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nalysis and processing of very large data sets, or big 
data, poses a significant challenge. Massive data sets 

are collected and studied in numerous domains, 
from engineering sciences to social networks, 
biomolecular research, commerce, and security. 

Extracting valuable information from big data requires innova-
tive approaches that efficiently process large amounts of data as 
well as handle and, moreover, utilize their structure. This 

article discusses a paradigm for large-scale data analysis based 
on the discrete signal processing (DSP) on graphs (DSPG). 
DSPG extends signal processing concepts and methodologies 
from the classical signal processing theory to data indexed by 
general graphs. Big data analysis presents several challenges to 
DSPG, in particular, in filtering and frequency analysis of very 
large data sets. We review fundamental concepts of DSPG, 
including graph signals and graph filters, graph Fourier trans-
form, graph frequency, and spectrum ordering, and compare 
them with their counterparts from the classical signal process-
ing theory. We then consider product graphs as a graph model 
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that helps extend the application of DSPG methods to large data 
sets through efficient implementation based on parallelization 
and vectorization. We relate the presented framework to exist-
ing methods for large-scale data processing and illustrate it with 
an application to data compression. 

IntroductIon
Data analysts in scientific, government, industrial, and commer-
cial domains face the challenge of coping with rapidly growing 
volumes of data that are collected in numerous applications. 
Examples include biochemical and genetics research, fundamen-
tal physical experiments and astronomical observations, social 
networks, consumer behavior studies, and many others. In these 
applications, large amounts of raw data can be used for decision 
making and action planning, but their volume and increasingly 
complex structure limit the applicability of many well-known 
approaches widely used with small data sets, such as principal 
component analysis (PCA), singular value decomposition (SVD), 
spectral analysis, and others. This problem—the big data problem 
[1]—requires new paradigms, techniques, and algorithms. 

Several approaches have been proposed for representation and 
processing of large data sets with complex structure. Multidimen-
sional data, described by multiple parameters, can be expressed 
and analyzed using multiway arrays [2]–[4]. Multiway arrays have 
been used in biomedical signal processing [5], [6], telecommuni-
cations and sensor array processing [7]–[9], and other domains. 

Low-dimensional representations of high-dimensional data 
have been extensively studied in [10]–[13]. In these approaches, 
data sets are viewed as graphs in high-dimensional spaces and 
data are projected on low-dimensional subspaces generated by 
small subsets of the graph Laplacian eigenbasis. 

Signal processing on graphs extends classical signal process-
ing theory to general graphs. Some techniques, such as in [14]–
[16], are motivated in part by the works on graph Laplacian-based 
low-dimensional data representations. DSPG [17], [18] builds 
upon the algebraic signal processing theory [19], [20]. 

This article considers the use of DSPG as a methodology for 
big data analysis. We discuss how, for appropriate graph models, 
fundamental signal processing techniques, such as filtering and 
frequency analysis, can be implemented efficiently for large data 
sizes. The discussed framework addresses some of the key chal-
lenges of big data through arithmetic cost reduction of associated 
algorithms and use of parallel and distributed computations. The 
presented methodology introduces elements of high-performance 
computing to DSPG and offers a structured approach to the devel-
opment of data analysis tools for large data volumes.  

SIgnAl ProceSSIng on grAPhS
We begin by reviewing notation and main concepts of DSPG. For 
a detailed introduction to the theory, we refer the readers to 
[17] and [18]. Definitions and constructs presented here apply 
to general graphs. In the special case of undirected graphs with 
nonnegative real edge weights, similar definitions can be for-
mulated using the graph Laplacian matrix, as discussed in [14]–
[16] and references therein. 

Graph SiGnalS
DSPG studies the analysis and processing of data sets in which 
data elements are related by dependency, similarity, physical 
proximity, or other properties. This relation is expressed though 
a graph ( , ),G AV=  where { , , }v vV N0 1f= -  is the set of N  
nodes and A  is the weighted adjacency matrix of the graph. Each 
data element corresponds to a node vn  (we also say the data ele-
ment is indexed by ) .vn  A nonzero weight A C,n m !  indicates 
the presence of a directed edge from vm  to vn  that reflects the 
appropriate dependency or similarity relation between the nth
and mth  data elements. The set of neighbors of vn  forms its 
neighborhood denoted as { } .m 0AN ,n n m !=

Given the graph, the data set forms a graph signal, defined 
as a map 

 : ,s CV "  ,v sn n7  

where C  is the set of complex numbers. It is convenient to 
write graph signals as vectors 

[FIg1] examples of graph signals. Signal values are represented 
with different colors. (a) the periodic time series /cos n2 6r^ h 
resides on a directed line graph with six nodes; the edge from the 
last node to the first captures the periodicity of the series.  
(b) temperature measurements across the united States reside on 
the graph that represents the network of weather sensors.  
(c) Web site topics are encoded as a signal that resides on the 
graph formed by hyperlinks between the Web sites. (d) the 
average numbers of tweets for twitter users are encoded as a 
signal that resides on the graph representing who follows whom.
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 .s s ss CN
T N

0 1 1f != -6 @  (1)

One should view the vector (1) not just as a list, but as a graph 
with each value sn  residing at node .vn

