the model to learn a number of param-
eters independent of the input size. To achieve a similar learn-
ing complexity in the spectral domain, it is thus necessary to 
restrict the class of spectral multipliers to those corresponding 
to localized filters.

For that purpose, we have to express spatial localization 
of filters in the frequency domain. In the Euclidean case, 
smoothness in the frequency domain corresponds to spatial 
decay, because

	 | | | ( ) |
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by virtue of the Parseval identity. This suggests that, to learn a 
layer in which features will be not only shared across loca-
tions but also well localized in the spatial domain, one can 
learn spectral multipliers that are smooth. Smoothness can be 
prescribed by learning only a subsampled set of spectral 
multipliers and using an interpolation kernel to obtain the rest, 
such as cubic splines.

However, the notion of smoothness also requires some 
geometry in the spectral domain. In the Euclidean setting, such 
a geometry naturally arises from the notion of frequency, e.g., 
in the plane, the similarity between two Fourier atoms e xi~<  
and e xi~ <l  can be quantified by the distance ~ ~- l , where 
x denotes the 2-D planar coordinates, and ~  is the 2-D fre-
quency vector. On graphs, such a relation can be defined by 
means of a dual graph with weights wiju  encoding the similarity 
between two eigenvectors iz  and jz .

A particularly simple choice consists in choosing a 1-D 
arrangement, obtained by ordering the eigenvectors according 
to their eigenvalues. [In the mentioned 2-D example, this would 
correspond to ordering the Fourier basis function according to 
the sum of the corresponding frequencies .1 2~ ~+  Although 
numerical results on simple low-dimensional graphs show that 
the 1-D arrangement given by the spectrum of the Laplacian 
is efficient at creating spatially localized filters [52], an open 
fundamental question is how to define a dual graph on the 
eigenvectors of the Laplacian in which smoothness (obtained 
by applying the diffusion operator) corresponds to localization 
in the original graph.] In this setting, the spectral multipliers 
are parameterized as

	 ( ) ,Bdiag , ,l l l laC =l l � (30)

where ( ) ( ( ))B bij j ib m= =  is a k q#  fixed interpolation ker-
nel [e.g., ( )jb m  can be cubic splines], and a  is a vector of q 
interpolation coefficients. To obtain filters with constant spa-
tial support (i.e., independent of the input size n), one should 
choose a sampling step n+c  in the spectral domain, which 
results in a constant number ( )n 1O1c =-  of coefficients ,l la l  
per filter. Therefore, by combining spectral layers with graph 
coarsening, this model has ( )lognO  total trainable parameters 
for inputs of size n, thus recovering the same learning com-
plexity as CNNs on Euclidean grids.

Even with such a parameterization of the filters, the spec-
tral CNN (27) entails a high computational complexity of per-
forming forward and backward passes, because they require an 
expensive step of matrix multiplication by kU  and .kU<  While 
on Euclidean domains such a multiplication can be efficiently 
carried in ( )logn nO  operations using fast-Fourier-transform-
type algorithms, for general graphs such algorithms do not 
exist and the complexity is ( )nO 2 . We will see next how to 
alleviate this cost by avoiding explicit computation of the 
Laplacian eigenvectors.

Spectrum-free methods
A polynomial of the Laplacian acts as a polynomial on its eigen-
values. Thus, instead of explicitly operating in the frequency 
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domain with spectral multipliers as in (30), it is possible to 
represent the filters via a polynomial expansion:

	 ,( ) ( )g gT U K U= <
a a � (31)

where

	 ( ) ,g j
j

r
j

0

1

m a m=a

=

-

/ � (32)

a  is the r-dimensional vector of polynomial coefficients, and 
( ) , , ,g g gdiag n1 fm mK =a a a^ ^ ^h hh  resulting in filter matrices 

g,l l ,l lC K= al l^ h whose entries have an explicit form in terms 
of the eigenvalues.

An important property of this representation is that it auto-
matically yields localized filters, for the following reason. 
Because the Laplacian is a local operator (working on one-hop 
neighborhoods), the action of its jth power is constrained to j 
hops. Because the filter is a linear combination of powers of 
the Laplacian, overall (32) behaves like a diffusion operator 
limited to r hops around each vertex.

GCNN, also known as ChebNet
Defferrard et al. used the Chebyshev polynomials generated 
by the recurrence relation [45]

	 ,

.

,T T T

T

T

2

1

j j j1 2

0

1

m m m m

m

m m

= -

=

=

- -^
^
^

^ ^h
h
h

h h
�

(33)

A filter (32) can thus be parameterized uniquely via an expan-
sion of order r 1-  such that
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where I2 n
1T Tm= --u  and I2 n

1mK K= --u  denotes a rescal-
ing of the Laplacian mapping its eigenvalues from the interval 
[ , ]0 nm  to [ , ]1 1-  (necessary because the Chebyshev polyno-
mials form an orthonormal basis in [ , ]1 1- ).

