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Abstract—Research in Graph Signal Processing (GSP) aims
to develop tools for processing data defined on irregular graph
domains. In this paper we first provide an overview of core
ideas in GSP and their connection to conventional digital
signal processing. We then summarize recent developments in
developing basic GSP tools, including methods for sampling,
filtering or graph learning. Next, we review progress in several
application areas using GSP, including processing and analysis
of sensor network data, biological data, and applications to
image processing and machine learning. We finish by providing
a brief historical perspective to highlight how concepts recently
developed in GSP build on top of prior research in other areas.

Index Terms—Graph signal processing, sampling, filterbanks,
Signal processing.

I. INTRODUCTION AND MOTIVATION

Data is all around us, and massive amounts of it. Almost
every aspect of human life is now being recorded at all levels:
from the marking and recording of processing inside the cells
starting with the advent of fluorescent markers, to our personal
data through health monitoring devices and apps, financial
and banking data, our social networks, mobility and traffic
patterns, transportation networks, marketing preferences, fads,
and many more. The complexity of such networks and interac-
tions means that the data now resides on irregular and complex
structures that do not lend themselves to standard tools.

Graphs offer the ability to model such data and complex
interactions among them. For example, users on Twitter can
be modeled as nodes while their friend connections can be
modeled as edges. This paper explores adding attributes to
such nodes and modeling those as signals on a graph; for
example, year of graduation in a social network, temperature
in a given city on a given day in a weather network, etc. Doing
so requires us to extend classical signal processing concepts
and tools such as Fourier transform, filtering and frequency
response to data residing on graphs. It also leads us to tackle
complex tasks such as sampling in a principled way. The field
that gathers all these under a common umbrella is graph signal
processing [1], [2].

While the precise definition of a graph signal will be
given later in the paper, for now assume a graph signal is
a set of values residing on a set of nodes. These nodes are
connected via (possibly weighted) edges. As in classical signal
processing, such signals can stem from a variety of domains;
unlike in classical signal processing, however, the underlying
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J. Kovačević and J. M. F. Moura are with Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA

graphs can tell a fair amount about those signals through their
structure. Different types of graphs model different types of
networks that these nodes represent.

Typical graphs that are used to represent common real-
world data include Erdos-Renyi graphs, ring graphs, ran-
dom geometric graphs, small-world graphs, power-law graphs,
nearest-neighbor graphs, scale-free graphs, and many others.
These model networks with random connections (Erdos-Renyi
graphs), networks of brain neurons (small-world graphs),
social networks (scale-free graphs), etc.

As in classical signal processing, graph signals can have
properties, such as smoothness (appropriately defined). They
can also be represented via basic atoms and can have a spec-
tral representation. In particular, the graph Fourier transform
allows us to develop the intuition gathered in the classical
setting and extend it to graphs; we can talk about the notions
of frequency and bandlimitedness, for example. We can fil-
ter graph signals. They can be sampled, a notoriously hard
problem; with graph signal processing, one gains access to
principled tools mimicking the classical ones. We can denoise
graph signals, we can learn their underlying structure, we can
model them. If the graphs cannot be directly observed, we can
also learn their structure from data. All of these topics will be
explored in more detail in what follows.

As illustration, consider how smoothness of graph signals
plays a part in urban settings. First, however, we have to
understand what smoothness means on graphs. For example,
we can think of smooth graph signals in the vertex domain,
that is, such that neighboring nodes tend to have similar values.
We can also think of the smoothness of graph signals in the
spectral domain, typically called bandlimitedness. Different
types of smoothness are possible in the spectral domain
where, instead of a sharp cut-off, frequency content may decay
according to some law.

Figure 1 illustrates how a piecewise-smooth signal model
can be used to approximate the taxi-pickup distribution in
Manhattan. Figure 1(a) shows the number of taxi pickups (with
blue as low numbers up to red for high numbers) from 6-7pm
on January 4th, 2015, projected to the nearest intersection.
What one can observe is that the busy shopping/entertainment
areas such as Times Square in New York City show similar
mobility patterns, as illustrated by the number of taxi pickups.
In other words, neighboring intersections around shopping
areas will exhibit similar (homogeneous) mobility patterns,
likely corresponding to similar life-style behaviors, while the
intersections around residential areas will exhibit different, yet
still homogeneous mobility patterns and life-style behaviors;
so, shopping areas will be very busy during the regular
business hours and after work but perhaps less so late in the
evening, while residential areas will be busy on weekends and
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(a) Actual data (b) Approximation

Fig. 1. Piecewise-smooth graph signals approximate irregular, non-smooth
graph signals by capturing both large variations at boundaries as well as
small variations within pieces. (a) Data captured in Manhattan (13,679 inter-
sections), (b) Piecewise-smooth approximation to the data with 50 coefficients
(from [3] with permission).

at times parents drop and pick up their kids from school.
Similarly, in social networks, within a given social circle,
users’ profiles tend to be homogeneous, while within a differ-
ent social circle they will be different, yet still homogeneous;
for example, friends from a high school in New York City
will probably have similar taste in entertainment, while friends
from a high school in Lausanne will also have similar tastes
but different from those from teenagers in New York. We
can model such data as piecewise-smooth graph signals (see
for example how a piecewise-smooth signal in Figure 1(b)
provides a good approximation to the actual measurements of
Figure 1(a)), as they capture large variations between pieces
and small variations within pieces.

The outline of the paper is as follows: Section II starts
by presenting the framework and key ingredients of graph
signal processing. It explains how the concepts from classical
signal processing such as signals, filters and Fourier transform,
among others, extend to complex structures where data is
indexed by nodes on a graph. Section III covers some state-of-
the-art topics and associated challenges, such as the definition
of frequency, graph learning, sampling representations and
others. Section IV follows up with applications of graph signal
processing in sensor networks, biological networks, 3D point
cloud processing and machine learning. Section V provides
a historical perspective and discussion of related work and
Section VI gives some conclusions.

II. KEY INGREDIENTS OF GRAPH SIGNAL PROCESSING

In this section we introduce basic graph signal process-
ing (GSP) concepts. While more formal derivations of GSP
can be developed, e.g., from the signal model introduced in
the Algebraic Signal Processing (ASP) [4], [5], [6], [7] or from
the spectral perspective developed in [2], [8] based on spectral
graph theory [9], we choose a more intuitive presentation by
first reviewing the concept of shift in digital signal processing
(DSP) (Section II-A) and then developing a corresponding
notion of shift for GSP (Section II-B). This in turns leads to
the definition of frequencies for graph signals (Section II-C)
and their interpretation (Section II-D).

A. The role of shifts in digital signal processing

Discrete signal processing (DSP) [10], [11], [12], [13], [14]
studies time signals. Graph signal processing (GSP)1 [1], [2],
[15] extends DSP to signal samples indexed by nodes of a
graph. At a very high level, DSP, and therefore GSP, study:
1) signals and their representations; 2) systems that process
signals, usually referred to as filters; 3) signal transforms,
including two very important ones, namely, the z-transform
and the Fourier transform; and 4) sampling of signals, as well
as other more specialized topics.

Consider N samples of a signal sn, n = 0, 1, · · · , N −
1. We restrict ourselves to signals with a finite number N
of samples and to filters with finite impulse response (FIR
filters). The z-transform and the Fourier transform of signal s
play very different roles. The z-transform s(z) of the (real or
complex valued) time signal s = {sn : n = 0, 1, · · · , N − 1}
organizes its samples sn into an ordered set of time samples,
where sample sn at time n precedes sn+1 at time n + 1 and
succeeds sn−1 at time n−1. In other words, the signal is given
by the N -tuple s = (s0, s1, · · · , sN−1). This representation is
achieved by using a formal variable, say z−1, called the shift
(or delay), so that the signal of N -samples is represented by

s(z) =

N−1∑
n=0

snz
−n. (1)

The z-transform s(z) provides a (formal)2 polynomial repre-
sentation of the signal that is for example useful in studying
how signals are processed by filters. Clearly, given s(z) we
can recover the signal s [13], [14].