Figure 1 shows examples of graph signals. Finite periodic 
time series, studied by finite-time DSP [19], [21], are indexed by 
directed cyclic graphs, such as the graph in Figure 1(a). Each 
node corresponds to a time sample; all edges are directed and 
have the same weight 1, reflecting the causality of time series; 
and the edge from the last to the first node reflects the periodic-
ity assumption. Data collected by sensor networks is another 
example of graph signals: sensor measurements form a graph 
signal indexed by the sensor network graph, such as the graph 
in Figure 1(b). Each graph node is a sensor, and edges connect 
closely located sensors. Graph signals also arise in the World 
Wide Web: for instance, Web site features (topic, view count, rel-
evance) are graph signals indexed by graphs formed by hyper-
link references, such as the graph in Figure 1(c). Each node 
represents a Web site, and directed edges correspond to hyper-
links. Finally, graph signals are collected in social networks, 
where characteristics of individuals (opinions, preferences, 
demographics) form graph signals on social graphs, such as the 
graph in Figure 1(d). Nodes of the social graph represent indi-
viduals, and edges connect people based on their friendship, col-
laboration, or other relations. Edges can be directed (such as 
follower relations on Twitter) or undirected (such as friendship 
on Facebook or collaboration ties in publication databases). 

Graph Shift
In DSP, a signal shift, implemented as a time delay, is a basic 
nontrivial operation performed on a signal. A delayed finite peri-
odic time series of length N  is .ss modn n N1= -u  Using the vector 
notation (1), the shifted signal is written as 

 ,s ss CsN
T

0 1f= =-u u u6 @  (2)

where C  is the N N#  cyclic shift matrix (only nonzero entries 
are shown) 
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Note that (3) is precisely the adjacency matrix of the periodic 
time series graph in Figure 1(a). 

DSPG extends the concept of shift to general graphs by defin-
ing the graph shift as a local operation that replaces a signal 
value sn  at node vn  by a linear combination of the values at the 
neighbors of vn  weighted by their edge weights: 

 .s sA ,n n m m
m Nn

=
!

u /  (4)

It can be interpreted as a first-order interpolation, weighted aver-
aging, or regression on graphs, which is a widely used operation 
in graph regression, distributed consensus, telecommunications, 

Markov processes and other approaches. Using the vector 
 notation (1), the graph shift (4) is written as 

 .s ss AsN
T

0 1f= =-u u u6 @  (5)

The graph shift (5) naturally generalizes the time shift (2). 
Since in DSPG the graph shift is defined axiomatically, other 

choices for the operation of a graph shift are possible. The 
advantage of the definition (4) is that it leads to a signal process-
ing framework for linear and commutative graph filters. Other 
choices, such as selective averaging over a subset of neighbors 
for each graph vertex, do not lead to linear commutative filters 
and hence to well-defined concepts of frequency, Fourier trans-
form, and others.

Graph filterS and z-tranSform
In signal processing, a filter is a system H $^ h that takes a signal 
(1) as an input and outputs a signal 

 ( ) .s ss H sN
T

0 1f= =-u u u6 @  (6)

Among the most widely used filters are linear shift-invariant (LSI) 
ones. A filter is linear, if for a linear combination of inputs it 
 produces the same combination of outputs: ( )s sH 1 2a b+ =  

( ) ( ) .s sH H1 2a b+  Filters H1 $^ h and H2 $^ h are commutative, 
or shift-invariant, if the order of their application to a signal does 
not change the output: ( ( )) ( ( )) .s sH H H H1 2 2 1=

The z-transform provides a convenient representation for sig-
nals and filters in DSP. By denoting the time delay (2) as ,z 1-  all 
LSI filters in finite-time DSP are written as polynomials in z 1-

 ( ) ,h z h zn
n

N
n1

0

1

=-

=

-
-/  (7)

where the coefficients , , ,h h hN0 1 1f -  are called filter taps. 
Similarly, finite time signals are written as 

 ( ) .s z s zn
n

N
n1

0

1

=-

=

-
-/  (8)

The filter output is calculated by multiplying its z-transform (7) 
with the z-transform of the input signal (8) modulo the polyno-
mial ,z 1N --  [19]: 

 ( )s z s zn
n

N
n1

0

1

=-

=

-
-u u/ ( ) ( ) ( ) .modh z s z z 1N1 1= -- - -  (9)

Equivalently, the output signal is given by the product [21] 

 ( )hs C s=u  (10)

of the input signal (1) and the matrix 
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Observe that the circulant matrix ( )h C  in (11) is obtained by 
substituting the time shift matrix (3) for z 1-  in the filter 
z-transform (7). In finite-time DSP, this substitution establishes 
a surjective (onto) mapping from the space of LSI filters and the 
space of N N#  circulant matrices. 