Denoting ( ) ,f fT( )j
j D=r u  we can use the recurrence rela-

tion (33) to compute f f f2( ) ( ) ( )j j j1 2D= -- -r u r r , with f f( )0 =r  and 
.f f( )1 D=r u  The computational complexity of this procedure is 

therefore ( )rnO  operations and does not require an explicit 
computation of the Laplacian eigenvectors.

Graph convolutional network
Kipf and Welling [77] simplified this construction by further 
assuming r 2.  and ,2n .m  resulting in filters of the form

	
( ) ( )

.

f f I f

f D WD f

g
/ /

0 1

0 1
1 2 1 2

a a

a a

D= + -

= -

a

- - �
(35)

Further constraining ,0 1a a a= =-  one obtains filters repre-
sented by a single parameter,

	 ( ) ( ) .f I D WD fg / /1 2 1 2a= +a
- - � (36)

Because the eigenvalues of I D WD/ /1 2 1 2+ - -  are now in the 
range [ , ],0 2  repeated application of such a filter can result in 
numerical instability. This can be remedied by a renormalization

	 ( ) ,f D WD fg / /1 2 1 2a=a
- -u u u � (37)

where W W I= +u  and .D wdiag ijj i
=

!
u u` j/

Note that though we arrived at the constructions of Cheb-
Net and graph convolutional network (GCN) starting in the 
spectral domain, they boil down to applying simple filters act-
ing on the r- or one-hop neighborhood of the graph in the spa-
tial domain. We consider these constructions to be examples 
of the more general graph neural network (GNN) framework.

GNN 
GNNs [78] generalize the notion of applying the filtering 
operations directly on the graph via the graph weights. 
Similarly as Euclidean CNNs learn generic filters as linear 
combinations of localized, oriented bandpass and low-pass fil-
ters, a GNN learns at each layer a generic linear combination 
of graph low-pass and high-pass operators. These are given, 
respectively, by Wf f7  and f f7 D  and are thus generated 
by the degree matrix D and the diffusion matrix W. Given a 
p-dimensional input signal on the vertices of the graph, repre-
sented by the n p#  matrix F, the GNN considers a generic 
nonlinear function : ,R R Rp p q

"#hi  parameterized by train-
able parameters i  that is applied to all nodes of the graph,

	 ( ) , ( ) .g Wf Dfi i ih= i ^ h � (38)

In particular, choosing ( , ) ,a b b ah = -  one recovers the 
Laplacian operator ,fD  but more general, nonlinear choices 
for h  yield trainable, task-specific diffusion operators. 
Similarly as with a CNN architecture, one can stack the result-
ing GNN layers (g fC= i ) and interleave them with graph 
pooling operators. Chebyshev polynomials ( )Tr D  can be 
obtained with r layers of (38), making it possible, in principle, 
to consider ChebNet and GCN as particular instances of the 
GNN framework.

Historically, a version of GNN was the first formulation 
of deep learning on graphs, proposed in [49] and [78]. These 
works optimized over the parameterized steady state of some 
diffusion process (or random walk) on the graph. This can be 
interpreted as in (38) but using a large number of layers where 
each Ci  is identical, as the forward propagation through the 
Ci  approximate the steady state. Recent works [50], [51], [55], 
[79], [80] relax the requirements of approaching the steady 
state or using repeated applications of the same .Ci

Because the communication at each layer is local to a ver-
tex neighborhood, one may worry that it would take many lay-
ers to get information from one part of the graph to another, 
requiring multiple hops (this was one of the reasons for the 
use of the steady state in [78]). However, for many applica-
tions, it is not necessary for information to completely traverse 
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the graph. Furthermore, note that the graphs at each layer of 
the network need not be the same. Thus, we can replace the 
original neighborhood structure with one’s favorite multiscale 
coarsening of the input graph and operate on that to obtain the 
same flow of information as with the convolutional nets above 
(or rather more like a locally connected network [81]). This 
also allows producing a single output for the whole graph (for 
translation-invariant tasks), rather than a per-vertex output, by 
connecting each vertex to a special output node. Alternatively, 
one can allow h  to use not only Wf  and fD  at each node but 
also W fs  for several diffusion scales s 1>  (as in [45]), giving 
the GNN the ability to learn algorithms like the power method 
and more directly accessing spectral properties of the graph. 
The GNN model can be further generalized to replicate other 
operators on graphs. For instance, the pointwise nonlinearity h  

can depend on the vertex type, allowing extremely rich archi-
tectures [50], [51], [55], [79], [80].

