
 IEEE SIGNAL PROCESSING MAGAZINE [80] SEPTEMBER 2014 1053-5888/14©2014IEEE

©
 is

to
c

k
p

h
o

to
.c

o
m

/t
A

2Y
o

4N
o

R
i

nalysis and processing of very large data sets, or big
data, poses a significant challenge. Massive data sets

are collected and studied in numerous domains,
from engineering sciences to social networks,
biomolecular research, commerce, and security.

Extracting valuable information from big data requires innova-
tive approaches that efficiently process large amounts of data as
well as handle and, moreover, utilize their structure. This

article discusses a paradigm for large-scale data analysis based
on the discrete signal processing (DSP) on graphs (DSPG).
DSPG extends signal processing concepts and methodologies
from the classical signal processing theory to data indexed by
general graphs. Big data analysis presents several challenges to
DSPG, in particular, in filtering and frequency analysis of very
large data sets. We review fundamental concepts of DSPG,
including graph signals and graph filters, graph Fourier trans-
form, graph frequency, and spectrum ordering, and compare
them with their counterparts from the classical signal process-
ing theory. We then consider product graphs as a graph model

[Aliaksei Sandryhaila and José M.F. Moura]

[Representation and processing of massive data sets

with irregular structure]

Big Data Analysis with
Signal Processing

on Graphs

A
Digital Object Identifier 10.1109/MSP.2014.2329213

Date of publication: 19 August 2014

 IEEE SIGNAL PROCESSING MAGAZINE [81] SEPTEMBER 2014

that helps extend the application of DSPG methods to large data
sets through efficient implementation based on parallelization
and vectorization. We relate the presented framework to exist-
ing methods for large-scale data processing and illustrate it with
an application to data compression.

IntroductIon
Data analysts in scientific, government, industrial, and commer-
cial domains face the challenge of coping with rapidly growing
volumes of data that are collected in numerous applications.
Examples include biochemical and genetics research, fundamen-
tal physical experiments and astronomical observations, social
networks, consumer behavior studies, and many others. In these
applications, large amounts of raw data can be used for decision
making and action planning, but their volume and increasingly
complex structure limit the applicability of many well-known
approaches widely used with small data sets, such as principal
component analysis (PCA), singular value decomposition (SVD),
spectral analysis, and others. This problem—the big data problem
[1]—requires new paradigms, techniques, and algorithms.

Several approaches have been proposed for representation and
processing of large data sets with complex structure. Multidimen-
sional data, described by multiple parameters, can be expressed
and analyzed using multiway arrays [2]–[4]. Multiway arrays have
been used in biomedical signal processing [5], [6], telecommuni-
cations and sensor array processing [7]–[9], and other domains.

Low-dimensional representations of high-dimensional data
have been extensively studied in [10]–[13]. In these approaches,
data sets are viewed as graphs in high-dimensional spaces and
data are projected on low-dimensional subspaces generated by
small subsets of the graph Laplacian eigenbasis.

Signal processing on graphs extends classical signal process-
ing theory to general graphs. Some techniques, such as in [14]–
[16], are motivated in part by the works on graph Laplacian-based
low-dimensional data representations. DSPG [17], [18] builds
upon the algebraic signal processing theory [19], [20].

This article considers the use of DSPG as a methodology for
big data analysis. We discuss how, for appropriate graph models,
fundamental signal processing techniques, such as filtering and
frequency analysis, can be implemented efficiently for large data
sizes. The discussed framework addresses some of the key chal-
lenges of big data through arithmetic cost reduction of associated
algorithms and use of parallel and distributed computations. The
presented methodology introduces elements of high-performance
computing to DSPG and offers a structured approach to the devel-
opment of data analysis tools for large data volumes.

SIgnAl ProceSSIng on grAPhS
We begin by reviewing notation and main concepts of DSPG. For
a detailed introduction to the theory, we refer the readers to
[17] and [18]. Definitions and constructs presented here apply
to general graphs. In the special case of undirected graphs with
nonnegative real edge weights, similar definitions can be for-
mulated using the graph Laplacian matrix, as discussed in [14]–
[16] and references therein.

Graph SiGnalS
DSPG studies the analysis and processing of data sets in which
data elements are related by dependency, similarity, physical
proximity, or other properties. This relation is expressed though
a graph (,),G AV= where { , , }v vV N0 1f= - is the set of N
nodes and A is the weighted adjacency matrix of the graph. Each
data element corresponds to a node vn (we also say the data ele-
ment is indexed by) .vn A nonzero weight A C,n m ! indicates
the presence of a directed edge from vm to vn that reflects the
appropriate dependency or similarity relation between the nth
and mth data elements. The set of neighbors of vn forms its
neighborhood denoted as { } .m 0AN ,n n m !=

Given the graph, the data set forms a graph signal, defined
as a map

 : ,s CV " ,v sn n7

where C is the set of complex numbers. It is convenient to
write graph signals as vectors

[FIg1] examples of graph signals. Signal values are represented
with different colors. (a) the periodic time series /cos n2 6r^ h
resides on a directed line graph with six nodes; the edge from the
last node to the first captures the periodicity of the series.
(b) temperature measurements across the united States reside on
the graph that represents the network of weather sensors.
(c) Web site topics are encoded as a signal that resides on the
graph formed by hyperlinks between the Web sites. (d) the
average numbers of tweets for twitter users are encoded as a
signal that resides on the graph representing who follows whom.

(a)

(b)

(c) (d)

12 F

71 F

v1 v2 v3 v4 v5v0

v1

v2

v3

v4

v5

v6

v0

v1

v2

v3

v4

v5

v0

 IEEE SIGNAL PROCESSING MAGAZINE [82] SEPTEMBER 2014

 .s s ss CN
T N

0 1 1f != -6 @ (1)

One should view the vector (1) not just as a list, but as a graph
with each value sn residing at node .vn

Figure 1 shows examples of graph signals. Finite periodic
time series, studied by finite-time DSP [19], [21], are indexed by
directed cyclic graphs, such as the graph in Figure 1(a). Each
node corresponds to a time sample; all edges are directed and
have the same weight 1, reflecting the causality of time series;
and the edge from the last to the first node reflects the periodic-
ity assumption. Data collected by sensor networks is another
example of graph signals: sensor measurements form a graph
signal indexed by the sensor network graph, such as the graph
in Figure 1(b). Each graph node is a sensor, and edges connect
closely located sensors. Graph signals also arise in the World
Wide Web: for instance, Web site features (topic, view count, rel-
evance) are graph signals indexed by graphs formed by hyper-
link references, such as the graph in Figure 1(c). Each node
represents a Web site, and directed edges correspond to hyper-
links. Finally, graph signals are collected in social networks,
where characteristics of individuals (opinions, preferences,
demographics) form graph signals on social graphs, such as the
graph in Figure 1(d). Nodes of the social graph represent indi-
viduals, and edges connect people based on their friendship, col-
laboration, or other relations. Edges can be directed (such as
follower relations on Twitter) or undirected (such as friendship
on Facebook or collaboration ties in publication databases).