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift (5), 
filters (11) are generalized to graph filters as polynomials in the 
graph shift [17], and all LSI graph filters have the form 

 ( ) .h hA A
L

0

1

= ,

,

,

=

-

/  (12)

In analogy with (10), the graph filter output is given by 

 ( ) .hs A s=u  (13)

The output can also be computed using the graph z-transform 
that represents graph filters (12) as 

 ( ) ,h z h z
L

1

0

1

= ,

,

,-

=

-
-/  (14)

and graph signals (1) as polynomials ( ) ( ),s z s b zn nn
N1 1

0
1=- -

=

-/  
where ( ),b zn

1-  ,n N0 1#  are appropriately constructed, lin-
early independent polynomials of degree smaller than N  (see 
[17] for details). Analogously to (9), the output of the graph 
filter (14) is obtained as the product of z-transforms modulo 
the minimal polynomial  ( )m z 1

A
-  of the shift matrix A :

 ( ) ( )s z s b zn
n

N

n
1

0

1
1=-

=

-
-u u/ ( ) ( ) ( ) .modh z s z m z1 1 1

A= - - -  (15)

Recall that the minimal polynomial of A  is the unique monic 
polynomial of the smallest degree that annihilates ,A  i.e., 

( )m 0AA =  [22]. 
Graph filters have a number of important properties. An 

inverse of a graph filter, if it exists, is also a graph filter that can 
be found by solving a system of at most N  linear equations. 
Also, the number of taps in a graph filter is not larger than the 
degree of the minimal polynomial of ,A  which provides an 
upper bound on the complexity of their computation. In particu-
lar, since the graph filter (12) can be factored as 

 ( ) ,h h gA A IL

L

1
0

1

= - ,

,

-

=

-

^ h%  (16)

the computation of the output (13) requires, in general, 
( )degL m xA#  multiplications by .A

Graph fourier tranSform
Mathematically, a Fourier transform with respect to a set of 
operators is the expansion of a signal into a basis of the opera-
tors’ eigenfunctions. Since in signal processing the operators 
of interest are filters, DSPG defines the Fourier transform with 
respect to the graph filters. 

For simplicity of the discussion, assume that A  is diagonal-
izable and its eigendecomposition is 

 ,A V V 1K= -  (17)

where the columns vn  of the matrix V v v CN
N N

0 1f != #
-6 @  

are the eigenvectors of ,A  and CN N!K #  is the diagonal 
matrix of corresponding eigenvalues , , N0 1fm m -  of .A  If A  is 
not diagonalizable, Jordan decomposition into generalized 
eigenvectors is used [17].

The eigenfunctions of graph filters ( )h A  are given by the 
eigenvectors of the graph shift matrix A  [17]. Since the expansion 
into the eigenbasis is given by the multiplication with the inverse 
eigenvector matrix [22], which always exists, the graph Fourier 
transform of a graph signal (1) is well defined and computed as 

 
,

s ss V s
Fs

N
T

0 1
1f= =

=

-
-t t t6 @

 
(18)

where F V 1= -  is the graph Fourier transform matrix. 
The values snt  in (18) are the signal’s expansion in the eigenvec-

tor basis and represent the graph frequency content of the signal .s  
The eigenvalues nm  of the shift matrix A  represent graph frequen-
cies, and the eigenvectors vn  represent the corresponding graph 
frequency components. Observe that each frequency component vn  
is a graph signal, too, with its mth  entry indexed by the node .vm

The inverse graph Fourier transform reconstructs the graph 
signal from its frequency content by combining graph fre-
quency components weighted by the coefficients of the signal’s 
graph Fourier transform: 

 s s ss v v vN N0 0 1 1 1 1g= + + + - -t t t .sF V s1= =- t t  (19)

Analogously to other DSPG concepts, the graph Fourier 
transform is a generalization of the discrete Fourier transform 
from DSP. Recall that the mth  Fourier coefficient of a finite 
time series of length N  is 

 ,s
N

s e1
m n

n

N
j N mn

0

1 2
=

r

=

-
-t /  

and the time signal’s discrete Fourier transform is written in 
 vector form as ,s DFT sN=t  where DFTN  is the N N#  discrete 
Fourier transform matrix with the th( , )n m  entry 
/ ( / ) .expN j nm N1 2r-  It is well known that the eigendecom-

position of the time shift matrix (3) is 

 .
e

e

C DFT DFT
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j N

j N
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Hence, the discrete Fourier transform is the graph Fourier transform 
for cyclic line graphs, such as the graph in Figure 1(a), and 

( / ),exp j n N2nm r= -  ,n N0 1#  are the corresponding fre-
quencies. In DSP, the ratio /n N2r  in the exponent 

( / )exp j n N2nm r= -  is also sometimes called (angular) frequency.

AlternAtIve choIceS oF grAPh FourIer BASIS
In some cases, for example, when eigenvector computation is 
not stable, it may be advantageous to use other vectors as the 
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graph Fourier basis, such as singular vectors or eigenvectors of 
the Laplacian matrix. These choices are consistent with DSPG , 
since singular vectors form the graph Fourier basis when the 
graph shift matrix is defined as ,AA*  and Laplacian eigenvec-
tors form the graph Fourier basis when the shift matrix is 
defined by the Laplacian. However, the former implicitly turns 
the original graph into an undirected graph, and the latter 
explicitly requires that the original graph is undirected. As a 
result, in both cases the framework does not use the informa-
tion about the direction of graph edges that is useful in various 
applications [17], [19], [23]. Examples, where relations are 
directed and not always reciprocal, are Twitter (if user A follows 
user B, user B does not necessarily follow user A), and the 
World Wide Web (if document A links to document B, docu-
ment B does not necessarily link to document A). 

frequency reSponSe of Graph filterS
In addition to expressing the frequency content of graph sig-
nals, the graph Fourier transform also characterizes the effect 
of filters on the frequency content of signals. The filtering 
operation (13) can be written using (12) and (18) as 

 ( ) ( ) ( ) ,h h hs A s F F s F F s1 1K K= = =- -J  (20)

where ( )h K  is a diagonal matrix with values ( )h nm =

h n
L

0
1
m,
,

,=

-/  on the diagonal. As follows from (20), 

 ( ) ( ) .h hss A s F s+ K= =u u t  (21)

That is, the frequency content of a filtered signal is modified by 
multiplying its frequency content elementwise by ( ) .h nm  
These values represent the graph frequency response of the 
graph filter (12). 