Charting-based methods
We now consider the second subclass of non-Euclidean learn-
ing problems, where we are given multiple domains. A proto-
typical application the reader should have in mind throughout 
this section is the problem of finding correspondence between 
shapes, modeled as manifolds (see “Three-Dimensional 
Shape Correspondence Application”). As we have seen, defin-
ing convolution in the spectral domain has an inherent draw-
back of the inability to adapt the model across different 
domains. We will therefore need to resort to an alternative 
generalization of the convolution in the spatial domain that 
does not suffer from this drawback.

Finding intrinsic correspondence between deformable 
shapes is a classical tough problem that underlies a broad 
range of vision and graphics applications, including tex-
ture mapping, animation, editing, and scene understand-
ing [107]. From the machine-learning standpoint, 
correspondence can be thought of as a classification 
problem, where each point on the query shape is 
assigned to one of the points on a reference shape (serv-
ing as a label space) [108]. It is possible to learn the cor-
respondence with a deep intrinsic network applied to 
some input feature vector ( )f x  at each point x  of the 
query shape ,X  producing an output ( ( )) ( )fU x yH , which is 
interpreted as the conditional probability ( | )p y x  of x  
being mapped to y  [Figure S7(a)]. Using a training set of 
points with their ground-truth correspondence ,{ , }x yi i i I!  
supervised learning is performed minimizing the multino-
mial regression loss

	 ( ( )) ( )fmin logU x y
i

i i
I

-
!

H
H/ � (S14)

with respect to the network parameters H. The loss penal-
izes for the deviation of the predicted correspondence 
from the ground truth. We note that, while producing 
impressive results [Figure S7(b)], such an approach 
essentially learns pointwise correspondence, which then 
has to be postprocessed to satisfy certain properties, 
such as smoothness or bijectivity. Correspondence is an 
example of structured output, where the output of the net-
work at one point depends on the output in other points 
(in the simplest setting, correspondence should be 
smooth, i.e., the output at nearby points should be simi-
lar) Litany et al. [109] proposed intrinsic structured pre-
diction of shape correspondence by integrating a layer 
computing functional correspondence [106] into the deep 
neural network.

Three-Dimensional Shape Correspondence Application

xi
UΘ

yi

X Y

(a) (b)

FIGURE S7. (a) The learning shape correspondence: an intrinsic deep network UH  is applied pointwise to some input features defined at each point. 
The output of the network at each point x of the query shape X  is a probability distribution of the reference shape Y  that can be thought of as a 
soft correspondence. (b) The intrinsic correspondence established between human shapes using intrinsic deep architecture (MoNet [54] with three 
convolutional layers). Signature of histogram orientations (SHOT) descriptors capturing the local normal vector orientations [110] were used in 
this example as input features. The correspondence is visualized by transferring texture from the leftmost reference shape. For additional examples, 
see [54].
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Furthermore, note that in the setting of multiple domains, 
there is no immediate way to define a meaningful spatial pool-
ing operation, as the number of points on different domains can 
vary, and their order can be arbitrary. It is, however, possible to 
pool pointwise features produced by a network by aggregating 
all the local information into a single vector. One possibility 
for such a pooling is computing the statistics of the pointwise 
features, e.g., the mean or covariance [47]. Note that after such 
a pooling, all of the spatial information is lost.

On a Euclidean domain, due to shift invariance the con-
volution can be thought of as passing a template at each point 
of the domain and recording the correlation of the template 
with the function at that point. Thinking of image filtering, 
this amounts to extracting a (typically square) patch of pix-
els, multiplying it elementwise with a template and summing 
up the results, then moving to the next position in a slid-
ing window manner. Shift invariance implies that the very 
operation of extracting the patch at each position is always 
the same.

One of the major problems in applying the same para-
digm to non-Euclidean domains is the lack of shift invariance, 
implying that the patch operator extracting a local patch would 
be position dependent. Furthermore, the typical lack of mean-
ingful global parameterization for a graph or manifold forces 
to represent the patch in some local intrinsic system of coor-
dinates. Such a mapping can be obtained by defining a set of 
weighting functions ( , ), , ( , )x xv vJ1 $ $f  localized to positions 

near x (see examples in Figure 3). Extracting a patch amounts 
to averaging the function f at each point by these weights,

	 ( ) ( ) ( , ) , , , ,D x f f x v x x dx j J1j j
X

f= =l l l# � (39)

providing for a spatial definition of an intrinsic equivalent of 
convolution

	 ( ) ( ) ( ) ,f g x g D x fj
j

j* =/ � (40)

where g denotes the template coefficients applied on the patch 
extracted at each point. Overall, (39) and (40) act as a kind of 
nonlinear filtering of f, and the patch operator D is specified 
by defining the weighting functions , ,v vJ1 f . Such filters are 
localized by construction, and the number of parameters is 
equal to the number of weighting functions ( )J 1O= . Several 
frameworks for non-Euclidean CNNs essentially amount to 
different choices of these weights. The spectrum-free methods 
(ChebNet and GCN) described in the previous section can 
also be thought of in terms of local weighting functions, as it is 
easy to see the analogy between (40) and (34).

