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ABSTRACT  |  Research in graph signal processing (GSP) aims 

to develop tools for processing data defined on irregular graph 

domains. In this paper, we first provide an overview of core ideas in 

GSP and their connection to conventional digital signal processing, 

along with a brief historical perspective to highlight how concepts 

recently developed in GSP build on top of prior research in other 

areas. We then summarize recent advances in developing basic GSP 

tools, including methods for sampling, filtering, or graph learning. 

Next, we review progress in several application areas using GSP, 

including processing and analysis of sensor network data, biological 

data, and applications to image processing and machine learning.

KEYWORDS  |  Graph signal processing (GSP); network science 

and graphs; sampling; signal processing

I .   IN TRODUCTION A ND MOTI VATION

Data is all around us, and massive amounts of it. Almost 
every aspect of human life is now being recorded at all lev-
els: from the marking and recording of processing inside the 
cells starting with the advent of fluorescent markers, to our 
personal data through health monitoring devices and apps, 
financial and banking data, our social networks, mobility 
and traffic patterns, marketing preferences, fads, and many 
more. The complexity of such networks [1] and interactions 
means that the data now reside on irregular and complex 
structures that do not lend themselves to standard tools.

Digital Object Identifier: 10.1109/JPROC.2018.2820126

Graphs offer the ability to model such data and complex 
interactions among them. For example, users on Twitter can be 
modeled as nodes while their friend connections can be modeled 
as edges. This paper explores adding attributes to such nodes and 
modeling those as signals on a graph; for example, year of gradua-
tion in a social network, temperature in a given city on a given day 
in a weather network, etc. Doing so requires us to extend classical 
signal processing concepts and tools such as Fourier transform, 
filtering, and frequency response to data residing on graphs. It 
also leads us to tackle complex tasks such as sampling in a princi-
pled way. The field that gathers all these questions under a com-
mon umbrella is graph signal processing (GSP) [2], [3].

While the precise definition of a graph signal will be 
given later in the paper, let us assume for now that a graph 
signal is a set of values residing on a set of nodes. These nodes 
are connected via (possibly weighted) edges. As in classical 
signal processing, such signals can stem from a variety of 
domains; unlike in classical signal processing, however, the 
underlying graphs can tell a fair amount about those signals 
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

Typical graphs that are used to represent common real-
world data include Erdős–Rényi graphs, ring graphs, random 
geometric graphs, small-world graphs, power-law graphs, 
nearest-neighbor graphs, scale-free graphs, and many others. 
These model networks with random connections (Erdoős–
Rényi graphs), networks of brain neurons (small-world 
graphs), social networks (scale-free graphs), and others.

As in classical signal processing, graph signals can have 
properties, such as smoothness, that need to be appropri-
ately defined. They can also be represented via basic atoms 
and can have a spectral representation. In particular, the 
graph Fourier transform allows us to develop the intuition 
gathered in the classical setting and extend it to graphs; we 
can talk about the notions of frequency and bandlimitedness, 
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for example. We can filter graph signals. They can be sampled, 
a notoriously hard problem; with GSP, one gains access to 
principled tools mimicking the classical ones. We can denoise 
graph signals, we can learn their underlying structure, we can 
model them. If the graphs cannot be directly observed, we can 
also learn their structure from data. All of these topics will be 
explored in more detail in what follows.

As illustration, consider what smoothness of graph sig-
nals may represent in urban settings. First, however, we 
have to understand what smoothness means on graphs. For 
example, we can think of smooth graph signals in the ver-
tex domain, that is, signals where neighboring nodes tend 
to have similar values. We can also think of the smoothness 
of graph signals in the spectral domain, typically called ban-
dlimitedness. Different types of smoothness are possible in 
the spectral domain where, instead of a sharp cutoff, fre-
quency content may decay according to some law.

Fig. 1 illustrates how a piecewise-smooth signal model 
can be used to approximate the taxi-pickup distribution in 
Manhattan. Fig. 1(a) shows the number of taxi pickups (with 
blue as low numbers up to red for high numbers) from 6 p.m. to 
7 p.m. on January 4, 2015, projected to the nearest intersection. 
What one can observe is that the busy shopping/entertainment 
areas such as Times Square in New York City show similar 
mobility patterns, as illustrated by the number of taxi pickups. 
In other words, neighboring intersections around shopping 
areas will exhibit similar (homogeneous) mobility patterns, 
likely corresponding to similar lifestyle behaviors, while the 
intersections around residential areas will exhibit different, yet 
still homogeneous mobility patterns and lifestyle behaviors; so, 
shopping areas will be very busy during the regular business 
hours and after work, but perhaps less so late in the evening, 
while residential areas will be busy on weekends and at times 
parents drop off and pick up their kids from school. Similarly, 
in social networks, within a given social circle, users’ profiles 
tend to be homogeneous, while within a different social cir-
cle they will be different, yet still homogeneous; for example, 
friends from a high school in New York City will probably have 
similar taste in entertainment, while friends from a high school 
in Lausanne will also have similar tastes but different from 
those from teenagers in New York. We can model such data as 
piecewise-smooth graph signals [see, for example, how a piece-
wise-smooth signal in Fig. 1(b) provides a good approximation 
to the actual measurements of Fig. 1(a)], as they capture large 
variations between pieces and small variations within pieces.