The relation (21) is a generalization of the classical convolu-
tion theorem [21] to graphs: filtering a graph signal in the 
graph domain is equivalent in the frequency domain to multi-
plying the signal’s spectrum by the frequency response of the 
graph filter. 

low and hiGh frequencieS on GraphS
In DSP, frequency contents of time series and digital images are 
described by complex or real sinusoids that oscillate at different 
rates [24]. These rates provide an intuitive, physical interpreta-
tion of “low” and “high” frequencies: low-frequency compo-
nents oscillate less and high-frequency ones oscillate more. 

In analogy to DSP, frequency components on graphs can 
also be characterized as “low” and “high” frequencies. In par-
ticular, this is achieved by ordering the graph frequency com-
ponents according to how much they change across the graph; 
that is, how much the signal coefficients of a frequency compo-
nent differ at connected nodes. The amount of “change” is cal-
culated using the graph total variation [18]. For graphs with 
real spectra, the ordering from lowest to highest frequencies is 

.N0 1 1f$ $ $m m m -  For graphs with complex spectra, fre-
quencies are ordered by their distance from the point | |maxm  on 

the complex plane, where maxm  is the eigenvalue with the larg-
est magnitude. The graph frequency order naturally leads to 
the definition of low-, high-, and band-pass graph filters, analo-
gously to their counterparts in DSP (see [18] for details). 

 In the special case of undirected graphs with real nonnega-
tive edge weights, the graph Fourier transform (18) can also be 
expressed using the eigenvectors of the graph Laplacian matrix 
[16]. In general, the eigenvectors of the adjacency and Lapla-
cian matrices do not coincide, which can lead to a different 
Fourier transform matrix. However, when graphs are regular, 
both definitions yield the same graph Fourier transform 
matrix, and the same frequency ordering [18]. 

applicationS
DSPG is particularly motivated by the need to extend traditional 
signal processing methods to data sets with complex and irregu-
lar structure. Problems in different domains can be formulated 
and solved as standard signal processing problems. Applications 
include data compression through Fourier transform or 
through wavelet expansions; recovery, denoising, and classifica-
tion of data by signal regularization, smoothing, or adaptive fil-
ter design; anomaly detection via high-pass filtering; and many 
others (see [15] and [16] and references therein). 

For instance, a graph signal can be compressed by comput-
ing its graph Fourier transform and storing only a small fraction 
of its spectral coefficients, the ones with largest magnitudes. The 
compressed signal is reconstructed by computing the inverse 
graph Fourier transform with the preserved coefficients. When 
the signal is sparse in the Fourier domain, that is, when most 
energy is concentrated in a few frequencies, the compressed sig-
nal is reconstructed with a small error [17], [25]. 

Another example application is the detection of corrupted 
data. In traditional DSP, a corrupted value in a slowly chang-
ing time signal introduces additional high-frequency compo-
nents that can be detected by high-pass filtering of the 
corrupted signal. Similarly, a corrupted value in a graph signal 
can be detected through a high-pass graph filter, which can be 
used, for instance, to detect malfunctioning sensors in sensor 
networks [18]. 

chAllengeS oF BIg dAtA
While there is no single, universally agreed upon set of proper-
ties that define big data, some of the commonly mentioned 
ones are volume, velocity, and variety of data [1]. Each of these 
characteristics poses a separate challenge to the design and 
implementation of analysis systems and algorithms for big 
data. First of all, the sheer volume of data to be processed 
requires efficient distributed and scalable storage, access, and 
processing. Next, in many applications, new data is obtained 
continuously. High velocity of new data arrival demands fast 
algorithms to prevent bottlenecks and explosion of the data 
volume and to extract valuable information from the data and 
incorporate it into the decision-making process in real time. 
Finally, collected data sets contain information in all varieties 
and forms, including numerical, textual, and visual data. To 
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generalize data analysis techniques to diverse data sets, we 
need a common representation framework for data sets and 
their structure. 

The latter challenge of data diversity is addressed in DSPG by 
representing data set structure with graphs and quantifying 
data into graph signals. Graphs provide a versatile data abstrac-
tion for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social 
networks, and others. Using this abstraction, data analysis 
methods and tools can be developed and applied to data sets of 
a different nature. 

For efficient big data analysis, the challenges of data vol-
ume and velocity must be addressed as well. In particular, the 
fundamental signal processing operations of filtering and 
spectral decomposition may be prohibitively expensive for 
large data sets both in the amount of required computations 
and memory demands. 