Geodesic CNN 
Because manifolds naturally come with a low-dimensional 
tangent space associated with each point, it is natural to work 
in a local system of coordinates in the tangent space [47]. In 
particular, on 2-D manifolds one can create a polar system of 
coordinates around x where the radial coordinate is given by 
some intrinsic distance ( ) ( , ),x d x xt =l l  and the angular coor-
dinate ( )xi  is obtained by ray shooting from a point at equi-
spaced angles. The weighting functions in this case can be 
obtained as a product of Gaussians

	 ( , ) ,v x x e e( ( ) ) / ( ( ) ) /
ij

x x2 2i j
2 2 2 2

= t t v i i v- - - -t il l l � (41)

where , ,i J1 f=  and , ,j J1 f= l denote the indices of the 
radial and angular bins, respectively. The resulting JJl weights 
are bins of width #v vt i  in the polar coordinates [Figure 3(c) 
and (f)].

Anisotropic CNN 
We have already seen the non-Euclidean heat equation (S5), 
whose heat kernel ( , ·)h xt  produces localized blob-like 
weights around the point x [see Figure S3(a)]. Varying the dif-
fusion time t  controls the spread of the kernel. However, such 
kernels are isotropic, meaning that the heat flows equally fast 
in all the directions. A more general anisotropic diffusion [48] 
equation on a manifold

	 ( ) ( ( ) ( )), ,Af x t x f x tdivt d=- � (42)

involves the thermal conductivity tensor ( )A x  (in the case of 
2-D manifolds, a 2 × 2 matrix is applied to the intrinsic gradient 

Diffusion
Distance

Geodesic Polar
Coordinates

Anisotropic
Heat Kernel

(a) (b) (c)

(d) (e) (f)

FIGURE 3. (a)–(c) The examples of intrinsic weighting functions used to 
construct a patch operator at the point marked in black (different colors 
represent different weighting functions). (a) Diffusion distance allows to 
map neighbor points according to their distance from the reference point, 
thus defining a 1-D system of local intrinsic coordinates. (b) Anisotropic 
heat kernels of different scale and orientations and (c) geodesic polar 
weights are 2-D systems of coordinates. (d)–(f) The representation of 
the weighting functions in the local polar ( , )t i  system of coordinates 
(red curves represent the 0.5 level set).
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in the tangent plane at each point), allowing modeling heat 
flow that is position and direction dependent [82]. A particular 
choice of the heat conductivity tensor proposed in [53] is

	 ( ) ( ) ( ),A R Rx x x
1

a
= <

ai i ie o � (43)

where the 2 × 2 matrix ( )R xi  performs rotation of i  with 
respect to some reference (e.g., the maximum curvature) 
direction and 02a  is a parameter controlling the degree of 
anisotropy 1a =^  corresponds to the classical isotropic case). 
The heat kernel of such anisotropic diffusion equation is given 
by the spectral expansion

	 ( , ) ( ) ( ),h x x e x xt
t

i
i i

0

iz z=
$

ai
m

ai ai
- ail l/ � (44)

where ( ), ( ),  x x0 1 fz zai ai  are the eigenfunctions and 
, ,  0 1 fm mai ai  the corresponding eigenvalues of the anisotro-

pic Laplacian

	 ( ) ( ( ) ( )) .Af x x f xdiv dD =-ai ai � (45)

The discretization of the anisotropic Laplacian is a modifica-
tion of the cotangent formula (S12) on meshes or graph 
Laplacian (S9) on point clouds [48]. The anisotropic heat ker-
nels ( , ·)h xtai  look like elongated rotated blobs [see Figure 3(b) 
and (e)], where the parameters ,a i  and t  control the elonga-
tion, orientation, and scale, respectively. Using such kernels as 
weighting functions v  in the construction of the patch operator 
(39), it is possible to obtain a charting similar to the geodesic 
patches (roughly, i  plays the role of the angular coordinate and 
t  of the radial one).

Mixture model network
Finally, as the most general construction of patches, Monti et 
al. [54] proposed defining at each point a local system of 
d-dimensional pseudocoordinates ( , )u x xl  around x. On these 
coordinates, a set of parametric kernels ( ), , ( )u uv vJ1 f  is 
applied, producing the weighting functions in (39). Rather 
than using fixed kernels, as in the previous constructions, 
Monti et al. use Gaussian kernels

( ) ( ) ( )u u uexpv
2
1

j j j j
1n nR= - - -< -` j,

whose parameters dd #^  covariance matrices , , J1 fR R  and 
d 1#  mean vectors , , J1 f nn ) are learned [this choice allows 
interpreting intrinsic convolution (40) as a mixture of 
Gaussians, hence the name of the approach]. Learning not 
only the filters but also the patch operators in (40) affords 
additional DoF to the mixture model network (MoNet) archi-
tecture, which makes it currently the state-of-the-art approach 
in several applications. It is also easy to see that this approach 
generalizes the previous models, and, e.g., classical Euclidean 
CNNs as well as geodesic and anisotropic CNNs can be 
obtained as particular instances thereof [54]. MoNet can also 
be applied on general graphs using as the pseudocoordinates u 

some local graph features, such as vertex degree, geodesic dis-
tance, and so forth.