The discrete Fourier transform (DFT) of the signal s is ŝ =
{ŝk : k = 0, · · · , N − 1} given by

ŝk =
1√
N

N−1∑
n=0

sne
−j 2π

N kn. (2)

The ŝk are the Fourier coefficients of the signal. The DFT
represents the signal s in the dual or frequency domain, leading
to concepts like frequency, spectrum, low-, band-, and high-
pass signals. The discrete frequencies are Ωk = e−j

2π
N k, k =

0, 1, · · · , N − 1, and the N signals (xk[n]){
xk[n] =

1√
N
e−j

2π
N kn : n = 0, 1, · · · , N − 1

}N−1

k=0

are the spectral components.
The signal is recovered from its Fourier coefficients by the

inverse DFT:

sn =
1√
N

N−1∑
k=0

ŝke
j 2π
N kn, s = 0, 1, · · · , N − 1. (3)

In DSP, besides signals, we also have filters h. An FIR filter
is also represented by a polynomial in z−1

h(z) =

N−1∑
n=0

hnz
−n, (4)

1We consider here only linear graph signal processing.
2The variable z is not to be replaced by a complex number. It is simply a

placeholder for each sample of the signal.
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so that the output sout of filter h applied to signal sin is:

sout(z) = h(z) · sin(z). (5)

Because we are only considering finite time signals, and the
product above could lead sout(z) to be a polynomial in z−1 of
degree larger than N − 1, we have to consider boundary con-
ditions (b.c.). For simplicity, we consider periodic extensions
of the signal, i.e., the signal sample xN is equal to the signal
sample x0; more generally, xn = xnmodN . In other words,
the real line is folded around the circle. Defining the shift or
delay filter

hshift(z) = z−1,

and applying it to a signal sin = (s0, s1, · · · , sN−1) gives an
output:

sout = hshift · sin = (sN−1, s1, · · · , sN−2) .

By Equation (4), any filter h in DSP is a polynomial in the
shift, i.e., it is built from series and parallel combinations of
shifts. In other words, the shift is the basic building block in
DSP, from which we can build more complicated filters.

A second very important DSP property that is adopted in
GSP is shift invariance. This readily follows from

z−1 · h(z) = h(z) · z−1. (6)

In words, the series combination of filters is commutative, a
filter commutes with the shift filter—delaying the input signal
sin and then filtering the delayed input signal leads to the same
signal as first filtering the input signal sin and then delaying
the filtered output.

Restating for emphasis, both (1) and (4) show the
principal role played by the shift z−1 in DSP. We
represent signals by (finite degree) polynomials in z−1

and build filters also as polynomials in z−1.

B. Defining shifts in Graph Signal Processing

We now extend the above concepts and tools to graph
signals, i.e., signals whose samples are indexed by the nodes
of arbitrary graphs. To do so, we start by reinterpreting the
finite signals from the previous section as vectors rather than
tuples or sequences.

Rewrite the signal s = (s0, s1, · · · , sN−1) as the vector

s = [s0 s1 · · · sN−1]
> ∈ CN ,

where for generality we allow the signal to be complex valued.
Using this notation, a filter h is represented by a matrix H and
(5) can be simply written as a matrix-vector multiplication:

sout = H · sin,

where filters are represented by matrices, while signals are rep-
resented by vectors. In particular, the shift filtering operation
corresponds to multiplication by a matrix Ac

[sN−1 s0 · · · sN−2]
>

= Ac · [s0 s1 · · · sN−1]
>
,

given by the cyclic shift

Ac =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . . . . . . . . 0

0 0 · · · 1 0 0
0 0 · · · 0 1 0


. (7)

A graph interpretation for the DSP concepts of Section II-A
can be achieved by viewing the 0-1 shift matrix Ac of (7)
as the adjacency matrix of a graph. Labeling the rows and
columns of Ac from 0 to N−1, define the graph Gc = (V,E)
with node set V = {0, 1, · · · , N − 1}. Row n of Ac represents
the set of out-edges of node n in Gc—if there is an entry 1
at column `, Ac,n` = 1, then there is an out-edge from n to `.
Ac is then the adjacency matrix of the cycle graph in Figure 2.

Fig. 2. Time graph: Cycle graph Gc.

The key point we make is the dual role of the ma-
trix Ac in Equation (7), which represents both the
shift z−1 in DSP and the adjacency matrix of the
associated time graph in Figure 2.

This graph interpretation of DSP can be extended to develop
a linear time shift invariant Graph Signal Processing [1]. Given
a graph signal s ∈ CN , where the entries of the signal s are
indexed by the N nodes of an arbitrary graph G = (V,E),
the N×N adjacency matrix A can be adopted as the shift [1]
for this general graph. Other choices have been proposed,
including the graph Laplacian L = D − A, where D is
the degree matrix, normalized Laplacians [2], or variations
on the adjacency matrix [16], [17]. Different choices for the
shift present different trade-offs. The adjacency matrix A
reduces to the shift in classical time DSP and applies to
directed and undirected graphs, while the graph Laplacian
applies only to undirected graphs. On the other hand L is
symmetric and positive semi-definite, which avoids a certain
number of analytical and numerical difficulties that may arise
when choosing A. Furthermore, graph Laplacian spectra have
been widely studied in the field of spectral graph theory
[9]. In specific applications, one should consider alternative
definitions and choose the one that leads to the best trade-off
for the problem being considered [18].

For time signals, as discussed with respect to (1), the basis
{z−n}N−1

n=0 orders the samples of the signal by increasing order
of the time labels (nodes in time graph). Rewriting (1), we get

s(z) =
[(
z−1
)0
z−1 · · · z−(N−1)

]
[s0 s1 · · · sN−1]

>
.
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In graph signal processing, ordering the samples corresponds
to labeling the nodes of the graph. This labeling or numbering
fixes the adjacency matrix of the graph, and hence the graph
shift. The columns of the graph shift provide a basis and
a representation for the graph signals. Other bases could
be used, leading to different signal representations. We note
that relabeling the nodes of the graph by a permutation Π
conjugates the shift by Π

AΠ = ΠAΠ>.

This relabeling does not alter the basis, it simply reorders the
entries in the basis vectors.

Following the analogy with DSP, we can now define the
notion of shift invariance and polynomial filters for arbitrary
graphs. A filter represented by H will be shift invariant if it
commutes with the shift,

AH = HA.

As proven in [1], if the characteristic polynomial pA(z) and
the minimum polynomial mA(z) of A are equal, then every
filter commuting with A is a polynomial in A, i.e.,

H = h(A).

For equality pA(z) = mA(z), to each eigenvalue of A there
corresponds a single eigenvector3. A simpler condition is for
the eigenvalues of A to be distinct. To keep the discussion
simple, unless otherwise stated, we assume A has N distinct
eigenvalues and hence a complete set of eigenvectors. When
this is the case, this complete set of eigenvectors can be chosen
to be an orthonormal set.

By the Cayley-Hamilton Theorem of Linear Algebra [19],
[20]

degreeh(z) = degree pA(z) ≤ N − 1.

In fact, degreeh(z) ≤ degreemA(z) ≤ degree pA(z). In
words, shift invariant filters are polynomials with degree at
most degreemA(z).

C. Frequency representations for graph signals

In DSP and in linear systems, we are interested in signals
that are invariant when processed by a (linear) filter, i.e.,

h · sin = αsin,

where α is a scalar (from the base field). Such sin are of course
the eigensignals of the filter h. In GSP we define filters as
matrices and thus the eigensignals of h are the eigenvectors of
the corresponding H. More interestingly, since shift invariant
filters are polynomials of a single matrix, the shift A, we only
need to consider the eigenvectors of A. Then, write

A = VΛV−1 = VΛVH , (8)

where V = [v0 · · ·vN−1] is the matrix of the N eigenvectors
of A, Λ = diag [λ0 · · ·λN−1] is the matrix of distinct
eigenvalues of A. Because we assume A has a complete set

3In other words, the Jordan form of A has single blocks for each distinct
eigenvalue.

of eigenvectors, V can be chosen to be unitary, V−1 = VH ,
where the exponent H stands for transpose conjugation.