Recall that processing a graph signal (1) with a graph filter 
(16) requires L multiplications by a N N#  graph shift matrix 
.A  For a general matrix, this computation requires ( )O LN2  

arithmetic operations (additions and multiplications) [26]. 
When A  is sparse and has on average K  nonzero entries in 
every row, graph filtering requires O LNK^ h operations. In 
addition, graph filtering also requires access to the entire 
graph signal in memory. Similarly, computation of the graph 
Fourier transform (18) requires ( )O N2  operations and access 
to the entire signal in memory. Moreover, the eigendecomposi-
tion of the matrix A  requires additional ( )O N3  operations and 
memory access to the entire N N#  matrix .A  Note that graph 
filtering can also be performed in the spectral domain with 
( )O N2  operations using the graph convolution theorem (21), 

but it also requires the initial eigendecomposition of .A
Degree heterogeneity in graphs with heavily skewed degree 

distributions, such as scale-free graphs, presents an additional 
challenge. Graph filtering (16) requires iterative weighted aver-
aging over each vertex’s neighbors, and for vertices with large 
degrees this process takes significantly longer than for vertices 
with small degrees. In this case, load balancing through smart 
distribution of vertices between computational nodes is 
required to avoid a computation bottleneck. 

For very large data sets, algorithms with quadratic and 
cubic arithmetic cost are not acceptable. Moreover, computa-
tions that require access to the entire data sets are ill suited for 
large data sizes and lead to performance bottlenecks, since 
memory access is orders of magnitude slower than arithmetic 
computations. This problem is exacerbated by the fact that 
large data sets often do not fit into main memory or even local 
disk storage of a single machine, and must be stored and 
accessed remotely and processed with distributed systems. 

Fifty years ago, the invention of the famous fast Fourier 
transform algorithm by Cooley and Tukey [27], as well as many 
other algorithms that followed (see [28] and [29] and references 
therein), dramatically reduced the computational cost of the 
discrete Fourier transform by using suitable properties of the 
structure of time signals, and made frequency analysis and 

filtering of very large signals practical. Similarly, in this article, 
we identify and discuss properties of certain data representation 
graphs that lead to more efficient implementations of DSPG 

operations for big data. A suitable graph model is provided by 
product graphs discussed in the next section. 

Product grAPhS
Consider two graphs ( , )G AV1 1 1=  and ( , )G AV2 2 2=  with 
| | NV1 1=  and | | NV2 2=  nodes, respectively. The product 
graph, denoted by ,G  of G1  and G2  is the graph 

 ( , ),G G G AV1 2G= = G  (22)

with | | N NV 1 2=  nodes and an appropriately defined 
N N N N1 2 1 2#  adjacency matrix AG  [30], [31]. In particular, 
three commonly studied graph products are the Kronecker, 
Cartesian, and strong products. 

For the Kronecker graph product, denoted as ,G G G1 27=  
the adjacency matrix is obtained by the matrix Kronecker product 
of adjacency matrices A1  and :A2  

 .A A A1 27=7  (23)

Recall that the Kronecker product of matrices [ ]bB mn !=

CM N#  and C CK L! #  is a KM LN#  matrix with block structure
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 (24)

For the Cartesian graph product, denoted as ,G G G1 2#=  
the adjacency matrix is 

 .A A I I AN N1 22 17 7= +#  (25)

Finally, for the strong product, denoted as ,G G G1 2#=  the 
adjacency matrix is 

 .A A A A I I AN N1 2 1 22 17 7 7= + +X  (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (24)–(26) are 
associative, Kronecker, Cartesian, and strong graph products 
can be defined for an arbitrary number of graphs. 

Product graphs arise in different applications, including sig-
nal and image processing [32], computational sciences and data 
mining [33], and computational biology [34]. Their probabilistic 
counterparts are used in network modeling and generation 
[35]–[37]. Multiple approaches have been proposed for the 
decomposition and approximation of graphs with product 
graphs [30], [31], [38], [39]. 

Product graphs offer a versatile graph model for the represen-
tation of complex data sets in multilevel and multiparameter 
ways. In traditional DSP, multidimensional signals, such as 
 digital images and video, reside on rectangular lattices that  
are  Cartesian products of line graphs. Figure 2(a) shows a 
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two-dimensional (2-D) lattice formed by the Cartesian product of 
two one-dimensional lattices. 

Another example of graph signals residing on product 
graphs is data collected by a sensor network over a period of 
time. In this case, the graph signal formed by measurements of 
all sensors at all time steps resides on the product of the sensor 
network graph with the time series graph. As the example in 
Figure 2(b) illustrates, the kth  measurement of the nth  sensor 
is indexed by the nth  node of the kth  copy of the sensor graph 
(or, equivalently, the kth  node of the nth  copy of the time 
series graph). Depending on the choice of product, a measure-
ment of a sensor is related to the measurements collected by 
this sensor and its neighbors at the same time and previous and fol-
lowing time steps. For instance, the strong product in Figure 2(b) 
relates the measurement of the nth  sensor at time step k  to its 
measurements at time steps k 1-  and ,k 1+  as well as to mea-
surements of its neighbors at times ,k 1-  ,k  and .k 1+  

A social network with multiple communities also may be 
representable by a graph product. Figure 2(c) shows an example 

of a social network that has three communities with similar 
structures, where individuals from different communities also 
interact with each other. This social graph may be seen as an 
approximation of the Cartesian product of the graph that cap-
tures the community structure and the graph that captures the 
interaction between communities. 