Combined spatial/spectral methods
The third alternative for constructing convolutionlike opera-
tions of non-Euclidean domains is jointly in spatial-frequen-
cy domain.

Windowed Fourier transform
One of the notable drawbacks of classical Fourier analysis is 
its lack of spatial localization. By virtue of the uncertainty 
principle, one of the fundamental properties of Fourier trans-
forms, spatial localization comes at the expense of frequency 
localization and vice versa. In classical signal processing, this 
problem is remedied by localizing frequency analysis in a 
window ( )g x , leading to the definition of the windowed 
Fourier transform (WFT, also known as short-time Fourier 
transform or spectrogram in signal processing),

	 ( ) ( , ) ( ) ( )Sf x f x g x x e dx
( )

i x

g x,x

~ = -
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l l ll

l
1 2 3444 444# � (46)

	 , .f g , ( )x L R2G H= ~ � (47)

The WFT is a function of two variables: spatial location of 
the window x  and the modulation frequency ~ . The choice 
of the window function g  allows control of the tradeoff 
between spatial and frequency localization (wider windows 
result in better frequency resolution). Note that WFT can be 
interpreted as inner products (47) of the function f with 
translated and modulated windows g ,x ~ , referred to as the 
WFT atoms.

The generalization of such a construction to non-Euclide-
an domains requires the definition of translation and modu-
lation operators [83]. While modulation simply amounts to 
multiplication by a Laplacian eigenfunction, translation is not 
well defined due to the lack of shift invariance. It is possible 
to resort again to the spectral definition of a convolution-like 
operation (26), defining translation as convolution with a 
delta function,
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The translated and modulated atoms can be expressed as

	 ( ) ( ) ( ) ( ),g x x g x x,x j j i
i

i i
0

z z z=
$

l ll t/ � (49)

where the window is specified in the spectral domain by its 
Fourier coefficients .gt   The WFT on non-Euclidean domains 
thus takes the form

	 .( ) ( , ) , ( ) ,Sf x j f g g x f, ( ( ))x j L i
i

i i j L
0

XX2 2G H G Hz z z= =
$

l ll t/ � (50)

Due to the intrinsic nature of all the quantities involved in its 
definition, the WFT is also intrinsic.
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Wavelets
Replacing the notion of frequency in time–frequency repre-
sentations by that of scale leads to wavelet decompositions. 
Wavelets have been extensively studied in general graph 
domains [84]. Their objective is to define stable linear decom-
positions with atoms well localized both in space and frequency 
that can efficiently approximate signals with isolated singu-
larities. Similarly to the Euclidean setting, wavelet families 
can be constructed either from spectral constraints or from 
spatial constraints.

The simplest of such families are Haar wavelets. Several 
bottom-up wavelet constructions on graphs were studied in 
[85] and [86]. In [87], the authors developed an unsupervised 
method that learns wavelet decompositions on graphs by 
optimizing a sparse reconstruction objective. In [88], ensem-
bles of Haar wavelet decompositions were used to define deep 
wavelet scattering transforms on general domains, obtaining 
excellent numerical performance. Learning amounts to find-
ing optimal pairings of nodes at each scale, which can be effi-
ciently solved in polynomial time.

Localized SCNN
Boscaini et al. used the WFT as a way of constructing patch 
operators (39) on manifolds and point clouds and used in an 
intrinsic convolution-like construction (40). The WFT allows 
expressing a function around a point in the spectral domain in 
the form ( ) ( ) ( , )D x f Sf x jj =  [89]. Applying learnable filters to 
such patches (which in this case can be 
interpreted as spectral multipliers), it is 
possible to extract meaningful features that 
also appear to generalize across different 
domains. An additional DoF is the defini-
tion of the window, which can also be 
learned [89].

Applications

Network analysis
One of the classical examples used in many 
works on network analysis is citation net-
works. A citation network is a graph where 
vertices represent articles and there is a 
directed edge (i, j) if article i cites article j. 
Typically, vertex-wise features representing 
the content of the article (e.g., histogram of frequent terms in 
the article) are available. A prototypical classification applica-
tion is to attribute each article to a field. Traditional approach-
es work vertex-wise, performing classification of each vertex’s 
feature vector individually. More recently, it was shown that 
classification can be considerably improved using information 
from neighbor vertices, e.g., with a CNN on graphs [45], [77]. 
An example of the application of spectral and spatial graph 
CNN models on a citation network is shown in “Citation 
Network Analysis Application.”