Then, it is straightforward to verify that for each (polyno-
mial) filter

H = h(A)

= h
(
VAVH

)
=

M−1∑
m=0

hm
(
VΛV−1

)m
= Vh (Λ) VH , (9)

where h (Λ) is the diagonal matrix

h (Λ) = diag [h (λ0) · · ·h (λN−1)] . (10)

We can promptly verify that the eigenvectors of A are the
eigenfunctions of the (polynomial) filter

Hvm = Vh (Λ) VHvm

= Vh (Λ) em

= h (λm)vm, (11)

where em is the zero vector except for entry m that is a one.
Equation (11) is the GSP counterpart to the classical DSP fact
that exponentials are eigenfunctions of linear systems. As such
the response of the filter to an exponential is the same expo-
nential amplified or attenuated by a gain that is the frequency
response of the filter at the frequency of the exponential. We
refer to this as the invariance property of exponentials with
respect to linear systems in DSP. Accordingly, Equation (11)
shows the invariance of the eigenvectors of the shift operator A
with respect to graph filters.

Finally, we can introduce the Fourier transform for graph
signals. The cyclic shift in Equation (7) can be written as

Ac = DFT−1
N

e
−j 2π·0

N

. . .

e−j
2π·(N−1)

N

DFTN ,

(12)

where DFTN = 1√
N

[
ωknN

]
, ωN = exp−j

2π
N , is the discrete

Fourier matrix. The inverse DFT−1
N = DFTH

N is the matrix
of eigenvectors of Ac. The eigenvalues of Ac are e−j

2π·n
N ,

n = 0, · · · , N−1. the diagonal entries of the middle matrix in
Equation (12). The graph Fourier transform (GFT) follows by
analogy with (12). From the eigendecomposition of A in (8),
the graph Fourier transform is the inverse of the matrix V of
eigenvectors of the shift A

F = V−1 = VH . (13)

The eigenvectors of the shift A, columns of V, are the graph
spectral components, and the eigenvalues of A, the diagonal
entries λk of matrix Λ in (8), are the graph frequencies.
The graph frequencies are complex valued for a general non-
symmetric (directed graph) shift A.

The graph Fourier transform of graph signal s is given by
the graph Fourier analysis decomposition

ŝ = Fs = VHs =
[
vH0 s · · · vHN−1s

]>
. (14)
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The graph Fourier coefficients or graph spectral coefficients
of signal s are ŝk = vHk s.

The Fourier spectral decomposition of the signal is obtained
by the graph inverse Fourier transform and given by the graph
Fourier synthesis expression

s = F−1ŝ = Vŝ

=

N−1∑
k=0

ŝkvk (15)

=

N−1∑
k=0

vHk ŝ vk

=

N−1∑
k=0

〈vk, ŝ〉 vk

= V [〈v0, ŝ〉 · · · 〈vN−1, ŝ〉]> .

The eigenvectors vk of A, columns of V, are the spectral
components. Equation (15) synthesizes the original signal s
from the spectral components vk; the coefficients ŝk of the
decomposition are the spectral coefficients of s.

D. Interpreting Graph Frequencies

We can now interpret filtering a graph signal (i.e., multi-
plying the corresponding vector by H) in the spectral domain.
From (9), the output of sin to filter h is successively

sout = H · sin

= Vh (Λ)
(
VHsin

)︸ ︷︷ ︸
Fourier transf.

(16)

= V diag [h (λ0) · · ·h (λN−1)] ŝin︸ ︷︷ ︸
Filtering in graph Fourier space

= V
[
h (λ0) ŝin0 · · ·h (λN−1) ŝinN−1

]>︸ ︷︷ ︸
Inverse Fourier transf.

. (17)

Thus, according to (16), filtering by H can be performed by
first taking the graph Fourier transform of the input

(
VHsin

)
,

followed by pointwise multiplication in the frequency domain
of the graph Fourier transform signal ŝin by the filter frequency
response [h (λ0) · · ·h (λN−1)] given by (17). Finally, an in-
verse graph Fourier transform computes the output back in the
graph node domain. This is the graph Fourier filtering Theorem
that reduces graph filtering to two graph Fourier transforms
and a pointwise multiplication in the spectral domain [1].

With a notion of frequency we can now consider the GSP
equivalents to classical concepts of low-, high, and band-
pass signals or filters, as well as the question of efficient
filter design. In the classical time domain, these concepts
are directly related to values of frequency. The frequency is
actually defined from the eigenvalues of the cyclic shift Ac

in (12) as

Ωk = − 1

2πj
ln e−

j2π
N k, k = 0, 1, · · · , N − 1.

These frequencies are directly related to the degree of vari-
ation of the spectral components. For example the lowest
frequency Ω0 = 0 corresponds to the least varying spectral

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 0.20

(d) λ = 0.40 (e) λ = 1.20 (f) λ = 1.49

Fig. 3. Example of elementary frequencies obtained from the graph Laplacian
of a graph. Six different frequencies are shown, corresponding to different
eigenvalues, ranging from lowest, λ = 0, representing a constant value
throughout the graph, to highest, λ = 1.49, where we can observe a large
number of sign changes across graph edges.

component, the constant or DC-spectral component, while the
highest frequency, ΩN−1 = N−1

N , corresponds to the most
varying time spectral component. There is a nice one-to-one
correspondence between the ordered value of the frequency
and the corresponding degree of variation or complexity of
the time spectral component.

In GSP, the frequencies are defined by the eigenvalues of
the shift, as shown in (13). We can order the graph frequencies
by relating them to the complexity of the spectral component.
For example, this can be measured by the total variation of
the associated spectral component through

TVG (vk) = ‖vk −Anormvk‖1 ,

where ‖ · ‖1 is norm 1, and Anorm = 1
λmax

A. Other norms
could be used to define the total variation, see [21][2]. Using
this, graph frequency λm is larger than graph frequency λ` if

TVG (vm) > TVG (v`) .

Assuming the graph frequencies have been ordered from
low to high, graph signal s is low-pass if its graph Fourier
coefficients are zero for Ωk, k > `, 0 ≤ ` < N − 1. We can
similarly define band- and high-pass signals and filters.

The notions of frequency that arise in conventional signal
processing provide a sound mathematical and intuitive basis
for analyzing signals. While it is mathematically possible,
as discussed in this section, to define notions of frequency
for graph signals, developing a corresponding intuition to
understand these elementary frequencies is not as straight-
forward. For the total variation criterion it has been shown
experimentally and justified theoretically that the frequency
bases obtained from the shift operator tend to be ordered [21].
More generally, the relationships between eigenvectors and
eigenvalues of the Laplacian and the structure of a graph is a
deep and beautiful domain of mathematics known as spectral
graph theory [9]. When graphs have structures closely related
to those used in DSP (e.g., circulant Adjacency matrices)
frequency interpretation is clear. If the graph is more general
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than the ring graph, part of the intuition remains, as illustrated
by Figure II-D. Indeed, eigenvectors ui are oscillating over
the vertex set. As the eigenvalue index i increases, so does
the number of oscillations [22]. However, the irregular nature
of graphs means that the analogies to DSP cannot always be
extended easily. For example, the spacing between frequencies
(as measured by the eigenvalues of the Laplacian, for example)
can be highly irregular, or some frequencies may have high
multiplicity. This will be discussed further in Section III-A.

Another important aspect of interpreting the frequencies
associated to the graph Fourier transform, or to other graph-
signal representations built on it, is that of their localization in
the vertex domain. Note that when the input signal is a perfect
impulse located at a given vertex, s = ei, the filtered signal
depends only on the graph filter and the vertex location in
the graph: fi = Hei. Even though fi changes with the chosen
vertex, it was proved in [23] that this signal is localized around
i in a way that only depends on the smoothness of the filter
h. This is interesting because it allows to design filters that
act locally and in a controlled way over the vertex set.