Other examples where product graphs are potentially use-
ful for data representation include multiway data arrays that 
contain elements described by multiple features, parameters, 
or characteristics, such as publications in citation databases 
described by their topics, authors, and venues; or Internet 
connections described by their time, location, IP address, port 
accesses, and other parameters. In this case, the graph factors 
in (22) represent similarities or dependencies between subsets 
of characteristics. 

Graph products are also used for modeling entire graph fam-
ilies. Kronecker products of scale-free graphs with the same 
degree distribution are also scale free and have the same distri-
bution [35], [40]. K- and e-nearest neighbor graphs, which are 
used in signal processing, communications, and machine learn-
ing to represent spatial and temporal location of data, such as 
sensor networks and image pixels, or data similarity structure, 
can be approximated with graph products, as the examples in 
Figure 2(a) and (b) suggest. Other graph families, such as trees, 
are constructed using rooted graph products [41], which are not 
discussed in this article. 

SIgnAl ProceSSIng on Product grAPhS
In this section, we discuss how product graphs help “modular-
ize” the computation of filtering and Fourier transform on 
graphs and improve algorithms, data storage, and memory 
access for large data sets. They lead to graph filtering and Fou-
rier transform implementations suitable for multicore and clus-
tered platforms with distributed storage by taking advantage of 
such performance optimization techniques as parallelization and 
vectorization. The presented results illustrate how product 
graphs offer a suitable and practical model for constructing and 
implementing signal processing methodologies for large data 
sets. In this, product graphs are similar to other graph families, 
such as scale-free and small-world graphs, that are used to 
model properties of real-world graphs and data sets: while mod-
els do not fit exactly to all real-world graphs, they capture and 
abstract relevant representations of graphs and facilitate their 
analysis and processing. 

filterinG
Recall that graph filtering is computed as the multiplication of a 
graph signal (1) by a filter (16). As we discussed in the section 
“Challenges of Big Data,” computation of a filtered signal 
requires repeated multiplications by the shift matrix, which is 
in general a computation- and memory-expensive operation for 
very large data sets. 

Now, consider, for instance, a Cartesian product graph with 
the shift matrix (25). A graph filter of the form (16) for this 
graph is written as 
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[FIg2] examples of product graphs indexing various data:  
(a) digital images reside on rectangular lattices that are cartesian 
products of line graphs for rows and columns, (b) measurements 
of a sensor network are indexed by the strong product of the 
sensor network graph with the time series graph (the edges of 
the cartesian product are shown in blue and green, and edges 
of the Kronecker product are shown in gray; the strong 
product contains all edges), and (c) a social network with 
three similar communities is approximated by a cartesian 
product of the community structure graph with the 
intercommunity communication graph.
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-
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Hence, multiplication by the shift matrix A#  is replaced with 
multiplications by matrices A IN1 27  and .I AN 217

Multiplication by matrices of the form I AN 217  and A IN1 27  
have multiple efficient implementations that take advantage of 
modern optimization and high-performance techniques, such 
as parallelization and vectorization [26], [42], [43]. In particular, 
the product ( )I A sN 217  is calculated by multiplying N1  signal 
segments ,s , ,n n N2f +  ,n N0 11#  of length N2  by the matrix 

.A2  These products are computed with independent parts of the 
input signal, which eliminates data dependency and makes 
these operations highly suitable for a parallel implementation 
on a multicore or cluster platform [42]. As an illustration, for 
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Here, all multiplications by A  are independent from each other 
both in data access and computations. 

Similarly, the product ( )A I sN1 27  is calculated by multiply-
ing N2  segments ,s , , , ( )n n N n N N11 2 1f+ + -  ,n N0 21#  of the input 
signal by the matrix .A1  These products are highly suitable for a 
vectorized implementation, available on modern computational 
platforms, that performs an operation on several input values 
simultaneously [42]. For instance, for A  in (28), we obtain 
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Here, three sequential signal values are multiplied by one ele-
ment of matrix A  at the same time. These operations are per-
formed simultaneously by a processor with vectorization 
capabilities, which respectively decreases the computation time 
by a factor of three. 

In addition to its suitability for parallelized and vectorized 
implementations, computing the output of the filter (27) on a Car-
tesian graph also requires significantly fewer operations, since the 
multiplication  by the shift matrix (25) requires N1  multiplications 
by an N N2 2#  matrix and N2  multiplications by an N N1 1#  
matrix, which results in ( ) ( ) ( ( ))O N N O N N O N N N1 2

2
1
2

2 1 2+ = +  
operations rather than ( ) .O N2  (We discuss here operation counts 
for general graphs with full matrices. In practice, adjacency 
matrices are often sparse, and their multiplication requires 

fewer operations. Computational savings provided by product 
graphs are, likewise, significant for sparse adjacency matrices.) 
For example, when , ,N N N1 2 .  this represents a reduction of 
the computational cost of graph filtering by a factor .N  To put 
this into the big data perspective, for a graph with a million verti-
ces, the cost of filtering is reduced by a factor of 1,000, and for a 
graph with a billion vertices, the cost reduction factor is more 
than 30,000. 