Another fundamental problem in network analysis is rank-
ing and community detection. These can be estimated by solving 

an eigenvalue problem on an appropriately defined operator on 
the graph. For instance, the Fiedler vector (the eigenvector asso-
ciated with the smallest nontrivial eigenvalue of the Laplacian) 
carries information on the graph partition with minimal cut 
[73], and the popular PageRank algorithm approximates page 
ranks with the principal eigenvector of a modified Laplacian 
operator. In some contexts, one may want develop data-driven 
versions of such algorithms that can adapt to model mismatch 
and perhaps provide a faster alternative to diagonalization 
methods. By unrolling power iterations, one obtains a GNN 
architecture whose parameters can be learned with backpropa-
gation from labeled examples, similarly to the learned sparse 
coding paradigm [91]. We are currently exploring this connec-
tion by constructing multiscale versions of GNNs.

Recommender systems
Recommending movies on Netflix, friends on Facebook, or 
products on Amazon are a few examples of recommender 
systems that have recently become ubiquitous in a broad range 
of applications. Mathematically, a recommendation method 
can be posed as a matrix completion problem [92], where col-
umns and rows represent users and items, respectively, and 
matrix values represent a score determining whether a user 
would like an item or not. Given a small subset of known ele-
ments of the matrix, the goal is to fill in the rest. A famous 
example is the Netflix challenge [93] offered in 2009 and car-
rying a US$1 million prize for the algorithm that can best pre-

dict user ratings for movies based on 
previous ratings. The size of the Netflix 
matrix is 480,000 movies × 18,000 users 
(8.5 billion elements), with only 0.011% 
known entries.

Several recent works proposed to incor-
porate geometric structure into matrix com-
pletion problems [94]–[97] in the form of 
column and row graphs representing simi-
larity of users and items, respectively (see 
Figure 4). Such a geometric matrix comple-
tion setting makes meaningful, e.g., the 
notion of smoothness of the matrix values 
and was shown beneficial for the perfor-
mance of recommender systems.

In a recent work, Monti et al. [56] pro-
posed addressing the geometric matrix 

completion problem by means of a learnable model combining 
a multigraph CNN (MGCNN) and a recurrent neural network 
(RNN). Multigraph convolution can be thought of as a general-
ization of the standard bidimensional image convolution, where 
the domains of the rows and the columns are now different (in 
our case, user and item graphs). The features extracted from 
the score matrix by means of the MGCNN are then passed to 
an RNN, which produces a sequence of incremental updates 
of the score values. Overall, the model can be considered as 
a learnable diffusion of the scores, with the main advantage 
compared to traditional approach being a fixed number of vari-
ables independent of the matrix size. The MGCNN achieved 
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state-of-the-art results on several classical matrix completion 
challenges and, on a more conceptual level, could be a very 
interesting practical application of geometric deep learning to 
a classical signal processing problem of matrix completion.

Computer vision and graphics
The computer-vision community has recently shown an 
increasing interest in working with 3-D geometric data, 
mainly due to the emergence of affordable range-sensing 
technology, such as Microsoft Kinect or Intel RealSense. 
Many machine-learning techniques successfully working on 
images were tried as is on 3-D geometric data, represented 
for this purpose in some way digestible by standard frame-
works, e.g., as range images [98], [99] or 
rasterized volumes [100], [101]. The main 
drawback of such approaches is their 
treatment of geometric data as Euclidean 
structures. First, for complex 3-D objects, 
Euclidean representations, such as depth 
images or voxels, may lose significant 
parts of the object or its fine details or even 
break its topological structure. Second, Euclidean representa-
tions are not intrinsic and vary when changing pose or 
deforming the object. Achieving invariance to shape defor-
mations, a common requirement in many vision applications, 
demands very complex models and huge training sets due to 
the large number of DoF involved in describing nonrigid 
deformations [see Figure 5(a)].

In the domain of computer graphics, on the other hand, 
working intrinsically with geometric shapes is a standard prac-
tice. In this field, 3-D shapes are typically modeled as Rie-
mannian manifolds and are discretized as meshes. Numerous 
studies (see, e.g., [102]–[106]) have been devoted to designing 
local and global features, e.g., for establishing similarity or 

correspondence between deformable shapes with guaranteed 
invariance to isometries.

However, different applications in computer vision and 
graphics may require completely different features. For instance, 
to establish feature-based correspondence between a collection 
of human shapes, one would desire the descriptors of corre-
sponding anatomical parts (e.g., noses, mouths) to be as simi-
lar as possible across the collection (see Figure 6(a)). In other 

words, such descriptors should be invariant 
to the collection variability. Conversely, for 
shape classification, one would like descrip-
tors that emphasize the subject-specific char-
acteristics and, e.g., distinguish between two 
different nose shapes (see Figure 6b). Decid-
ing a priori which structures should be used 
and which should be ignored is often hard 

or sometimes even impossible. Moreover, axiomatic modeling 
of geometric noise, such as 3-D scanning artifacts, turns out to 
be extremely hard.