Finally, let us quickly touch on the issue of computational
complexity of the filtering operation. A straightforward algo-
rithm would consist in computing the GFT matrix V and
explicitly applying it to the input signal as in (16). This is
simple and accurate for small graphs thanks to fast SVD
algorithms. Partial SVD can also be used if the filter h
should only be evaluated on the top or bottom eigenvalues. In
general, and for large graphs, it is better to avoid computing
even a partial SVD. One efficient possibility is to compute a
polynomial approximation to h with Chebyshev filters [8]. For
large but sparse graphs, this reduces computations to sparse
matrix-vector multiply, which is very efficient.

III. STATE-OF-THE-ART AND CHALLENGES

A. Frequency definition

One can guarantee the existence of an orthogonal basis for
any undirected graph. Thus, once a graph has been chosen (see
Section III-E) a definition of frequency is readily available,
which allows us to address other questions considered in this
section (sampling, signal representation, etc). Multiple choices
are possible, as a function of the graph type, the selected
shift operator and its normalization, etc. Making these choices
appropriately for a given application remains an open question,
which is actively being investigated.

As an example, the eigenvalues of the chosen operator
matrix (Laplacian or adjacency) can have high multiplicity.
In this situation, a graph with N nodes will have fewer than
N unique frequencies. A particular concern is that one can
choose any set of orthogonal vectors within the subspace
corresponding to this frequency, leading to different GFTs and
thus potentially irreproducible results. As a way to address this
scenario, recent work [24] suggests using oblique projections
to measure the energy within such a subspace, using this
information to represent the overall energy at that frequency.

For directed graphs, additional problems arise given that
a full set of eigenvectors may not exist. Results for directed
graphs are often restricted to cases where the adjacency matrix

is invertible and eigenvectors do exist (as discussed in Sec-
tion II-C). If these conditions do not hold, the Jordan canonical
form is used to obtain the GFT [1], but this is well known
to be a numerically unstable procedure. As an alternative,
some authors have proposed to approximate directed graphs by
undirected ones, using such approaches as the hub-authority
model [25], [26]. Recent work has also considered alternative
definitions of frequency. As an example, the work in [27] uses
an optimization procedure to construct explicitly an orthogonal
basis set that minimizes a quantity related to the cut size. With
this approach, successive eigenvectors provide increasingly
higher frequencies in the sense of corresponding to higher cut
costs, while being orthogonal to those eigenvectors previously
selected.

In summary, this is a very active area of research, and the
best approach to define a set of frequencies for graphs in a
specific application remains to some extent an open question.

B. Representations

Designing representations for graph signals having desirable
properties (e.g., localization, critical sampling, orthogonality,
etc) has been one of the first and most important research
goal in graph signal processing. Pioneering contributions [28]
and [29], provided early examples of designs based on vertex
domain and spectral domain characteristics, respectively. Ver-
tex domain designs such as [28] or [30] have the advantage
of defining exactly localized basis functions on the graph,
but do not have a clear spectral interpretation. Conversely,
diffusion wavelets [29] are defined in the spectral domain, but
do not guarantee exact vertex domain localization (only energy
decay properties). The spectral graph wavelet transform design
[8] was the first to combine a spectral design with vertex-
domain localization, by defining smooth filter kernels in the
spectral domain and approximating these with polynomials.
The filterbanks developed in [8] were not critically sampled,
unlike [29] or [30]. Thus, much recent work has focused on
developing critically sampled filterbanks having both a spec-
tral interpretation and vertex localized implementation. These
types of filterbanks have been designed for bipartite graphs
[31], [32], [33], thus requiring the graph to be decomposed
into a series of bipartite subgraphs [31], [34]. Recent work
[35], [36] has shown that similar filterbank designs can be
developed for directed graphs, where these designs are only
possible for M -block cyclic graphs, which play a similar role
to that of bipartite graphs in the undirected case. Ongoing
work is focusing on providing better tools to characterize M -
block cyclic graphs, including for example the definition of
polyphase representations [35], [36], [37], [38], development
of improved filters by exploiting conventional filter designs
and/or relaxing the critical sampling requirement [39], [40],
[41], [42]. While much of the work to date has focused
on representations with bases functions selected in terms of
frequency content (e.g., low pass vs. high pass bases), some
recent work is also exploring representations for piecewise
smooth signal models [3]. The design of representations that
adapt to the specific properties of graph signal classes has fur-
ther been addressed from the viewpoint of dictionary learning
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[43], [44], [45]. The main objective is to design dictionary
of atoms that are able to sparsely represent signals on graphs
while incorporating the structure of the graph.

Based on current state of the art for undirected graphs,
it is not possible to combine i) critical sampling, ii) down-
sampling/upsampling based on replacing selected graph signal
samples by zeros, and iii) polynomial filtering at analysis and
synthesis filters, and then achieve perfect reconstruction, with
the sole exception being the case of bipartite graphs [46].
Thus, in addition to improved techniques for decomposition
of arbitrary graphs into bipartite subgraphs [34] ongoing
work is investigating novel approaches for downsampling, e.g.,
frequency domain techniques [47].

C. Sampling

The problem of sampling signals on graphs is modeled on
the corresponding problem in conventional signal processing.
The basic idea is to define a class of signals (for example
signals that are bandlimited to the first K frequencies of the
GFT) and then define necessary and sufficient conditions to
reconstruct a signal in that class from its samples. The first
problem formulation and a sufficient condition for unique
recovery were presented in [48]. A necessary and sufficient
condition for unique recovery in undirected graphs was in-
troduced in [49], and subsequently several papers proposed
solutions for different aspects of the problem [50], [51],
[52]. In particular, sampling results have been generalized to
directed graphs [51], [52] and to other classes of signals such
as piecewise smooth signals [53].

A key difference when comparing sampling in conventional
signal processing and in the context of graph signals is the
lack of “regular” sampling patterns in the latter. The lack of
regularity in the graph itself prevents us from defining the idea
of sampling “every other node”. Thus, multiple approaches
have been suggested to identify the most informative vertices
on a graph so that these can be sampled. While the sampling
problem is formalized based on the assumption that signals
to be sampled belong to a certain class (e.g., bandlimited), in
practice these can never be guaranteed and thus the observed
signals will be noisy and in general will not belong to the
pre-specified class. To address this problem, several methods
approach the problem of sampling set selection from an
experiment design perspective [54], [51], [52] setting as a goal
to identify a set of vertices that minimizes some measure of
worst case reconstruction error in cases where noise or model
mismatch is present. The measure can also be mean squared
reconstruction error instead of worst case in the experiment
design paradigm [52].

Complexity is a key challenge in sampling set identification,
especially for large-scale graphs. Some techniques require
computing and storing the first K basis vectors of the GFT
[51]. For larger graph sizes, where this may not be practical,
the approach in [52] uses spectral proxies instead of exact
graph frequencies leading to lower complexity. To reduce
complexity even further, the work in [55] proposes a random
sampling technique where the probability of selecting a given
vertex is based on a locally computed metric. This leads

to significantly lower complexity but, as a random sampling
technique, it may not always lead to performance comparable
to those of more complex greedy optimization methods such
as [51], [52].

Given the samples of a graph signal, the next objective
is to reconstruct an estimation of the signal at the nodes
that were not sampled (observed). Reconstruction algorithms
based on polynomial filters approximating ideal reconstruction
filters have been proposed in order to reconstruct an estimated
signal on the whole graph based on the observed vertex
measurements [56], [57].

While theoretical aspects of graph signal sampling are by
now well understood, the relevance of proposed techniques to
practical applications is still an open question. A key challenge
in this regard is to identify what are relevant signal models
for real datasets, while potentially adapting proposed generic
sampling methods to specific types of graphs (e.g., exploiting
properties of nearly regular graphs).