Furthermore, the multiplication by a matrix of the form 
I A7  can be replaced by the multiplication with a matrix A I7  
with no additional arithmetic operations by suitable permuta-
tion of signal values [22], [42], [43]. This interchangeability 
leads to a selection between parallelized and vectorized imple-
mentations and provides means to efficiently compute graph fil-
tered signals on platforms with arbitrary number of cores and 
vectorization capabilities. 

The advantages of filtering on Cartesian product graphs also 
apply to Kronecker and strong product graphs. In particular, 
using the property [22] 

 ( ) ( ),IA A A I AN N1 2 1 27 7 7= 2 1  (29)

we write the graph filter (16) for the Kronecker product as 

 ( ) ( ) ( ) ) ,h h gA A I I A IL N N N N
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and for the strong product as 
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 ) .gA I I A IN N N N1 22 1 1 27 7+ + - ,  

Similarly to (27), these filters multiply input signals by matrices 
I AN 217  and A IN1 27  and are implementable using paralleliza-
tion and vectorization techniques. They also lead to substantial 
reductions of the number of required computations. 

fourier tranSform
The frequency content of a graph signal is computed through 
the graph Fourier transform (18). In general, this procedure has 
the computational cost of ( )O N2  operations and requires access 
to the entire signal in memory. Moreover, it also requires a pre-
liminary calculation of the eigendecomposition of the graph 
shift matrix ,A  which, in general, takes ( )O N3  operation. 

Let us consider a Cartesian product graph with the shift 
matrix (25). Assume that the eigendecomposition (17) of the 
matrices A1  and A2  is respectively ,A V Vi i i i

1K= -  { , },i 1 2!  
where iK  has eigenvalues , ,, ,i i N0 1fm m -  on the main diagonal. 
Similar results can be obtained for nondiagonalizable matrices 
using Jordan decomposition. The derivation is more involved, 
and we omit it for simplicity of discussion. 

If we denote ,V V V1 27=  then the eigendecomposition of 
the shift matrix (25) is [22] 

 ( ) .A V I I VN N1 2
1

2 17 7K K= +#
-  (30)
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Hence, the graph Fourier transform associated with a Cartesian 
product graph is given by the matrix Kronecker product of the 
graph Fourier transforms for its factor graphs:

 ( ) ,F V V V V F F1 2
1

1
1

2
1

1 27 7 7= = =#
- - -  (31)

and the spectrum is given by the element-wise summation of 
the spectra of the smaller graphs: ,, ,n m1 2m m+  n N0 11#  and 

.m N0 21#  
Reusing the property (29), (31) can be written as 

( ) ( )F F F F I I FN N1 2 1 22 17 7 7= =#  and efficiently implemented 
using parallelization and vectorization techniques. Moreover, 
the computation of the eigendecomposition (30) is replaced 
with finding the eigendecomposition of the shift matrices A1  
and ,A2  which reduces the computation cost from ( )O N3  to 
( ) .O N N1

3
2
3+  For instance, when , ,N N N1 2 .  the computa-

tional cost of the eigendecomposition is reduced by a factor 
.N N  Hence, for a graph with a million vertices, the cost of 

computing the eigendecomposition is reduced by a factor of 
more than ,3 104#  and for a graph with a billion vertices, the 
cost reduction factor is over .3 1013#

The same improvements apply to the Kronecker and strong 
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is 
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Observe that all three graph products have the same graph 
Fourier transform. However, the corresponding spectra are 
different: for Cartesian and strong products, they are, respec-
tively, , ,n m1 2m m  and ,, , , ,n m n m1 2 1 2m m m m+ +  where n N0 11#  
and .m N0 21#  Thus, while all three graph products have 
the same frequency components, the ordering of these compo-
nents from lowest to highest frequencies, as defined by DSPG 
and discussed in the section “Signal Processing on Graphs,” 
can be different. As an illustration, consider the example in 
Figure 3. It shows the frequencies (eigenvalues) of the three 

graph products in Figure 2(b). All product graphs have the 
same 16 frequency components (eigenvectors), but the fre-
quencies (eigenvalues) corresponding to these components are 
different and on each graph have a different interpretation as 
low or high frequency. For example, the values in the upper 
left corners of  Figure 3(a)–(c) correspond to the same fre-
quency component. By comparing these values, we observe 
that this component represents the highest frequency in the 
Cartesian product graph, the lowest frequency in the Kro-
necker product graph, and a midspectrum component in the 
strong product graph. 

FASt grAPh FourIer trAnSFormS
A major motivation behind the use of product graphs in signal 
processing and DSPG is derivation of fast computational algo-
rithms for the graph Fourier transform. A proper overview of 
this topic requires an additional discussion of graph concepts 
and an algebraic approach to fast algorithms [29], [44], [45] that 
are beyond the scope of this article. 