A number of communities consider similar questions as 
GSP. In particular, the machine learning community also 
considers graph structure/data and, at times, uses similar 
methods as GSP does. For example, the graph Fourier basis 
is related to Laplacian eigenvectors and graph signal recovery 
is related to semisupervised learning with graphs [5]. There 
are, however, a few differences. 1) GSP defines a frame-
work that allows the extension of classical signal process-
ing concepts. 2) Sampling data associated with graphs 
is rarely studied in the machine learning community and 

the sampling problem on graphs is generally a hard one; 
graph-structured data representations (such as graph filter 
banks and graph dictionary learning) are also rarely stud-
ied in the machine learning community. 3) Given that GSP 
extends classical signal processing concepts, it is in a posi-
tion to consider low-level processing such as denoising, 
inpainting, and compression. 4) Machine learning typi-
cally considers a graph as a discrete version of a manifold. 
In many real-world applications that are associated with 
graphs, this assumption is, however, not true. On the con-
trary, GSP does not make this assumption. For example, 
there is no underlying manifold for online social networks. 
In summary, as will be discussed next, and illustrated 
throughout this paper, GSP has strong connections to sev-
eral theoretical and practical research domains; its prom-
ise lies in its ability to develop new tools and approach 
existing problems from different perspectives.

A. Related Work in Other Areas

1)  Network Science: This area addresses issues such 
as uncovering community relations, perceived alliances, 
quantifying connectedness, or determining the relevance 
of specific agents [6]–[9]. Thus, much of this work does 
not concentrate on the data but rather their structure. It 
determines, for example, the size of the giant component, 
distribution of component sizes, degree and clique distri-
butions, clustering coefficients, betweenness and close-
ness centralities, path length, and network diameter [1], 
[10], [11]. Connections to GSP are primarily due to graph 
spectra that GSP builds upon, which is strongly related to 
the structure of the graph [12]. As an example, spectral 
clustering methods use the low-frequency eigenvectors of 
the Laplacian [13] and can thus be addressed from a GSP 
perspective as well  [14].

Fig. 1. Piecewise-smooth graph signals approximate irregular, 
nonsmooth graph signals by capturing both large variations at 
boundaries as well as small variations within pieces. (a) Data 
captured in Manhattan (13 679 intersections). (b) Piecewise-smooth 
approximation to the data with 50 coefficients (from [4] with 
permission).
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2)  Network Processes: The aim is to model propagation 
over networks, including such phenomena as diffusion of 
diseases and epidemics, spread of (fake) news, memes, fads, 
voting trends, imitation and social influence, propagation 
of failures, and blackouts. Common models are similar 
to stochastic automata where the states of the nodes (the 
“data”) evolve through local rules, i.e., according to exog-
enous (external to the network) and endogenous (internal 
to the network) effects. For example, using terminology 
from epidemics, nodes of the graph representing agents or 
individuals of a population can be infected (adopt an opin-
ion or spread a rumor), or susceptible (open to adopt an 
opinion or spread a rumor). Infected nodes can heal and 
become susceptible again; susceptible nodes can become 
infected either by an action external to the network or by 
an action of infected neighbors [15], [16]. As the analysis 
of such network processes is difficult, traditionally, the 
network is abstracted out, assuming that any node can 
infect any other node (full mixing or complete network). 
To account for the impact of the network [17], resorting to 
numerical studies is precluded except for very small net-
works since the network state space ​​{0, 1}​​ N​​ grows exponen-
tially fast (​​2​​ N​​, for ​N​ agents). To study these processes [18], 
[19], one usually considers one of two asymptotic regimes: 
1) long-term behavior (time asymptotics), attempting to 
find the equilibrium distribution of the process [20], [21]; 
or 2) large network asymptotics (mean-field approxima-
tion) [22] leading to the study of the qualitative behavior 
of nonlinear ordinary differential equations [23]. Because 
asymptotic behavior can be seen to depend on the eigen-
structure of the underlying graph, GSP representations as 
those discussed in Section III-B can be used to characterize 
the evolution of a system. As an example, several papers 
have explored the use of GSP techniques to improve the 
efficiency of value function estimation in a reinforcement 
learning scenario [24], [25].