D. Extending conventional signal processing to graph signals

Challenges in extending ideas and concepts from conven-
tional signal processing to signal processing on graphs can
be further exemplified by research into notions of stationarity
and localization. For conventional time signals, a test for
stationarity can be based on determining whether time shifts
affect the statistical properties of a signal or, equivalently,
observing a signal at different times. However, these two views
are not equivalent for finite dimension graphs: we can observe
a given signal at different nodes, but this is not necessarily
the same as “shifting” the signal while observing it at always
at the same node. For graphs with N vertices, shifting can
be defined via a spectral domain operator [8]; or, instead,
the graph shift based on the adjacency matrix can be used.
Some authors have proposed a definition of stationarity based
on spectral properties of the vertex shift operator [58]. To
overcome challenges associated to existing shift operators, one
solution, first proposed by [59], is to introduce alternative
graph shift operators (see also [16]) or localization operators
that have both a spectral interpretation and vertex domain
localization [60], [61].

A study of vertex/spectral localization and uncertainty prin-
ciples was first developed by [62], where it was shown that
in general it is not possible to achieve arbitrarily good local-
ization in both spectral and vertex domains simultaneously.
However, a limitation in this study was that bounds had to be
derived for individual vertices. More recently, [63] has shown
that for graph signals it is in fact possible to have compact
support in both spectral and vertex domain (something that can
never occur in conventional signal processing). This occurs
due to the irregular nature of graphs: for example, a graph
consisting of several loosely connected clusters is likely to
lead to some columns of V having non-zero entries only in
some of the clusters. Other contributions, such as [64], have
also explored the challenges in directly extending the concept
of an uncertainty principle to graph signals.

Work in these two areas shows that direct extensions of
signal processing concepts to graphs are not straightforward,
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and thus further research is still needed to develop techniques
that can provide insights about graph signal behavior (local-
ization, stationarity) while accommodating key characteristics
of graphs (e.g., irregular node connectivity and spectral char-
acteristics).

E. Graph learning

Much recent work on graph signal processing assumes that
the graph is given or can be defined in a reasonable way
based on the nature of the application. As an example, in
communication or social networks the connectivity of the
network (directed or undirected) can be used to define the
graph. In other applications edge weights between nodes can
be chosen as a decreasing function of distance, e.g., physical
distance between sensors in the case of sensor networks or
distance in feature space in the case of learning applications
[65], [66], [67].

Recent work has been considering alternative techniques
where the goal is to learn graphs from data. This work is
motivated by scenarios where i) no reasonable initial graph
exists or ii) it is desirable to modify a known graph (based
on network connectivity for example) by selecting weights
derived from data. The key idea in these approaches is to select
a graph such that the most likely vectors in the data (the graph
signals) correspond to the lowest frequencies of the GFT or to
the more likely signals generated by Gauss Markov Random
Field (GMRF) related to the graph.

Examples of approaches based on smoothness include [68],
[69], [70], while representative methods based on the GMRF
model are [71], [72]. The basic idea in the latter approaches
is to identify GMRF models such that the inverse covariance
(precision) matrix has the form of a graph Laplacian (e.g.,
combinatorial or generalized). Note that this work extends
popular approaches for graph learning (e.g., graphical Lasso
[73]) to precision matrices restricted to have a Laplacian form
(corresponding to a graph with positive edge weights).

Other approaches have addressed graph selection under the
assumption that the observed data was obtained through graph-
based diffusion. Examples of these approaches include [74],
[75], [76], [77], [78], [79].

IV. GRAPH SIGNAL PROCESSING APPLICATIONS

Networks are present in very different application domains,
where graphs can provide a generic representation of the
structure present in the datasets. In this section, we discuss
a wide set of applications where the graph signal processing
framework has been used. We consider four different types of
scenarios, where both the scale and the domain of the networks
considered are very different. We start with physical net-
works, including both large scale networks (sensor networks
in Section IV-A) and human-scale ones (biological networks
in Section IV-B), where the goal is to use measurements
to better understand physical phenomena. We then consider
“logical” networks, where GSP is introduced as an alternative
for existing processing techniques for conventional signals
(images and point clouds in Section IV-C), or as a tool
to analyze large scale datasets (machine learning and data

science applications in Section IV-D). In each of these cases
we provide a few, non-exhaustive, examples to highlight the
different types of domains and graph representations that
have been studied. More detailed discussion of graph-based
techniques in specific domains are considered in other papers
in this special issue.

A. Sensor networks

One of the most natural applications of Graph signal pro-
cessing is in the context of sensor networks. A graph represents
the relative positions of sensors in the environment, and the
application goals include compression, denoising, reconstruc-
tion, or distributed processing of sensor data. Indeed, some of
the initial explorations of graph-based processing focused on
sensor networks [80], [81], [82], [83].

A first approach to define a graph associated to a sensor
network is to choose edge weights as a decreasing function of
distance between nodes (sensors). Then, data observations that
are similar at neighboring nodes lead naturally to a smooth
(low-pass) graph signal. Such a smooth graph signal model
makes it possible to detect outliers or abnormal values by
high-pass filtering and thresholding [21], [84], or to build
effective signal reconstruction methods from sparse set of
sensor readings, as in [85], [86], [87], which can potentially
lead to significant savings in energy resources, bandwidth and
latency in sensor network applications.

A second scenario is where the graph to be used for data
analysis is given by the application. For example, urban data
processing relies on data that naturally live on networks,
such as energy, transportation or road networks. In these
applications cases, GSP has been used to monitor urban air
pollution [88], or to monitor and analyze power consumption
[89], for example. Some works such as [90], [91], [92] have
used graph signal processing tools for analyzing traffic and
mobility in large cities. For example, wavelets on graphs can
serve to extract useful traffic patterns to detect disruptive traffic
events such as congestion [93]. Graph wavelet coefficients
at different scales permit to infer useful information such as
origin, propagation, and the span of traffic congestion.

In some cases, relations between sensor readings are not
exclusively explained by the distance between sensor loca-
tions, or by some actual network constraints. Other factors can
influence the data values observed at the sensor readings such
as the presence of geographical obstacles (e.g., in temperature
measurements), or the interaction between networks of differ-
ent types (e.g., how proximity to a freeway affects pollution
measurements in a city). In some cases the phenomena that
can explain these relations between measurements are latent
and this leads to the challenging problem of learning a graph
(see also Section III-E) that can explain the data observations
under signal smoothness or other signal model assumptions
[68], [69], [79]. This allows inferring system features and
behaviors that are hidden in the measured datasets (e.g., ozone
datasets in [94]).

Finally, several of the graph signal processing operators pre-
sented in this paper are amenable to distributed implementa-
tions that are particularly interesting for large sensor networks,
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and which motivated some of the early work mentioned at the
beginning of this section. For example, the graph multiplier
operators can be approximated by Chebyshev polynomials in
distributed implementation of smoothing, denoising, inverse
filtering or semi-supervised learning tasks [95]. The work in
[96] for example studies the problem of distributed reconstruc-
tion of time-varying band-limited graph signals recorded by a
subset of temperature sensor nodes. There is however still a
lot of opportunities for the development of distributed GSP
algorithms that are able to extend to large-scale networks and
big data applications.

B. Biological networks
Biological networks have also proved to be a popular

application domain for graph signal processing, with recent
research works focusing on the analysis of data from systems
known to have a network structure, such as the human brain,
and also on the inference of a priori unknown biological
networks.

Several works have studied human brain networks using the
graph signal processing framework. For example, it has been
observed that human brain activity signals can be mapped on
a network (graph) where each node corresponds to a brain
region. The network links (edge weights) are considered to
be known a priori and represent the structural connectivity or
the functional coherence between brain regions [99], [100].
GSP tools such as the graph signal representations described
in Section III-B can then be used to analyze the brain activity
signal on the functional or structural brain network. For
example, low frequencies in the graph signal represent similar
activities in regions that are highly connected in the functional
brain networks, while high frequencies denote very different
activities in such brain regions.