Graph Shift
In DSP, a signal shift, implemented as a time delay, is a basic
nontrivial operation performed on a signal. A delayed finite peri-
odic time series of length N is .ss modn n N1= -u Using the vector
notation (1), the shifted signal is written as

 ,s ss CsN
T

0 1f= =-u u u6 @ (2)

where C is the N N# cyclic shift matrix (only nonzero entries
are shown)

 .
1

1

1

C
j

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

 (3)

Note that (3) is precisely the adjacency matrix of the periodic
time series graph in Figure 1(a).

DSPG extends the concept of shift to general graphs by defin-
ing the graph shift as a local operation that replaces a signal
value sn at node vn by a linear combination of the values at the
neighbors of vn weighted by their edge weights:

 .s sA ,n n m m
m Nn

=
!

u / (4)

It can be interpreted as a first-order interpolation, weighted aver-
aging, or regression on graphs, which is a widely used operation
in graph regression, distributed consensus, telecommunications,

Markov processes and other approaches. Using the vector
 notation (1), the graph shift (4) is written as

 .s ss AsN
T

0 1f= =-u u u6 @ (5)

The graph shift (5) naturally generalizes the time shift (2).
Since in DSPG the graph shift is defined axiomatically, other

choices for the operation of a graph shift are possible. The
advantage of the definition (4) is that it leads to a signal process-
ing framework for linear and commutative graph filters. Other
choices, such as selective averaging over a subset of neighbors
for each graph vertex, do not lead to linear commutative filters
and hence to well-defined concepts of frequency, Fourier trans-
form, and others.

Graph filterS and z-tranSform
In signal processing, a filter is a system H $^ h that takes a signal
(1) as an input and outputs a signal

 () .s ss H sN
T

0 1f= =-u u u6 @ (6)

Among the most widely used filters are linear shift-invariant (LSI)
ones. A filter is linear, if for a linear combination of inputs it
 produces the same combination of outputs: ()s sH 1 2a b+ =

() () .s sH H1 2a b+ Filters H1 $^ h and H2 $^ h are commutative,
or shift-invariant, if the order of their application to a signal does
not change the output: (()) (()) .s sH H H H1 2 2 1=

The z-transform provides a convenient representation for sig-
nals and filters in DSP. By denoting the time delay (2) as ,z 1- all
LSI filters in finite-time DSP are written as polynomials in z 1-

 () ,h z h zn
n

N
n1

0

1

=-

=

-
-/ (7)

where the coefficients , , ,h h hN0 1 1f - are called filter taps.
Similarly, finite time signals are written as

 () .s z s zn
n

N
n1

0

1

=-

=

-
-/ (8)

The filter output is calculated by multiplying its z-transform (7)
with the z-transform of the input signal (8) modulo the polyno-
mial ,z 1N -- [19]:

 ()s z s zn
n

N
n1

0

1

=-

=

-
-u u/ () () () .modh z s z z 1N1 1= -- - - (9)

Equivalently, the output signal is given by the product [21]

 ()hs C s=u (10)

of the input signal (1) and the matrix

()

.

h h

h
h

h

h

h

h

h
h

C Cn
n

N
n

N

N

N

0

1

0

1

1

1

1

1

1

0

h

j

j

f

f

j

j

h

=

=

=

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

/

 (11)

 IEEE SIGNAL PROCESSING MAGAZINE [83] SEPTEMBER 2014

Observe that the circulant matrix ()h C in (11) is obtained by
substituting the time shift matrix (3) for z 1- in the filter
z-transform (7). In finite-time DSP, this substitution establishes
a surjective (onto) mapping from the space of LSI filters and the
space of N N# circulant matrices.

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift (5),
filters (11) are generalized to graph filters as polynomials in the
graph shift [17], and all LSI graph filters have the form

 () .h hA A
L

0

1

= ,

,

,

=

-

/ (12)

In analogy with (10), the graph filter output is given by

 () .hs A s=u (13)

The output can also be computed using the graph z-transform
that represents graph filters (12) as

 () ,h z h z
L

1

0

1

= ,

,

,-

=

-
-/ (14)

and graph signals (1) as polynomials () (),s z s b zn nn
N1 1

0
1=- -

=

-/
where (),b zn

1- ,n N0 1# are appropriately constructed, lin-
early independent polynomials of degree smaller than N (see
[17] for details). Analogously to (9), the output of the graph
filter (14) is obtained as the product of z-transforms modulo
the minimal polynomial ()m z 1

A
- of the shift matrix A :

 () ()s z s b zn
n

N

n
1

0

1
1=-

=

-
-u u/ () () () .modh z s z m z1 1 1

A= - - - (15)

Recall that the minimal polynomial of A is the unique monic
polynomial of the smallest degree that annihilates ,A i.e.,

()m 0AA = [22].
Graph filters have a number of important properties. An

inverse of a graph filter, if it exists, is also a graph filter that can
be found by solving a system of at most N linear equations.
Also, the number of taps in a graph filter is not larger than the
degree of the minimal polynomial of ,A which provides an
upper bound on the complexity of their computation. In particu-
lar, since the graph filter (12) can be factored as

 () ,h h gA A IL

L

1
0

1

= - ,

,

-

=

-

^ h% (16)

the computation of the output (13) requires, in general,
()degL m xA# multiplications by .A

Graph fourier tranSform
Mathematically, a Fourier transform with respect to a set of
operators is the expansion of a signal into a basis of the opera-
tors’ eigenfunctions. Since in signal processing the operators
of interest are filters, DSPG defines the Fourier transform with
respect to the graph filters.

For simplicity of the discussion, assume that A is diagonal-
izable and its eigendecomposition is

 ,A V V 1K= - (17)

where the columns vn of the matrix V v v CN
N N

0 1f != #
-6 @

are the eigenvectors of ,A and CN N!K # is the diagonal
matrix of corresponding eigenvalues , , N0 1fm m - of .A If A is
not diagonalizable, Jordan decomposition into generalized
eigenvectors is used [17].