By resorting to intrinsic deep neural networks on mani-
folds, the invariance to isometric deformations is automati-
cally built into the model, thus vastly reducing the number 
of DoF required to describe the invariance class. Roughly 
speaking, the intrinsic deep model will try to learn residual 
deformations that deviate from the isometric model. Geomet-
ric deep learning can be applied to several problems in 3-D 
shape analysis, which can be divided into two classes. First are 
problems like local descriptor learning [47], [53] or correspon-
dence learning [48] (see the example in “Three-Dimensional 
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FIGURE 4. The geometric matrix completion exemplified on the famous 
Netflix movie recommendation problem. The column and row graphs 
represent the relationships between users and items, respectively.
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FIGURE 5. An illustration of the difference between (a) classical CNN 
applied to a 3-D shape (checkered surface) considered as a Euclidean 
object and (b) a geometric CNN applied intrinsically on the surface. In the 
latter case, the convolutional filters (visualized as a colored window) are 
deformation invariant by construction.
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Shape Correspondence Application”), in which the output 
of the network is pointwise. The inputs to the network are 
some pointwise features, e.g., color texture or simple geo-
metric features, such as normals. Using a 
CNN architecture with multiple intrinsic 
convolutional layers, it is possible to pro-
duce nonlocal features that capture the con-
text around each point. The second type 
of problems, such as shape recognition, 
require the network to produce a global 
shape descriptor, aggregating all the local 
information into a single vector using, e.g., 
the covariance pooling [47].

Particle physics and chemistry
Many areas of experimental science are interested in studying 
systems of discrete particles defined over a low-dimensional 
phase space. For instance, the chemical properties of a mole-
cule are determined by the relative positions of its atoms, and 
the classification of events in particle accelerators depends 
upon position, momentum, and spin of all the particles involved 
in the collision.

The behavior of an N-particle system is ultimately derived 
from solutions of the Schrödinger equation, but its exact 
solution involves diagonalizing a linear system of exponential 
size. In this context, an important question is whether one can 
approximate the dynamics with a tractable model that incor-
porates by construction the geometric stability postulated by 
the Schrödinger equation and at the same time has enough 
flexibility to adapt to data-driven scenarios and capture com-
plex interactions.

An instance l of an Nl-particle system can be expressed as

( ) ( ),f t t x, ,l j l
j

N

j l
1

l

a d= -
=

/

where ( ),j la  model particle-specific information, such as the 
spin, and ( )x ,j l  are the locations of the particles in a given 

phase space. Such a system can be recast as a signal defined 
over a graph with NVl l=  vertices and edge weights 

( ( , , , ))W x x, , , ,l i l j l i l j lz a a=  expressed through a similarity 
kernel capturing the appropriate priors. GNNs are currently 
being applied to perform event classification, energy 
regression, and anomaly detection in high-energy physics 
experiments, such as the Large Hadron Collider, and neutri-
no detection in the IceCube Observatory. Recently, models 
based on GNNs have been applied to predict the dynamics 
of N-body systems [111], [112], showing excellent predic-
tion performance.

Molecule design
A key problem in material and drug design is predicting the 
physical, chemical, or biological properties (such as solubility 
of toxicity) of a novel molecule from its structure. State-of-
the-art methods rely on hand-crafted molecule descriptors, 
such as circular fingerprints [113]–[115]. A recent work from 
Harvard University in Cambridge, Massachusetts [55] pro-
posed modeling molecules as graphs (where vertices represent 
atoms and edges represent chemical bonds) and employing 

GCNNs to learn the desired molecule prop-
erties. The authors’ approach has signifi-
cantly outperformed handcrafted features. 
This work opens a new avenue in molecule 
design that might revolutionize the field.

Medical imaging
An application area where signals are natu-
rally collected on non-Euclidean domains 
and where the methodologies we reviewed 
could be very useful is brain imaging. A 
recent trend in neuroscience is to associate 

functional magnetic resonance imaging traces with a precom-
puted connectivity rather than inferring it from the traces 
themselves [116]. In this case, the challenge consists in pro-
cessing and analyzing an array of signals collected over a 
complex topology, which results in subtle dependencies. For 
example, in a recent work from Imperial College London 
[117], GCNNs were used to detect disruptions of the brain 
functional networks associated with autism.

Open problems and future directions
The recent emergence of geometric deep-learning methods in 
various communities and application domains, which we tried 
to overview in this article, allows us to proclaim, perhaps with 
some caution, that we might be witnessing a new field being 
born. We expect the following years to bring exciting new 
methods and applications, and conclude our review with a few 
observations of current key difficulties and potential directions 
of future research.