These ideas have been to analyze brain signals, leading
to biologically plausible observations about the behavior the
human cognitive system, as in for example [97], [98]. Fig. 4
illustrates the signal distribution of different graph frequency
components in an active motor learning task. Interestingly,
regions with strong signal in low and high graph frequency
components overlap well with the regions known to contribute
to better motor learning [101]. Additionally, it has been
observed that there is a strong association between the actual
brain networks (characterized by their spectral properties)
and the level of exposure of subject to different tasks [102].
Some works further build on the multi-resolution proper-
ties of spectral graph wavelet transforms to capture subtle
connected patterns of brain activity or provide biologically
meaningful decompositions of functional magnetic resonance
imaging (fMRI) data [103], [104], [105]. Interestingly, it is
also possible to combine different sources of informations in
the analysis of the brain networks. For example, the work in
[106] integrates infra-slow neural oscillations and anatomical-
connectivity maps derived from functional and diffusion MRI,
in a multilayer-graph framework that captures transient net-
works of spatio-temporal connectivity. These networks group
anatomically wired and temporary synchronized brain regions
and encode the propagation of functional activity on the struc-
tural connectome, which contributes to a deeper understanding

of the important structure-function relationships in the human
brain.

The GSP framework has also been proposed for the clas-
sification of brain graph signals [107] and the analysis of
anomalies or diseases [108], [109]. For example, source local-
ization algorithms based on sparse regularization can be used
to localize the possible origins of Alzheimer’s disease based
on a large set of repeated magnetic resonance imaging (MRI)
scans. This can help understand the dynamics and origin
of dementia, which is an important step towards developing
effective treatment of neuro-degenerative diseases [110]. The
growing number of publications studying brain activity or
brain network features from a GSP perspective indicates that
these are promising applications for the methods described in
this paper.

It should finally be noted that brain networks are not
the only biological networks where GSP offers promising
solutions. Graph signal processing elements and biological
priors are combined to infer networks and discover meaningful
interactions in gene regulatory networks, as in [111], [112].
The inference of the structure of protein interaction networks
has also been addressed with help of spectral graph templates
[78]. In particular, the observed matrix of mutual information
can be approximated by some (unknown) analytic matrix
function of the unobserved structure to be recovered. Observed
data is then used to obtain the eigenvectors of the matrix
representation of the graph model, and then the eigenvalues
are estimated with the help of sparsity priors. The above
examples are only some illustrations of the recent works that
attempt to infer structures of biological networks using a
GSP perspective. Biological networks that cannot be explicitly
recorded and measured are potentially good applications for
graph learning and inference methods in particular, which can
uncover unknown interactions in the biological data.

C. Image and 3D point cloud processing

While graph signal processing is often applied to datasets
that naturally exhibit irregular structures, it has also been
applied to other datasets where conventional signal processing
has been used for many years, including for example images
and video sequences. An image to be processed can be viewed
as a set of pixels, each associated to a vertex, forming a
regular graph with all edge weights equal to 1 (e.g., a line
graph or a grid graph). Indeed processing using the discrete
Fourier transform or the discrete cosine transform (DCT) can
be shown to have a simple interpretation in terms of the
frequencies associated to those regular graphs [113] (see also
Section V). Instead, recent work uses regular line and grid
graph topologies, but with unequal edge weights that can adapt
to the specific characteristic of an image or a set of images.

A first set of approaches associates a different graph to each
image, by associating smaller edge weights to connect pixels
that are on opposite sides of an image contour. This type of
image-dependent graph representation is strongly connected
to popular image processing techniques, such as the bilateral
filter and related methods [114], which also apply signal
dependent filtering and are widerly used in applications such
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Fig. 4. Distribution of decomposed signals. (a), (b), and (c) are the absolute magnitudes for all brain regions with respect to graph low frequencies, graph
middle frequencies and graph high frequencies, respectively. Higher concentration in graph low frequency results in better learning performance, when subjects
are unfamiliar with the task [97]. Concentration in graph low frequency also helps faster response in switching attention between actions [98]. From [97],
with permission.

as image restoration or denoising. Graphs are used to capture
the geometric structure in images, such as contours that
carry crucial visual information, in order to avoid blurring
them during the filtering process. In addition to works that
effectively extend image priors such as Total Variation (TV)
minimization to graph representations (e.g., [115], [116]),
other works such as [117] or [118] use more specific GSP
operators for denoising or filtering. In particular, the authors
in [117] use graph spectral denoising methods to enhance the
quality of images, while the work in [118] uses graph-based
filters that influence the strength and direction of filtering for
effective enhancement of natural images.

A second avenue of research has considered situations
where a graph is constructed as an efficient representation
for a set of images, in particular in the context of image
and video compression applications. The Karhunen-Loève
transform (KLT) is known to provide the best transform coding
gains under the assumption that the signals can be modeled as
stationary Gaussian processes (which is often a good assump-
tion for images). Indeed, extensive use of the DCT is often
justified because it is optimal for a Gauss Markov Random
Field (GMRF) with correlation 1, which is an appropriate
model for natural images. The inverse covariance matrix, or
precision matrix, then corresponds to a line graph with equal
weights. From this perspective, graph learning approaches can
be used to learn precision matrices with structures and weights
that capture statistics of specific types of images. For example,
piecewise smooth images can be compressed using suitable
Graph Fourier Transforms (GFT), which can be adapted to
different types of image pixel blocks [119], [120]. Graph-based
transforms have also been used to code motion-compensated
residuals in predictive video coding [121] with effective rate-
distortion performance.

New visual modalities such as 3D meshes or 3D point
clouds where data is sampled in irregular locations in 3D
space, lend themselves naturally to graph representations. The
color or 3D information supported by nodes or voxels are
connected to their nearest neighbors to form a graph. Graph-
based transforms can then be used to compress the resulting

Fig. 5. Example of motion estimation in a 3D point cloud sequence. Each
frame is represented as a graph signal that captures the color and the geometry
information of each voxel. Graph spectral features at each voxel capture the
local graph signal properties and permit to find correspondences between
frames at different time instances. A subset of the correspondences between
the target (red) and the reference frame (green) are highlighted between small
cubes that correspond to voxels. From [122], with permission.

graph signals in static or dynamic point clouds [123], [122]. In
particular, the temporal redundancy between 3D point cloud
frames at different time instants can be effectively estimated
with help of graph spectral features [122], as illustrated in
Figure 5. Graph-based transforms permit to properly exploit
both the spatial correlation inside each frame and the temporal
correlation between the frames, which eventually results in
effective compression. Compression, however, is not the only
application of GSP in 3D point clouds. Fast resampling
methods, which are important in processing, registering or
visualizing large point clouds, can also be built on graph-based
randomized strategies to select representative subsets of points
while preserving application-dependent features [124].

D. Machine Learning and Data Science

Graph methods have long played an important role in
machine learning applications, as they provide a natural way to
represent the structure of a dataset. In this context, each vertex
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represents one data point to which a label can be associated,
and a graph can be formed by connecting vertices with edge
weights that are assigned based on a decreasing function of
the distance between data points in the feature space. Graph
signal processing then enables different types of processing,
learning or filtering operations on values associated to graph
vertices. In a different context, GSP elements can be helpful
to construct architectures that are able to classify signals that
live on irregular structures. We give below some examples of
machine learning applications in both contexts.

When data labels are presented as signals on a (nearest
neighbor) graph, graph signal regularization techniques can be
used in the process of estimating labels [65], optimizing the
prediction of unknown labels in classification [21] or semi-
supervised learning problems [125]. Furthermore, as labeled
samples are often a scarce and expensive resource in semi-
supervised learning applications, graph sampling strategies
such as those presented in Section III-C can be helpful in
determining the actual needs for labeled data and develop
effective active learning algorithms [67].