The eigenfunctions of graph filters ()h A are given by the
eigenvectors of the graph shift matrix A [17]. Since the expansion
into the eigenbasis is given by the multiplication with the inverse
eigenvector matrix [22], which always exists, the graph Fourier
transform of a graph signal (1) is well defined and computed as

,

s ss V s
Fs

N
T

0 1
1f= =

=

-
-t t t6 @

(18)

where F V 1= - is the graph Fourier transform matrix.
The values snt in (18) are the signal’s expansion in the eigenvec-

tor basis and represent the graph frequency content of the signal .s
The eigenvalues nm of the shift matrix A represent graph frequen-
cies, and the eigenvectors vn represent the corresponding graph
frequency components. Observe that each frequency component vn
is a graph signal, too, with its mth entry indexed by the node .vm

The inverse graph Fourier transform reconstructs the graph
signal from its frequency content by combining graph fre-
quency components weighted by the coefficients of the signal’s
graph Fourier transform:

 s s ss v v vN N0 0 1 1 1 1g= + + + - -t t t .sF V s1= =- t t (19)

Analogously to other DSPG concepts, the graph Fourier
transform is a generalization of the discrete Fourier transform
from DSP. Recall that the mth Fourier coefficient of a finite
time series of length N is

 ,s
N

s e1
m n

n

N
j N mn

0

1 2
=

r

=

-
-t /

and the time signal’s discrete Fourier transform is written in
 vector form as ,s DFT sN=t where DFTN is the N N# discrete
Fourier transform matrix with the th(,)n m entry
/ (/) .expN j nm N1 2r- It is well known that the eigendecom-

position of the time shift matrix (3) is

 .
e

e

C DFT DFT
()

N

j N

j N
N

N
1

2 0

2 1

·

·
j=

r

r

-

-

-
-

R

T

S
S
S
S

V

X

W
W
W
W

Hence, the discrete Fourier transform is the graph Fourier transform
for cyclic line graphs, such as the graph in Figure 1(a), and

(/),exp j n N2nm r= - ,n N0 1# are the corresponding fre-
quencies. In DSP, the ratio /n N2r in the exponent

(/)exp j n N2nm r= - is also sometimes called (angular) frequency.

AlternAtIve choIceS oF grAPh FourIer BASIS
In some cases, for example, when eigenvector computation is
not stable, it may be advantageous to use other vectors as the

 IEEE SIGNAL PROCESSING MAGAZINE [84] SEPTEMBER 2014

graph Fourier basis, such as singular vectors or eigenvectors of
the Laplacian matrix. These choices are consistent with DSPG ,
since singular vectors form the graph Fourier basis when the
graph shift matrix is defined as ,AA* and Laplacian eigenvec-
tors form the graph Fourier basis when the shift matrix is
defined by the Laplacian. However, the former implicitly turns
the original graph into an undirected graph, and the latter
explicitly requires that the original graph is undirected. As a
result, in both cases the framework does not use the informa-
tion about the direction of graph edges that is useful in various
applications [17], [19], [23]. Examples, where relations are
directed and not always reciprocal, are Twitter (if user A follows
user B, user B does not necessarily follow user A), and the
World Wide Web (if document A links to document B, docu-
ment B does not necessarily link to document A).

frequency reSponSe of Graph filterS
In addition to expressing the frequency content of graph sig-
nals, the graph Fourier transform also characterizes the effect
of filters on the frequency content of signals. The filtering
operation (13) can be written using (12) and (18) as

 () () () ,h h hs A s F F s F F s1 1K K= = =- -J (20)

where ()h K is a diagonal matrix with values ()h nm =

h n
L

0
1
m,
,

,=

-/ on the diagonal. As follows from (20),

 () () .h hss A s F s+ K= =u u t (21)

That is, the frequency content of a filtered signal is modified by
multiplying its frequency content elementwise by () .h nm
These values represent the graph frequency response of the
graph filter (12).

The relation (21) is a generalization of the classical convolu-
tion theorem [21] to graphs: filtering a graph signal in the
graph domain is equivalent in the frequency domain to multi-
plying the signal’s spectrum by the frequency response of the
graph filter.

low and hiGh frequencieS on GraphS
In DSP, frequency contents of time series and digital images are
described by complex or real sinusoids that oscillate at different
rates [24]. These rates provide an intuitive, physical interpreta-
tion of “low” and “high” frequencies: low-frequency compo-
nents oscillate less and high-frequency ones oscillate more.

In analogy to DSP, frequency components on graphs can
also be characterized as “low” and “high” frequencies. In par-
ticular, this is achieved by ordering the graph frequency com-
ponents according to how much they change across the graph;
that is, how much the signal coefficients of a frequency compo-
nent differ at connected nodes. The amount of “change” is cal-
culated using the graph total variation [18]. For graphs with
real spectra, the ordering from lowest to highest frequencies is

.N0 1 1f$ $ $m m m - For graphs with complex spectra, fre-
quencies are ordered by their distance from the point | |maxm on

the complex plane, where maxm is the eigenvalue with the larg-
est magnitude. The graph frequency order naturally leads to
the definition of low-, high-, and band-pass graph filters, analo-
gously to their counterparts in DSP (see [18] for details).

 In the special case of undirected graphs with real nonnega-
tive edge weights, the graph Fourier transform (18) can also be
expressed using the eigenvectors of the graph Laplacian matrix
[16]. In general, the eigenvectors of the adjacency and Lapla-
cian matrices do not coincide, which can lead to a different
Fourier transform matrix. However, when graphs are regular,
both definitions yield the same graph Fourier transform
matrix, and the same frequency ordering [18].

applicationS
DSPG is particularly motivated by the need to extend traditional
signal processing methods to data sets with complex and irregu-
lar structure. Problems in different domains can be formulated
and solved as standard signal processing problems. Applications
include data compression through Fourier transform or
through wavelet expansions; recovery, denoising, and classifica-
tion of data by signal regularization, smoothing, or adaptive fil-
ter design; anomaly detection via high-pass filtering; and many
others (see [15] and [16] and references therein).

For instance, a graph signal can be compressed by comput-
ing its graph Fourier transform and storing only a small fraction
of its spectral coefficients, the ones with largest magnitudes. The
compressed signal is reconstructed by computing the inverse
graph Fourier transform with the preserved coefficients. When
the signal is sparse in the Fourier domain, that is, when most
energy is concentrated in a few frequencies, the compressed sig-
nal is reconstructed with a small error [17], [25].