As an intuitive example, consider a well-known and widely 
used decimation-in-time fast Fourier transform for power-of-
two sizes [27]. It is derived using graph products as follows. 
We view the DFTN  as the graph Fourier transform of a graph 
with adjacency matrix ,C2  where C  is the cyclic shift matrix 
(3).  This is a valid algebraic assumption, since the DFTN  is a 
graph Fourier transform not only for the graph in Figure 1(a), 
but for any graph with adjacency matrix given by a polynomial 
( ) .h C  This graph, after a permutation of its vertices at stride 

two (which represents the decimation-in-time step), becomes 
a product of a cyclic graph with /N 2  vertices with a graph of 
two disconnected vertices. As a result, its graph Fourier trans-
form DFTN  becomes a product I DFT /N2 27  and additional, 
sparse matrices that capture the operations of graph restruc-
turing. By continuing this process recursively for ,DFT /N 2  

,DFT /N 4  and so forth, we decompose DFTN  into a product of 
sparse matrices with cumulative arithmetic cost of 
( ),logO N N  thus obtaining a fast algorithm for the computa-

tion of .DFTN
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[FIg3] the frequency values for the product graphs in Figure 2(b). Frequencies are shown as a color-coded 2-d map, with  x- and y-axis 
representing frequencies of two factor graphs. higher values correspond to lower frequencies and vice versa. (a) the cartesian 
product, (b) Kronecker product, and (c) strong product.
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relAtIon to exIStIng APProAcheS
The instantiation of DSPG for product graphs relates to existing 
approaches to complex data analysis that are not based on 
graphs but rather view data as multidimensional arrays [2]–[4]. 
Given a K-dimensional data set ,S CN N NK1 2! # # #f  the family of 
methods called canonical decomposition or parallel factor 
analysis searches for K  matrices ,M Ck

N Rk! #  ,k K1 # #  that 
provide an optimal approximation of the data set 

 ,S m m m E, , ,r
r

R

r K r1
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/  (32)

that minimizes the error 
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Here, m ,k r  denotes the rth  column of matrix ,Mk  and &  
denotes the outer product of vectors. 

A more general approach, called Tucker decomposition, 
searches for K  matrices ,M Ck

N Rk k! #  ,k K1 # #  and a matrix 
C CR R RK1 2! # # #f  that provide an optimal approximation of the 
data set as 
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Tucker decomposition is also called a higher-order PCA or SVD, 
since it effectively extends these techniques from matrices to 
higher-order arrays. 

Decompositions (32) and (33) can be interpreted as signal com-
pression on product graphs. For simplicity of discussion, assume 
that K 2=  and consider a signal s CN N1 2!  that lies on a product 
graph (22) and corresponds to a 2-D signal ,S CN N1 2! #  so that 

,S s,n n n N n1 2 1 2 2= +  where n N0 i i1#  for , .i 1 2=  If matrices M1  
and M2  contain as columns, respectively, R1  and R2  eigenvectors 
of A1  and ,A2  then the decomposition (33) represents a lossy com-
pression of the graph signal in the frequency domain, a widely used 
compression technique in signal processing [21], [24]. 

exAmPle APPlIcAtIon
As a motivational application example of DSPG on product 
graphs, we consider data compression. For the testing data set, 
we use the set of daily temperature measurements collected by 
150 weather stations across the United States [17] during the 
year 2002. Figure 1(b) shows the measurements from one day 
(1 December 2002), as well as the sensor network graph. The 
graph is constructed by connecting each sensor to eight of its 
nearest neighbors with undirected edges with weights given by 
[17,  eq. (29)]. As illustrated by the example in Figure 2(b), such 

a data set can be described by a product of the sensor network 
graph and the time series graphs. We use the sensor network 
graph in Figure 1(b) with N 1501 =  nodes and the time series 
graph in Figure 1(a) with N 3652 =  nodes. 

The compression is performed in the frequency domain. We 
compute the Fourier transform (31) of the data set, keep only C 
spectrum coefficients with largest magnitudes and replace others 
with zeros, and perform the inverse graph Fourier transform on 
the resulting coefficients. This is a lossy compression scheme, 
with the compression error given by the norm of the difference 
between the original data set and the reconstructed one normal-
ized by the norm of the original data set. Note that, while the 
approach is tested here on a relatively small data set, it is applica-
ble in the same form to arbitrarily large data sets. 

The compression errors for the considered temperature data 
set are shown in Table 1. The results demonstrate that even for 
high compression ratios, that is, when the number C of stored 
coefficients is much smaller than the data set size ,N N N1 2=  
the compression introduces only a small error and leads to 
insignificant loss of information. A comparison of this approach 
with schemes that compress the data only in one dimension 
(they separately compress either time series from each sensor 
or daily measurements from all sensors) [17], [25] also reveals 
that compression based on the product graph is significantly 
more efficient. 

concluSIonS
In this article, we presented an approach to big data analysis based 
on the DSP on graphs. We reviewed fundamental concepts of the 
framework and illustrated how it extends traditional signal pro-
cessing theory to data sets represented with general graphs. To 
address important challenges in big data analysis and make imple-
mentations of fundamental DSPG techniques suitable for very 
large data sets, we considered a generalized graph model given by 
several kinds of product graphs, including the Cartesian, Kro-
necker, and strong product graphs. We showed that these product 
graph structures significantly reduce arithmetic cost of associated 
DSPG algorithms and make them suitable for parallel and distrib-
uted implementation, as well as improve memory storage and 
access of data. The discussed methodology bridges a gap between 
signal processing, big data analysis, and high-performance com-
puting, as well as presents a framework for the development of 
new methods and tools for analysis of massive data sets. 
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