Many disciplines dealing with geometric data employ 
some empirical models or handcrafted features. This is a typi-
cal situation in geometry processing and computer graphics, 
where axiomatically constructed features are used to analyze 
3-D shapes, or computational sociology, where it is common 
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(a) (b)

FIGURE 6. (a) The features used for shape correspondence should ideally 
manifest invariance across the shape class (e.g., the knee feature shown 
here should not depend on the specific person). (b) The features used for 
shape retrieval, on the contrary, should be specific to a shape within the 
class to allow distinguishing between different people. Similar features 
are marked with the same color. Handcrafting the right feature for each 
application is a very challenging task.
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to first come up with a hypothesis and then test it on the data 
[22]. Yet, such models assume some prior knowledge (e.g., 
isometric shape deformation model) and often fail to cor-
rectly capture the full complexity and richness of the data. 
In computer vision, departing from handcrafted features 
toward generic models learnable from the data in a task-
specific manner has brought a breakthrough in performance 
and led to an overwhelming trend in the community to favor 
deep-learning methods. Such a shift has not occurred yet 
in the fields dealing with geometric data due to the lack of 
adequate methods, but there are the first indications of a 
coming paradigm shift.

Generalization
Generalizing deep-learning models to geometric data 
requires not only finding non-Euclidean counterparts of basic 
building blocks (such as convolutional and pooling layers) 
but also generalization across different domains. Ge
neralization capability is a key requirement in many applica-
tions, including computer graphics, where a model is learned 
on a training set of non-Euclidean domains (3-D shapes) and 
then applied to previously unseen ones. Spectral formulation 
of convolution allows designing CNNs on 
a graph, but the model learned this way on 
one graph cannot be straightforwardly 
applied to another one, because the spec-
tral representation of convolution is domain 
dependent. A possible remedy to the gen-
eralization problem of spectral methods is 
the recent architecture proposed in [118], 
applying the idea of spatial transformer 
networks [119] in the spectral domain. 
This approach is reminiscent of the con-
struction of compatible orthogonal bases by means of joint 
Laplacian diagonalization [75], which can be interpreted as 
an alignment of two Laplacian eigenbases in a k-dimension-
al space.

The spatial methods, on the other hand, allow generaliza-
tion across different domains, but the construction of low-
dimensional local spatial coordinates on graphs turns out to 
be rather challenging. In particular, the construction of aniso-
tropic diffusion on general graphs is an interesting research 
direction. The spectrum-free approaches also allow general-
ization across graphs, at least in terms of their functional form. 
However, if multiple layers of (38) are used with no nonlinear-
ity or learned parameters i , simulating a high power of the 
diffusion, the model may behave differently on different kinds 
of graphs. Understanding under what circumstances and to 
what extent these methods generalize across graphs is currently 
being studied.

Time-varying domains
An interesting extension of geometric deep-learning problems 
discussed in this review is coping with signals defined over a 
dynamically changing structure. In this case, we cannot 
assume a fixed domain and must track how these changes 

affect signals. This could prove useful to tackle applications 
like abnormal activity detection in social or financial net-
works. In the domain of computer graphics and vision, poten-
tial applications deal with dynamic shapes (e.g., 3-D video 
captured by a range sensor).

Directed graphs
Dealing with directed graphs is also a challenging topic, as 
such graphs typically have nonsymmetric Laplacian matri-
ces that do not have orthogonal eigendecomposition allow-
ing easily interpretable spectral-domain constructions. 
Citation networks, which are directed graphs, are often treat-
ed as undirected graphs (including in our example in 
“Three-Dimensional Shape Correspondence Application”) 
considering citations between two articles without distin-
guishing which article cites which. This obviously may lose 
important information.

Synthesis problems
Our main focus in this review was primarily on analysis prob-
lems on non-Euclidean domains. Not less important is the 
question of data synthesis. There have been several recent 

attempts to try to learn a generative model 
allowing to synthesize new images [120] 
and speech waveforms [121]. Extending 
such methods to the geometric setting 
seems a promising direction, though the 
key difficulty is the need to reconstruct the 
geometric structure (e.g., an embedding of 
a 2-D manifold in the 3-D Euclidean space 
modeling a deformable shape) from some 
intrinsic representation [122].

Computation
The final consideration is a computational one. All existing 
deep-learning software frameworks are primarily optimized 
for Euclidean data. One of the main reasons for the computa-
tional efficiency of deep-learning architectures (and one of the 
factors that contributed to their renaissance) is the assump-
tion of regularly structured data on a 1-D or 2-D grid, allow-
ing to take advantage of modern GPU hardware. Geometric 
data, on the other hand, in most cases do not have a grid 
structure, requiring different ways to achieve efficient com-
putations. It seems that computational paradigms developed 
for large-scale graph processing are more adequate frame-
works for such applications.
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