Another example application is the detection of corrupted
data. In traditional DSP, a corrupted value in a slowly chang-
ing time signal introduces additional high-frequency compo-
nents that can be detected by high-pass filtering of the
corrupted signal. Similarly, a corrupted value in a graph signal
can be detected through a high-pass graph filter, which can be
used, for instance, to detect malfunctioning sensors in sensor
networks [18].

chAllengeS oF BIg dAtA
While there is no single, universally agreed upon set of proper-
ties that define big data, some of the commonly mentioned
ones are volume, velocity, and variety of data [1]. Each of these
characteristics poses a separate challenge to the design and
implementation of analysis systems and algorithms for big
data. First of all, the sheer volume of data to be processed
requires efficient distributed and scalable storage, access, and
processing. Next, in many applications, new data is obtained
continuously. High velocity of new data arrival demands fast
algorithms to prevent bottlenecks and explosion of the data
volume and to extract valuable information from the data and
incorporate it into the decision-making process in real time.
Finally, collected data sets contain information in all varieties
and forms, including numerical, textual, and visual data. To

 IEEE SIGNAL PROCESSING MAGAZINE [85] SEPTEMBER 2014

generalize data analysis techniques to diverse data sets, we
need a common representation framework for data sets and
their structure.

The latter challenge of data diversity is addressed in DSPG by
representing data set structure with graphs and quantifying
data into graph signals. Graphs provide a versatile data abstrac-
tion for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social
networks, and others. Using this abstraction, data analysis
methods and tools can be developed and applied to data sets of
a different nature.

For efficient big data analysis, the challenges of data vol-
ume and velocity must be addressed as well. In particular, the
fundamental signal processing operations of filtering and
spectral decomposition may be prohibitively expensive for
large data sets both in the amount of required computations
and memory demands.

Recall that processing a graph signal (1) with a graph filter
(16) requires L multiplications by a N N# graph shift matrix
.A For a general matrix, this computation requires ()O LN2

arithmetic operations (additions and multiplications) [26].
When A is sparse and has on average K nonzero entries in
every row, graph filtering requires O LNK^ h operations. In
addition, graph filtering also requires access to the entire
graph signal in memory. Similarly, computation of the graph
Fourier transform (18) requires ()O N2 operations and access
to the entire signal in memory. Moreover, the eigendecomposi-
tion of the matrix A requires additional ()O N3 operations and
memory access to the entire N N# matrix .A Note that graph
filtering can also be performed in the spectral domain with
()O N2 operations using the graph convolution theorem (21),

but it also requires the initial eigendecomposition of .A
Degree heterogeneity in graphs with heavily skewed degree

distributions, such as scale-free graphs, presents an additional
challenge. Graph filtering (16) requires iterative weighted aver-
aging over each vertex’s neighbors, and for vertices with large
degrees this process takes significantly longer than for vertices
with small degrees. In this case, load balancing through smart
distribution of vertices between computational nodes is
required to avoid a computation bottleneck.

For very large data sets, algorithms with quadratic and
cubic arithmetic cost are not acceptable. Moreover, computa-
tions that require access to the entire data sets are ill suited for
large data sizes and lead to performance bottlenecks, since
memory access is orders of magnitude slower than arithmetic
computations. This problem is exacerbated by the fact that
large data sets often do not fit into main memory or even local
disk storage of a single machine, and must be stored and
accessed remotely and processed with distributed systems.

Fifty years ago, the invention of the famous fast Fourier
transform algorithm by Cooley and Tukey [27], as well as many
other algorithms that followed (see [28] and [29] and references
therein), dramatically reduced the computational cost of the
discrete Fourier transform by using suitable properties of the
structure of time signals, and made frequency analysis and

filtering of very large signals practical. Similarly, in this article,
we identify and discuss properties of certain data representation
graphs that lead to more efficient implementations of DSPG

operations for big data. A suitable graph model is provided by
product graphs discussed in the next section.

Product grAPhS
Consider two graphs (,)G AV1 1 1= and (,)G AV2 2 2= with
| | NV1 1= and | | NV2 2= nodes, respectively. The product
graph, denoted by ,G of G1 and G2 is the graph

 (,),G G G AV1 2G= = G (22)

with | | N NV 1 2= nodes and an appropriately defined
N N N N1 2 1 2# adjacency matrix AG [30], [31]. In particular,
three commonly studied graph products are the Kronecker,
Cartesian, and strong products.

For the Kronecker graph product, denoted as ,G G G1 27=
the adjacency matrix is obtained by the matrix Kronecker product
of adjacency matrices A1 and :A2

 .A A A1 27=7 (23)

Recall that the Kronecker product of matrices []bB mn !=

CM N# and C CK L! # is a KM LN# matrix with block structure

 .
C

C

b

b

b

b
B C

C

C

,

,

,

,M

N

M N

0 0

1 0

0 1

1 1

7 h
f
h
f

h=
-

-

- -

R

T

S
S
S
SS

V

X

W
W
W
WW

 (24)

For the Cartesian graph product, denoted as ,G G G1 2#=
the adjacency matrix is

 .A A I I AN N1 22 17 7= +# (25)

Finally, for the strong product, denoted as ,G G G1 2#= the
adjacency matrix is

 .A A A A I I AN N1 2 1 22 17 7 7= + +X (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (24)–(26) are
associative, Kronecker, Cartesian, and strong graph products
can be defined for an arbitrary number of graphs.

Product graphs arise in different applications, including sig-
nal and image processing [32], computational sciences and data
mining [33], and computational biology [34]. Their probabilistic
counterparts are used in network modeling and generation
[35]–[37]. Multiple approaches have been proposed for the
decomposition and approximation of graphs with product
graphs [30], [31], [38], [39].

Product graphs offer a versatile graph model for the represen-
tation of complex data sets in multilevel and multiparameter
ways. In traditional DSP, multidimensional signals, such as
 digital images and video, reside on rectangular lattices that
are Cartesian products of line graphs. Figure 2(a) shows a

 IEEE SIGNAL PROCESSING MAGAZINE [86] SEPTEMBER 2014

two-dimensional (2-D) lattice formed by the Cartesian product of
two one-dimensional lattices.

Another example of graph signals residing on product
graphs is data collected by a sensor network over a period of
time. In this case, the graph signal formed by measurements of
all sensors at all time steps resides on the product of the sensor
network graph with the time series graph. As the example in
Figure 2(b) illustrates, the kth measurement of the nth sensor
is indexed by the nth node of the kth copy of the sensor graph
(or, equivalently, the kth node of the nth copy of the time
series graph). Depending on the choice of product, a measure-
ment of a sensor is related to the measurements collected by
this sensor and its neighbors at the same time and previous and fol-
lowing time steps. For instance, the strong product in Figure 2(b)
relates the measurement of the nth sensor at time step k to its
measurements at time steps k 1- and ,k 1+ as well as to mea-
surements of its neighbors at times ,k 1- ,k and .k 1+

A social network with multiple communities also may be
representable by a graph product. Figure 2(c) shows an example

of a social network that has three communities with similar
structures, where individuals from different communities also
interact with each other. This social graph may be seen as an
approximation of the Cartesian product of the graph that cap-
tures the community structure and the graph that captures the
interaction between communities.