Graphs can also be constructed to describe similarities
between users or items in recommendation systems that as-
sist customers in making decisions by collecting information
about how other users rate particular services or items [126].
Leveraging the notions of graph frequency and graph filters,
classical collaborative filtering methods (such as k-nearest
neighbors strategies), can then be implemented with specific
band-stop graph filters on graphs [127]. Furthermore, linear
latent factor models, such as low-rank matrix completion, can
be viewed as bandlimited interpolation algorithms that operate
in a frequency domain given by the spectrum of a joint user
and item network. This can serve to design effective graph
filtering algorithms that lead to enhanced rating prediction
in video recommendation applications, for example [127].
Content-based recommendation can also be addressed as an
online learning problem solved with spectral bandit algorithms
[128]. The key idea is to represent the reward function in an
online recommendation system as a linear combination of the
eigenvectors of the similarity graph that connects the different
items. With this representation it is possible to optimize the
reward function by favoring smoothness on the graph, which
has been shown to be effective in video recommendation
examples [128].

Data clustering or community detection can also benefit
from tools developed under the GSP framework. For example
graph transforms, and especially graph wavelets, have been
used to solve the classical problem of community detection
[129]. The problem of detecting multiscale community in
networks is cast as the problem of clustering nodes based
on graph wavelets features. This allows the introduction of
a notion of scale in the analysis of the network and as well
as a sort of ’egocentered’ view of how a particular node
’sees’ the network (see Figure 6). Furthermore, the extension
of clustering or community detection tasks to large-scale
systems generally relies on sampling or randomized strategy
where GSP methods can also be very helpful. For example,
fast graph-based filtering of random signals can be used to
estimate the graph structure, and in particular to approximate

eigenvectors that are often crucial in the design of clustering
algorithms and other machine learning tasks. One of the initial
works in this direction [130] proposes to use power methods
(that can be shown to be related to graph filter operators)
to speed up the computation of eigenvectors used in spectral
clustering applications. More recently, a fast graph clustering
algorithm that is provably as good as spectral clustering has
been developed based on random signal filtering techniques
[131]. Related ideas have been used in sketching [132], [133]
or data visualization applications on large real-world datasets
of millions of nodes [134], [124]. These examples provide
evidence for the potential benefits of using GSP principles in
big data applications.

Finally, the GSP framework can also be used to design
architectures to analyze or classify whole graph signals that
originally live on irregular structures. In particular, the graph
signal processing toolbox has been extensively used to extend
convolutional deep learning techniques to data defined on
graphs. The convolutional neural network paradigm has been
generalized with help of GSP elements for the extraction of
feature descriptors for 3D shapes [135], [136]. A localized
spectral network architecture leveraging on localized vertex-
frequency analysis has also been proposed in [137], and the use
of heat kernels defined in the graph spectral domain has been
developed in [138]. While the previous works mostly address
the analysis of 3D shapes, convolutional neural networks
(CNNs) can actually be extended to many other signals in
high-dimensional irregular domains, such as social networks,
brain connectomes or words embedding, by reformulation in
the context of spectral graph theory. Here, the GSP framework
leads to the development of fast localized convolutional filters
on graphs [139] along with adapted pooling operators [140].
Unsurprisingly, deep network architectures for graphs signals
have been actually tested in various applications domains, such
as chemical molecule properties prediction [141], classification
tasks on social networks [142], autism spectrum disorder
classification [143] or traffic forecasting [144].

V. RELATED WORK AND HISTORICAL PERSPECTIVE

1) Related work in other areas: With the advent of large
unstructured datasets there has been an explosion of activity in
developing new methods to infer knowledge from these data.
Next we briefly discuss how problems and methods studied
in areas such as network science, network processes, and
graphical models, relate to those studied in GSP.

Network Science addresses issues such as uncovering
community relations, perceived alliances, quantifying con-
nectedness, or determining the relevance of specific agents.
Thus, much of this work focuses on studying what can be
learned from the graphs structuring the data, rather than on
the data itself. For example, determining the size of the giant
component, distribution of component sizes, degree and clique
distributions, clustering coefficients, betweeness and closeness
centralities, path length, and network diameter [145], [146],
[147]. In the literature, these questions are often the realm of
what many call Network Science [148], [149], [150], [151].
Connections between this area of research and GSP primarily
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Fig. 6. Multiscale community structures in a graph of social interactions between children in a primary school. The different figures show the partition of
the original social network in 2, 5 and 10 communities, respectively. From [129], with permission.

come from the fact that the graph spectra that GSP builds
upon are strongly related to the structure of the graph [9]. As
an example, spectral clustering methods use the low frequency
eigenvectors of the Laplacian and thus can be viewed from a
GSP perspective [131].

Network processes aim to model propagation over net-
works, including such phenomena as diffusion of disease and
epidemics, spread of (fake) news, memes, fads, voting trends,
imitation and social influence, propagation of failures and
blackouts. Common models are similar to stochastic automata
where the state of the nodes (the “data”) evolve through
local rules, i.e., according to exogeneous (external to the
network) and endogeneous (internal to the network) effects.
For example, using terminology from epidemics, nodes of the
graph representing agents or individuals of a population can
be infected (adopt an opinion or spread a rumor, or a failed
component), or susceptible (open to adopt an opinion or spread
a rumor, or a performing component). Infected or failed nodes
can heal and become susceptible again; susceptible nodes can
become infected either by an action external to the network
or by action of infected neighbors [152], [153]. Analysis of
these network processes is difficult. Traditionally, the network
is abstracted out, assuming that any node can infect any
other node (full mixing or complete network). To account
for the impact of the network [154], resorting to numerical
studies is precluded except for very small networks since the
network state space {0, 1}N grows exponentially fast (2N ,
for N agents). To study these processes [155], [156] one
usually considers one of two asymptotic regimes: 1) either
long term behavior (time-asymptotics) and attempting to find
the equilibrium distribution of the process [157], [158]; or
2) large network asymptotics (mean field approximation) [159]
leading to the study of the qualitative behavior of nonlinear
ordinary differential equations [160]. Because asymptotic be-
havior can be seen to depend on the eigenstructure of the
underlying graph, GSP representations as those discussed in
Section III-B can be used to characterize the evolution of a
system. As an example, several papers have explored the use
of GSP techniques to improve the efficiency of value function
estimation in a reinforcement learning scenario [161], [162].

In the machine learning and statistics literature, there has
been a concerted effort on graphical models focusing on
inference and learning from large datasets, [163], [164], [165],
[166], [167]. The data is modeled as a set of random variables

described by a family of Gibbs probability distributions, and
the underlying graph, whose nodes label the variables, captures
statistical dependence and conditional independence among
the data. Acyclic graphs [168], [169] represent Bayesian
networks, while undirected graphs represent Markov random
fields [170], [171], [172]. Graphical models exploit factor-
izations of the joint distribution to develop efficient message
passing algorithms for inference and they find application in
many areas, including in modeling texture and other features
in image processing [173], [174], [175], [176], [177], [178],
see [179] for illustrative applications in several domains. A
connection between GSP and graphical models can be seen in
recent work on learning graph from data [72], which makes use
of Markov random field models to define optimality criteria
for the learned graphs.

2) Historical perspective on graph signal processing: We
now briefly review some of the prior work that is more directly
connected and in the spirit of signal processing on graphs, [1],
[2]. Although one can argue that any classification is arbitrary,
we organize the discussion in two main streams of work. Some
of these comments follow closely [1], [15].