Other examples where product graphs are potentially use-
ful for data representation include multiway data arrays that
contain elements described by multiple features, parameters,
or characteristics, such as publications in citation databases
described by their topics, authors, and venues; or Internet
connections described by their time, location, IP address, port
accesses, and other parameters. In this case, the graph factors
in (22) represent similarities or dependencies between subsets
of characteristics.

Graph products are also used for modeling entire graph fam-
ilies. Kronecker products of scale-free graphs with the same
degree distribution are also scale free and have the same distri-
bution [35], [40]. K- and e-nearest neighbor graphs, which are
used in signal processing, communications, and machine learn-
ing to represent spatial and temporal location of data, such as
sensor networks and image pixels, or data similarity structure,
can be approximated with graph products, as the examples in
Figure 2(a) and (b) suggest. Other graph families, such as trees,
are constructed using rooted graph products [41], which are not
discussed in this article.

SIgnAl ProceSSIng on Product grAPhS
In this section, we discuss how product graphs help “modular-
ize” the computation of filtering and Fourier transform on
graphs and improve algorithms, data storage, and memory
access for large data sets. They lead to graph filtering and Fou-
rier transform implementations suitable for multicore and clus-
tered platforms with distributed storage by taking advantage of
such performance optimization techniques as parallelization and
vectorization. The presented results illustrate how product
graphs offer a suitable and practical model for constructing and
implementing signal processing methodologies for large data
sets. In this, product graphs are similar to other graph families,
such as scale-free and small-world graphs, that are used to
model properties of real-world graphs and data sets: while mod-
els do not fit exactly to all real-world graphs, they capture and
abstract relevant representations of graphs and facilitate their
analysis and processing.

filterinG
Recall that graph filtering is computed as the multiplication of a
graph signal (1) by a filter (16). As we discussed in the section
“Challenges of Big Data,” computation of a filtered signal
requires repeated multiplications by the shift matrix, which is
in general a computation- and memory-expensive operation for
very large data sets.

Now, consider, for instance, a Cartesian product graph with
the shift matrix (25). A graph filter of the form (16) for this
graph is written as

Social Network
with Communities

Community
Structure

Intercommunity
Communication

Structure

(c)

(a)
Digital Image Row Column

(b)

Time
Series

M
ea

su
re

m
en

ts
at

 O
ne

 T
im

e
S

te
p

Measurements of One Sensor

Sensor Network
Measurements

Sensor
Network

[FIg2] examples of product graphs indexing various data:
(a) digital images reside on rectangular lattices that are cartesian
products of line graphs for rows and columns, (b) measurements
of a sensor network are indexed by the strong product of the
sensor network graph with the time series graph (the edges of
the cartesian product are shown in blue and green, and edges
of the Kronecker product are shown in gray; the strong
product contains all edges), and (c) a social network with
three similar communities is approximated by a cartesian
product of the community structure graph with the
intercommunity communication graph.

 IEEE SIGNAL PROCESSING MAGAZINE [87] SEPTEMBER 2014

 () .h h gA A I I A IL N N N N

L

1 2
0

1

2 1 1 27 7= + -# ,

,=

-

^ h% (27)

Hence, multiplication by the shift matrix A# is replaced with
multiplications by matrices A IN1 27 and .I AN 217

Multiplication by matrices of the form I AN 217 and A IN1 27
have multiple efficient implementations that take advantage of
modern optimization and high-performance techniques, such
as parallelization and vectorization [26], [42], [43]. In particular,
the product ()I A sN 217 is calculated by multiplying N1 signal
segments ,s , ,n n N2f + ,n N0 11# of length N2 by the matrix

.A2 These products are computed with independent parts of the
input signal, which eliminates data dependency and makes
these operations highly suitable for a parallel implementation
on a multicore or cluster platform [42]. As an illustration, for

,N 31 = ,N 22 = matrix

a
a

a
a

A
00

10

01

11
= ; E (28)

and a signal ,s C6! we obtain

 () .

s
s
s
s
s
s

I A s
A

A
A

s

A

A

A

3

0

1

2

3

4

5

7 = =

R

T

S
S
S
S
S
SS

>

;

;

;

V

X

W
W
W
W
W
WW

H

E

E

E

Here, all multiplications by A are independent from each other
both in data access and computations.

Similarly, the product ()A I sN1 27 is calculated by multiply-
ing N2 segments ,s , , , ()n n N n N N11 2 1f+ + - ,n N0 21# of the input
signal by the matrix .A1 These products are highly suitable for a
vectorized implementation, available on modern computational
platforms, that performs an operation on several input values
simultaneously [42]. For instance, for A in (28), we obtain

 () .

a
s
s
s

a
s
s
s

a
s
s
s

a
s
s
s

A I s3

00

0

1

2

01

3

4

5

10

0

1

2

11

3

4

5

7 =

+

+

R

T

S
S
S
S
S
S
SS

> >

> >

V

X

W
W
W
W
W
W
WW

H H

H H

Here, three sequential signal values are multiplied by one ele-
ment of matrix A at the same time. These operations are per-
formed simultaneously by a processor with vectorization
capabilities, which respectively decreases the computation time
by a factor of three.

In addition to its suitability for parallelized and vectorized
implementations, computing the output of the filter (27) on a Car-
tesian graph also requires significantly fewer operations, since the
multiplication by the shift matrix (25) requires N1 multiplications
by an N N2 2# matrix and N2 multiplications by an N N1 1#
matrix, which results in () () (())O N N O N N O N N N1 2

2
1
2

2 1 2+ = +
operations rather than () .O N2 (We discuss here operation counts
for general graphs with full matrices. In practice, adjacency
matrices are often sparse, and their multiplication requires

fewer operations. Computational savings provided by product
graphs are, likewise, significant for sparse adjacency matrices.)
For example, when , ,N N N1 2 . this represents a reduction of
the computational cost of graph filtering by a factor .N To put
this into the big data perspective, for a graph with a million verti-
ces, the cost of filtering is reduced by a factor of 1,000, and for a
graph with a billion vertices, the cost reduction factor is more
than 30,000.

Furthermore, the multiplication by a matrix of the form
I A7 can be replaced by the multiplication with a matrix A I7
with no additional arithmetic operations by suitable permuta-
tion of signal values [22], [42], [43]. This interchangeability
leads to a selection between parallelized and vectorized imple-
mentations and provides means to efficiently compute graph fil-
tered signals on platforms with arbitrary number of cores and
vectorization capabilities.

The advantages of filtering on Cartesian product graphs also
apply to Kronecker and strong product graphs. In particular,
using the property [22]

 () (),IA A A I AN N1 2 1 27 7 7= 2 1 (29)

we write the graph filter (16) for the Kronecker product as

 () () ()) ,h h gA A I I A IL N N N N

L

1 2
0

1

2 1 1 27 7= -7 ,

,=

-

^ h%

and for the strong product as

 () () ()h hA A I I AL N N

L

1 2
0

1

2 17 7=X

,=

-

%

) .gA I I A IN N N N1 22 1 1 27 7+ + - ,

Similarly to (27), these filters multiply input signals by matrices
I AN 217 and A IN1 27 and are implementable using paralleliza-
tion and vectorization techniques. They also lead to substantial
reductions of the number of required computations.

fourier tranSform
The frequency content of a graph signal is computed through
the graph Fourier transform (18). In general, this procedure has
the computational cost of ()O N2 operations and requires access
to the entire signal in memory. Moreover, it also requires a pre-
liminary calculation of the eigendecomposition of the graph
shift matrix ,A which, in general, takes ()O N3 operation.

Let us consider a Cartesian product graph with the shift
matrix (25). Assume that the eigendecomposition (17) of the
matrices A1 and A2 is respectively ,A V Vi i i i

1K= - { , },i 1 2!
where iK has eigenvalues , ,, ,i i N0 1fm m - on the main diagonal.
Similar results can be obtained for nondiagonalizable matrices
using Jordan decomposition. The derivation is more involved,
and we omit it for simplicity of discussion.

If we denote ,V V V1 27= then the eigendecomposition of
the shift matrix (25) is [22]

 () .A V I I VN N1 2
1

2 17 7K K= +#
- (30)

 IEEE SIGNAL PROCESSING MAGAZINE [88] SEPTEMBER 2014

Hence, the graph Fourier transform associated with a Cartesian
product graph is given by the matrix Kronecker product of the
graph Fourier transforms for its factor graphs:

 () ,F V V V V F F1 2
1

1
1

2
1

1 27 7 7= = =#
- - - (31)

and the spectrum is given by the element-wise summation of
the spectra of the smaller graphs: ,, ,n m1 2m m+ n N0 11# and

.m N0 21#
Reusing the property (29), (31) can be written as

() ()F F F F I I FN N1 2 1 22 17 7 7= =# and efficiently implemented
using parallelization and vectorization techniques. Moreover,
the computation of the eigendecomposition (30) is replaced
with finding the eigendecomposition of the shift matrices A1
and ,A2 which reduces the computation cost from ()O N3 to
() .O N N1

3
2
3+ For instance, when , ,N N N1 2 . the computa-

tional cost of the eigendecomposition is reduced by a factor
.N N Hence, for a graph with a million vertices, the cost of

computing the eigendecomposition is reduced by a factor of
more than ,3 104# and for a graph with a billion vertices, the
cost reduction factor is over .3 1013#

The same improvements apply to the Kronecker and strong
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is

() ,

() .

A V V
A V I I VN N

1 2
1

1 2 1 2
1

2 1

7

7 7 7

K K

K K K K

=

= + +

7

X

-

-

Observe that all three graph products have the same graph
Fourier transform. However, the corresponding spectra are
different: for Cartesian and strong products, they are, respec-
tively, , ,n m1 2m m and ,, , , ,n m n m1 2 1 2m m m m+ + where n N0 11#
and .m N0 21# Thus, while all three graph products have
the same frequency components, the ordering of these compo-
nents from lowest to highest frequencies, as defined by DSPG
and discussed in the section “Signal Processing on Graphs,”
can be different. As an illustration, consider the example in
Figure 3. It shows the frequencies (eigenvalues) of the three

graph products in Figure 2(b). All product graphs have the
same 16 frequency components (eigenvectors), but the fre-
quencies (eigenvalues) corresponding to these components are
different and on each graph have a different interpretation as
low or high frequency. For example, the values in the upper
left corners of Figure 3(a)–(c) correspond to the same fre-
quency component. By comparing these values, we observe
that this component represents the highest frequency in the
Cartesian product graph, the lowest frequency in the Kro-
necker product graph, and a midspectrum component in the
strong product graph.

FASt grAPh FourIer trAnSFormS
A major motivation behind the use of product graphs in signal
processing and DSPG is derivation of fast computational algo-
rithms for the graph Fourier transform. A proper overview of
this topic requires an additional discussion of graph concepts
and an algebraic approach to fast algorithms [29], [44], [45] that
are beyond the scope of this article.

As an intuitive example, consider a well-known and widely
used decimation-in-time fast Fourier transform for power-of-
two sizes [27]. It is derived using graph products as follows.
We view the DFTN as the graph Fourier transform of a graph
with adjacency matrix ,C2 where C is the cyclic shift matrix
(3). This is a valid algebraic assumption, since the DFTN is a
graph Fourier transform not only for the graph in Figure 1(a),
but for any graph with adjacency matrix given by a polynomial
() .h C This graph, after a permutation of its vertices at stride

two (which represents the decimation-in-time step), becomes
a product of a cyclic graph with /N 2 vertices with a graph of
two disconnected vertices. As a result, its graph Fourier trans-
form DFTN becomes a product I DFT /N2 27 and additional,
sparse matrices that capture the operations of graph restruc-
turing. By continuing this process recursively for ,DFT /N 2

,DFT /N 4 and so forth, we decompose DFTN into a product of
sparse matrices with cumulative arithmetic cost of
(),logO N N thus obtaining a fast algorithm for the computa-

tion of .DFTN

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

(a) (b)

−2
−1
0
1
2
3
4
5
6
7

(c)

Strong ProductKronecker ProductCartesian Product

[FIg3] the frequency values for the product graphs in Figure 2(b). Frequencies are shown as a color-coded 2-d map, with x- and y-axis
representing frequencies of two factor graphs. higher values correspond to lower frequencies and vice versa. (a) the cartesian
product, (b) Kronecker product, and (c) strong product.