From algebraic signal processing (ASP) to graph signal
processing (GSP). The sequence of papers [4], [5], [6], [7],
[180] introduced ASP, an axiomatic approach to time signal
processing. ASP starts from a signal model Ω. Many signal
models are possible, and a relevant question is to determine
which one is more appropriate for a given application or
should be associated with a given linear transform. One of
the motivations to develop ASP was to answer a simple
question: why is the discrete cosine transform (DCT) the
linear transform commonly associated with processing images
leading, as experimentally observed, to better results in lossy
image compression than the discrete Fourier transform (DFT).
The DCT (type II) is associated with many of the lossy
image/video compression standards [181], [182] from JPEG,
to MPEG-1 [183] to H.264/AVC [184], [185] and HEVC.
Based on [186], see also item 6, page 153 in [187], the energy
compaction offered by the DCT was justified because the DCT
asymptotically approximates the Karhunen-Loève transform
(KLT) of a first order (causal) Markov process (a first order au-
toregressive AR(1) model). This of course is an unsatisfactory
explanation since images are basically non-causal models with
no left-right or up-down preferred direction; reference [188]
does show more fittingly that the DCT and DST are the KLTs
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for first order non-causal Markov random fields rather than
causal Markov processes. By appropriate definition of a space
signal model [7], the DCT Type II and each one of its other
fifteen cousin trigonometric linear transforms are shown to
be Fourier transforms playing, for the (corresponding) space
model, the role that the DFT plays for the time (cyclic) model.
References [4], [5], [6], [7] show that, under appropriate
conditions, the signal model is generated from a simple filter,
the shift. In other words, under these conditions and signal
model, choice of the shift determines filtering, convolution,
the Fourier transform, frequency, and spectral analysis among
other common concepts and constructs from traditional digital
signal processing. This led [1], [21] to introduce for signals
indexed by nodes of an arbitrary directed or undirected graph
the possibly weighted graph adjacency matrix as the shift that
generates the graph signal model. This choice is satisfying
in the sense that when the signal model is the time signal
model or the space signal model the shifts and the graph
signal model revert to the shifts and signal models in [6]
and [7], respectively. Subsequently, authors have proposed
other shifts obtained from the adjacency matrix of the signal
graph assumed [16], [17] that attempt to preserve isometry of
the shift but lose the locality of the adjacency matrix shift.

From graph Laplacian spectral clustering to Laplacian-
based GSP. References [189], [190], [191], [192] develop
low-dimensional representations for large high-dimensional
data through spectral graph theory [193], [191] and the graph
Laplacian [9], by projecting the data on a low-dimensional
subspace generated by a small subset of the Laplacian eigen-
basis. The use of the graph Laplacian is justified by assuming
the data is smooth in the sense that if the dataset is large
and samples uniformly randomly a low-dimensional manifold
then the (empirical) graph Laplacian acting on a smooth
function on this manifold is a good discrete approximation
that converges pointwise and uniformly to the elliptic Laplace-
Beltrami operator applied to this function as the number of
points goes to infinity [194], [195], [196]. References [197],
[198], [29] choose discrete approximations to other continuous
operators, for example, a conjugate to an elliptic Schrödinger-
type operator, and obtain other spectral bases for the char-
acterization of the geometry of the manifold underlying the
data.

In a different direction, motivated by processing of data col-
lected by sensor networks where sensors are irregularly placed,
[199] develops regression algorithms, [200], [80], [81], [29],
[8] wavelet decompositions, [201], [32] filter banks on graphs,
[202] de-noising, and [203] compression schemes using the
graph Laplacian. Some of these references consider distributed
processing of data from sensor fields, while others study
localized processing of signals on graphs in multiresolution
fashion by representing data using wavelet-like bases with
varying “smoothness” or defining transforms based on node
neighborhoods. For example [8] uses the graph Laplacian and
its eigenbasis to define a spectrum and a Fourier transform of
a signal on a graph. This definition of a Fourier transform was
also proposed for use in uncertainty analysis on graphs [204],
[205]. Besides using the graph Laplacian, these works apply
to data indexed by undirected graphs with real, non-negative

edge weights. This approach is more fully developed in [2],
which adopts the graph Laplacian as basic building block to
develop GSP for data supported by undirected graphs.

VI. CONCLUSION

While recent papers have developed key principles for
signal processing of graph signals, and these have shown
significant promise for some important applications, there
remain significant challenges. On the theoretical front, work
to date has focused on results that can be applied to arbitrary
graphs. But given the significant differences between the
spectral properties of graphs, there is strong current interest in
developing tools that can take into consideration the particular
characteristics of specific classes of graphs. On the application
front, GSP is a good match for datasets exhibiting irregular
relationships between samples that can be captured by a graph.
However, additional research is needed within each application
to further understand the best ways to combine GSP tools
with existing techniques in order to achieve significant gains
in terms of the metrics of interest for each application.
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for piecewise-smooth signals on graphs,” IEEE Trans. Signal Process.,
2017, submitted.

[4] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete
cosine and sine transforms and their fast algorithms,” SIAM J. Comp.,
vol. 32, no. 5, pp. 1280–1316, 2003.

[5] ——, “Algebraic signal processing theory,” December 2006, 67 pages.
[Online]. Available: http://arxiv.org/abs/cs.IT/0612077

[6] ——, “Algebraic signal processing theory: Foundation and 1-D time,”
IEEE Trans. Signal Proc., vol. 56, no. 8, pp. 3572–3585, 2008.

[7] ——, “Algebraic signal processing theory: 1-D space,” IEEE Trans.
Signal Proc., vol. 56, no. 8, pp. 3586–3599, 2008.

[8] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” J. Appl. Comp. Harm. Anal., vol. 30,
no. 2, pp. 129–150, 2011.

[9] F. R. K. Chung, Spectral Graph Theory. AMS, 1996.
[10] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.

Englewood Cliffs, New Jersey: Prentice-Hall, 1975.
[11] A. V. Oppenheim and A. S. Willsky, Signals and Systems. Englewood

Cliffs, New Jersey: Prentice-Hall, 1983.
[12] W. M. Siebert, Circuits, Signals, and Systems. Cambridge, MA: The

MIT Press, 1986.
[13] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.

Englewood Cliffs, New Jersey: Prentice-Hall, 1989.
[14] S. K. Mitra, Digital signal processing. A Computer-Based Approach.

New York: McGraw Hill, 1998.
[15] A. Sandryhaila and J. M. Moura, “Big data analysis with signal pro-

cessing on graphs: Representation and processing of massive data sets
with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80–90, 2014.

[16] B. Girault, P. Gonalves, and . Fleury, “Translation on graphs: An
isometric shift operator,” IEEE Signal Processing Letters, vol. 22,
no. 12, pp. 2416–2420, Dec 2015.

[17] A. Gavili and X. P. Zhang, “On the shift operator, graph frequency,
and optimal filtering in graph signal processing,” IEEE Transactions
on Signal Processing, vol. 65, no. 23, pp. 6303–6318, Dec 2017.

[18] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal
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catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998,
respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the
Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007),
where he is now a Full Professor of Electrical Engineering and, by courtesy,
of Computer and Communication Sciences. As of 201, Prof. Vandergheynst
serves as EPFLs Vice-President for Education.

His research focuses on harmonic analysis, sparse approximations and
mathematical data processing in general with applications covering signal,
image and high dimensional data processing, computer vision, machine
learning, data science and graph-based data processing.

He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate
Editor of the IEEE Transactions on Signal Processing (2007-2011), the
flagship journal of the signal processing community, and currently serves as
Associate Editor of Computer Vision and Image Understanding and SIAM
Imaging Sciences. He has been on the Technical Committee of various
conferences, serves on the steering committee of the SPARS workshop and
was co-General Chairman of the EUSIPCO 2008 conference.

Pierre Vandergheynst is the author or co-author of more than 70 journal
papers, one monograph and several book chapters. He has received two IEEE
best paper awards. Professor Vandergheynst is a laureate of the Apple 2007
ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy
of Sciences of Belgium.


	I Introduction and motivation
	II Key Ingredients of Graph Signal Processing
	II-A The role of shifts in digital signal processing
	II-B Defining shifts in Graph Signal Processing
	II-C Frequency representations for graph signals
	II-D Interpreting Graph Frequencies

	III State-of-the-Art and Challenges
	III-A Frequency definition
	III-B Representations
	III-C Sampling
	III-D Extending conventional signal processing to graph signals
	III-E Graph learning

	IV Graph Signal Processing Applications
	IV-A Sensor networks
	IV-B Biological networks
	IV-C Image and 3D point cloud processing
	IV-D Machine Learning and Data Science

	V Related Work and Historical Perspective
	V-1 Related work in other areas
	V-2 Historical perspective on graph signal processing


	VI Conclusion
	References
	Biographies
	Antonio Ortega
	Pascal Frossard
	Jelena Kovacevic
	José M. F. Moura
	Pierre Vandergheynst