 IEEE SIGNAL PROCESSING MAGAZINE [89] SEPTEMBER 2014

relAtIon to exIStIng APProAcheS
The instantiation of DSPG for product graphs relates to existing
approaches to complex data analysis that are not based on
graphs but rather view data as multidimensional arrays [2]–[4].
Given a K-dimensional data set ,S CN N NK1 2! # # #f the family of
methods called canonical decomposition or parallel factor
analysis searches for K matrices ,M Ck

N Rk! # ,k K1 # # that
provide an optimal approximation of the data set

 ,S m m m E, , ,r
r

R

r K r1
1

2& & &f= +
=

/ (32)

that minimizes the error

 || | | | | .E E , , ,
n

N

n

N

n n n
1 1

2

k

K

K

1

1

1 2f= f

= =

/ /

Here, m ,k r denotes the rth column of matrix ,Mk and &
denotes the outer product of vectors.

A more general approach, called Tucker decomposition,
searches for K matrices ,M Ck

N Rk k! # ,k K1 # # and a matrix
C CR R RK1 2! # # #f that provide an optimal approximation of the
data set as

 .S C m m E, , , ,
r

R

r r
r

R

r K r
1 1

1K

K

K

K

1

1

1 1 & &f f= +f

= =

/ / (33)

Tucker decomposition is also called a higher-order PCA or SVD,
since it effectively extends these techniques from matrices to
higher-order arrays.

Decompositions (32) and (33) can be interpreted as signal com-
pression on product graphs. For simplicity of discussion, assume
that K 2= and consider a signal s CN N1 2! that lies on a product
graph (22) and corresponds to a 2-D signal ,S CN N1 2! # so that

,S s,n n n N n1 2 1 2 2= + where n N0 i i1# for , .i 1 2= If matrices M1
and M2 contain as columns, respectively, R1 and R2 eigenvectors
of A1 and ,A2 then the decomposition (33) represents a lossy com-
pression of the graph signal in the frequency domain, a widely used
compression technique in signal processing [21], [24].

exAmPle APPlIcAtIon
As a motivational application example of DSPG on product
graphs, we consider data compression. For the testing data set,
we use the set of daily temperature measurements collected by
150 weather stations across the United States [17] during the
year 2002. Figure 1(b) shows the measurements from one day
(1 December 2002), as well as the sensor network graph. The
graph is constructed by connecting each sensor to eight of its
nearest neighbors with undirected edges with weights given by
[17, eq. (29)]. As illustrated by the example in Figure 2(b), such

a data set can be described by a product of the sensor network
graph and the time series graphs. We use the sensor network
graph in Figure 1(b) with N 1501 = nodes and the time series
graph in Figure 1(a) with N 3652 = nodes.

The compression is performed in the frequency domain. We
compute the Fourier transform (31) of the data set, keep only C
spectrum coefficients with largest magnitudes and replace others
with zeros, and perform the inverse graph Fourier transform on
the resulting coefficients. This is a lossy compression scheme,
with the compression error given by the norm of the difference
between the original data set and the reconstructed one normal-
ized by the norm of the original data set. Note that, while the
approach is tested here on a relatively small data set, it is applica-
ble in the same form to arbitrarily large data sets.

The compression errors for the considered temperature data
set are shown in Table 1. The results demonstrate that even for
high compression ratios, that is, when the number C of stored
coefficients is much smaller than the data set size ,N N N1 2=
the compression introduces only a small error and leads to
insignificant loss of information. A comparison of this approach
with schemes that compress the data only in one dimension
(they separately compress either time series from each sensor
or daily measurements from all sensors) [17], [25] also reveals
that compression based on the product graph is significantly
more efficient.

concluSIonS
In this article, we presented an approach to big data analysis based
on the DSP on graphs. We reviewed fundamental concepts of the
framework and illustrated how it extends traditional signal pro-
cessing theory to data sets represented with general graphs. To
address important challenges in big data analysis and make imple-
mentations of fundamental DSPG techniques suitable for very
large data sets, we considered a generalized graph model given by
several kinds of product graphs, including the Cartesian, Kro-
necker, and strong product graphs. We showed that these product
graph structures significantly reduce arithmetic cost of associated
DSPG algorithms and make them suitable for parallel and distrib-
uted implementation, as well as improve memory storage and
access of data. The discussed methodology bridges a gap between
signal processing, big data analysis, and high-performance com-
puting, as well as presents a framework for the development of
new methods and tools for analysis of massive data sets.

AuthorS
Aliaksei Sandryhaila (asandryh@andrew.cmu.edu) received a B.S.
degree in computer science from Drexel University, Philadelphia,

[tABle 1] errorS Introduced By comPreSSIon oF the temPerAture dAtA.

FrActIon oF coeFFIcIentS uSed (c/n)
1/50 1/20 1/15 1/10 1/7 1/5 1/3

ERRoR (%) 4.9 3.5 3.1 2.6 2.1 1.6 0.7
PSNR (dB) 71.2 74.1 75.1 76.7 78.5 80.9 87.1

 IEEE SIGNAL PROCESSING MAGAZINE [90] SEPTEMBER 2014

Pennsylvania, in 2005, and a Ph.D. degree in electrical and com-
puter engineering from Carnegie Mellon University (CMU),
Pittsburgh, Pennsylvania, in 2010. He is currently a research sci-
entist in the Department of Electrical and Computer Engineering
at CMU. His research interests include big data analysis, signal
processing, machine learning, design and optimization of algo-
rithms and software, and high-performance computing. He is a
Member of the IEEE.

José M.F. Moura (moura@ece.cmu.edu) is the Philip and
Marsha Dowd University Professor at Carnegie Mellon
University (CMU). In 2013–2014, he is a visiting professor at
New York University with the Center for Urban Science and
Progress. He holds degrees from IST (Portugal) and the
Massachusetts Institute of Technology, where he has been a vis-
iting professor. At CMU, he manages the CMU/Portugal
Program. His interests are in signal processing and data science.
He was an IEEE Board director, president of the IEEE Signal
Processing Society (SPS), and editor-in-chief of IEEE
Transactions on Signal Processing. He received the IEEE SPS
Technical Achievement Award and the IEEE SPS Society Award.
He is a Fellow of the IEEE and the AAAS, a corresponding mem-
ber of the Academy of Sciences of Portugal, and a member of
the U.S. National Academy of Engineering.

reFerenceS
[1] P. Zikopoulos, D. deRoos, and K. P. Corrigan, Harness the Power of Big Data. New
York: McGraw-Hill, 2012.

[2] M. W. Mahoney, M. Maggoni, and P. Drineas, “Tensor-CUR decompositions for
tensor-based data,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 957–987, 2008.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455–500, 2009.

[4] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature survey,”
IEEE Trans. Knowledge Data Eng., vol. 21, no. 1, pp. 6–20, 2009.

[5] A. H. Andersen and W. S. Rayens, “Structure-seeking multilinear methods for the
analysis of fMRI data,” Neuroimage, vol. 22, no. 2, pp. 728–739, 2004.

[6] F. Miwakeichi, E. Martinez-Montes, P. A. Valdes-Sosa, N. Nishiyama, H. Mizu-
hara, and Y. Yamaguchi, “Decomposing EEG data into space-time-frequency compo-
nents using parallel factor analysis,” Neuroimage, vol. 22, no. 3, pp. 1035–1045, 2004.

[7] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC receivers for DS-
CDMA systems,” IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 810–823, 2000.

[8] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in sen-
sor array processing,” IEEE Trans. Signal Processing, vol. 48, no. 8, pp. 2377–2388,
2000.

[9] L. De Lathauwer and J. Castaing, “Blind identification of underdetermined mix-
tures by simultaneous matrix diagonalization,” IEEE Trans. Signal Processing, vol. 56,
no. 3, pp. 1096–1105, 2008.

[10] J. F. Tenenbaum, V. Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323,
2000.

[11] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear em-
bedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[12] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation,” Neural Comp., vol. 15, no. 6, pp. 1373–1396, 2003.

[13] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embed-
ding techniques for high-dimensional data,” Proc. Nat. Acad. Sci., vol. 100, no. 10,
pp. 5591–5596, 2003.

[14] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via
spectral graph theory,” J. Appl. Comp. Harm. Anal., vol. 30, no. 2, pp. 129–150, 2011.

[15] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet fil-
ter banks for graph structured data,” IEEE Trans. Signal Processing, vol. 60, no. 6,
pp. 2786–2799, 2012.

[16] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs,” IEEE Signal Processing Mag., vol. 30,
no. 3, pp. 83–98, 2013.

[17] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE
Trans. Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[18] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Fre-
quency analysis,” IEEE Trans. Signal Processing, vol. 62, no. 12, pp. 3042–3054,
2014.

[19] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: Foundation
and 1-D time,” IEEE Trans. Signal Processing, vol. 56, no. 8, pp. 3572–3585, 2008.

[20] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: 1-D space,”
IEEE Trans. Signal Processing, vol. 56, no. 8, pp. 3586–3599, 2008.

[21] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Process-
ing, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1999.

[22] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. New York:
Academic, 1985.

[23] A. Sandryhaila and J. M. F. Moura, “Classification via regularization on
graphs,” in Proc. IEEE Global Conf. Signal Information Processing, 2013,
pp. 495–498.

[24] S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed. New York: Academic,
2008.

[25] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Graph
Fourier transform,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process-
ing, 2013, pp. 6167–6170.

[26] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD:
The Johns Hopkins Univ. Press, 1996.

[27] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of com-
plex Fourier series,” Math. Computat., vol. 19, no. 9, pp. 297–301, 1965.

[28] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review and a state
of the art,” J. Signal Process., vol. 19, no. 4, pp. 259–299, 1990.

[29] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: Cooley–Tukey
type algorithms for DCTs and DSTs,” IEEE Trans. Signal Processing, vol. 56, no. 4,
pp. 1502–1521, 2008.

[30] W. Imrich, S. Klavzar, and D. F. Rall, Topics in Graph Theory: Graphs and Their
Cartesian Product. Boca Raton, FL: CRC Press, 2008.

[31] R. Hammack, W. Imrich, and S. Klavzar, Handbook of Product Graphs, 2nd ed.
Boca Raton, FL: CRC Press, 2011.

[32] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[33] E. Acar, R. J. Harrison, F. Olken, O. Alter, M. Helal, L. Omberg, B. Bader, A. Ken-
nedy, H. Park, Z. Bai, D. Kim, R. Plemmons, G. Beylkin, T. Kolda, S. Ragnarsson,
L. Delathauwer, J. Langou, S. P. Ponnapalli, I. Dhillon, L. Lim, J. R. Ramanujam,
C. Ding, M. Mahoney, J. Raynolds, L. Elden, C. Martin, P. Regalia, P. Drineas, M.
Mohlenkamp, C. Faloutsos, J. Morton, B. Savas, S. Friedland, L. Mullin, and C. Van
Loan, “Future directions in tensor-based computation and modeling,” NSF Workshop
Rep., Arlington, VA, Feb. 2009.

[34] M. Hellmuth, D. Merkle, and M. Middendorf, “Extended shapes for the com-
binatorial design of RNA sequences,” Int. J. Comp. Biol. Drug Des., vol. 2, no. 4,
pp. 371–384, 2009.

[35] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani,
“Kronecker graphs: An approach to modeling networks,” J. Mach. Learn. Res.,
vol. 11, pp. 985–1042, Feb. 2010.

[36] S. Moreno, S. Kirshner, J. Neville, and S. Vishwanathan, “Tied Kronecker prod-
uct graph models to capture variance in network populations,” in Proc. Allerton Conf.
Communication, Control, and Computing, 2010, pp. 1137–1144.

[37] S. Moreno, J. Neville, and S. Kirshner, “Learning mixed Kronecker product graph
models with simulated method of moments,” in Proc. ACM SIGKDD Conf. Knowledge
Discovery and Data Mining, 2013, pp. 1052–1060.

[38] C. Van Loan and N. Pitsianis, “Approximation with Kronecker products,”
in Proc. Linear Algebra for Large Scale and Real Time Applications, 1993,
pp. 293–314.

[39] M. Hellmuth, W. Imrich, and T. Kupka, “Partial star products: A local covering
approach for the recognition of approximate Cartesian product graphs,” Math. Comp.
Sci., vol. 7, no. 3, pp. 255–273, 2013.

[40] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using Kronecker
multiplication,” in Proc. Int. Conf. Machine Learning, 2007, pp. 497–504.

[41] C. D. Godsil and B. D. McKay, “A new graph product and its spectrum,” Bull. Aust.
Math. Soc., vol. 18, no. 1, pp. 21–28, 1978.

[42] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura, “Dis-
crete Fourier transform on multicore,” IEEE Signal Processing Mag., vol. 26, no. 6,
pp. 90–102, 2009.

[43] Y. Voronenko, F. de Mesmay, and M. Püschel, “Computer generation of general
size linear transform libraries,” in Proc. IEEE Int. Symp. Code Generation and Opti-
mization, 2009, pp. 102–113.

[44] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete co-
sine and sine transforms and their fast algorithms,” SIAM J. Comp., vol. 32, no. 5,
pp. 1280–1316, 2003.

[45] A. Sandryhaila, J. Kovacevic, and M. Püschel, “Algebraic signal processing the-
ory: Cooley–Tukey type algorithms for polynomial transforms based on induction,”
SIAM J. Matrix Anal. Appl., vol. 32, no. 2, pp. 364–384, 2011.
 [SP]