3)  Graphical Models: The focus in this area is on infer-
ence and learning from large data sets  [26]–[30]. The 
data are modeled as a set of random variables described 
by a family of Gibbs probability distributions, and the 
underlying graph (whose nodes label the variables) cap-
tures statistical dependence and conditional independ-
ence among the data. Acyclic graphs [31], [32] represent 
Bayesian networks, and undirected graphs represent 
Markov random fields [33]–[35]. Graphical models 
exploit factorizations of the joint distribution to develop 
efficient message passing algorithms for inference and 
find application in many areas such as modeling texture 
and other features in image processing [36]–[41]; see [42] 
for illustrative applications in several domains. Recent 
work on learning graph from data [43], [44], which 
makes use of Markov random field models to define opti-
mality criteria for the learned graphs, connects graphical 
models to GSP.

B. Historical Perspective on Graph Signal Processing

We now briefly review some of the prior work that is more 
directly connected and in the spirit of signal processing on 
graphs, [2], [3]. We organize the discussion along two main 
lines; some parts of the exposition follow closely [2], [45].

1)  From Algebraic Signal Processing to Graph Signal 
Processing: The sequence of papers [46]–[50] introduced 
algebraic signal processing (ASP), an axiomatic approach 
to time signal processing. ASP starts from a signal model ​Ω​.  
Many signal models are possible, and a relevant question is to 
determine which one is more appropriate for a given applica-
tion or should be associated with a given linear transform. 
Under appropriate conditions, the signal model is generated 
from a simple filter, the shift, which then determines filter-
ing, convolution, the Fourier transform, frequency, and spec-
tral analysis among other common concepts, and constructs 
from traditional digital signal processing. Such formalism 
allowed for a systematic and uniform framework for varia-
tions of classical signal processing. ASP, after appropriately 
defining a space line-graph signal model [49], can be used to 
show that the DCT plays the same role for that signal model 
as the one the DFT plays for the time (cyclic) model. ASP 
led to the introduction of, possibly weighted, graph adjacency 
matrices as shifts that generate the graph signal model for 
signals indexed by nodes of an arbitrary directed or undi-
rected graph [2], [51]. This choice is satisfying in the sense 
that, when the signal model is the classical time signal model, 
the shift and the graph signal model revert to the classical 
time shift (delay) and signal model [48] (see Section II). 
Subsequently, authors the authors have proposed other shifts 
obtained from the adjacency matrix of the graph [52], [53] 
that attempt to preserve isometry of the shift, but in some 
cases lose the locality of the adjacency matrix shift [52]

2)  From Graph Laplacian Spectral Clustering to Laplacian-
Based GSP: References [54]–[57] develop low-dimensional 
representations for large high-dimensional data through 
spectral graph theory [56], [58] and the graph Laplacian 
[12], by projecting the data on a low-dimensional subspace 
generated by a small subset of the Laplacian eigenbasis [13]. 
The use of the graph Laplacian is justified by assuming the 
data are smooth on the data space (manifold). References 
[59]–[61] choose discrete approximations to other con-
tinuous operators, for example, a conjugate to an elliptic 
Schrödinger-type operator, and obtain other spectral bases 
for the characterization of the geometry of the manifold 
underlying the data.

Coming from another angle, motivated by processing 
data collected by sensor networks where sensors are irregu-
larly placed, different authors develop regression algorithms 
[62], wavelet decompositions [61], [63]–[66], filter banks on 
graphs [67], [68], denoising [69], and compression schemes 
using the graph Laplacian [70]. Some of these references 
consider distributed processing of data from sensor fields, 
while others study localized processing of signals on graphs 
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in a multiresolution fashion by representing data using wave-
let-like bases with varying “smoothness” or defining trans-
forms based on node neighborhoods. For example, [66] uses 
the graph Laplacian and its eigenbasis to define a spectrum 
and a Fourier transform of a signal on a graph. Besides using 
the graph Laplacian, these works apply to data indexed by 
undirected graphs with real, nonnegative edge weights. This 
approach is more fully developed in [3], which adopts the 
graph Laplacian as basic building block to develop GSP for 
data supported by undirected graphs.

3)  Image Processing, Computer Graphics, and GSP: In 
addition, graph-based approaches have been widely used 
in signal processing contexts. For example, several authors  
represent images as graphs for segmentation [71], [72] and 
popular image-dependent filtering methods can be inter-
preted from a graph perspective [73]. Models used in com-
puter graphics applications can often be viewed as graphs 
(e.g., meshes where vertices form triangles to which attrib-
utes are associated) and graph-based filtering, processing, and 
multiresolution representations can be developed [74]–[76].

C. Outline of the Paper

The outline of the paper is as follows. Section II starts 
by presenting the framework and key ingredients of GSP. It 
explains how the concepts from classical signal processing 
such as signals, filters, and Fourier transform, among others, 
extend to complex structures where data are indexed by nodes 
on a graph. Section III covers some state-of-the-art topics and 
associated challenges, such as the definition of frequency, 
graph learning, sampling and representations. Section IV fol-
lows up with applications of GSP in sensor networks, biologi-
cal networks, 3-D point cloud processing, and machine learn-
ing. Section V gives some conclusions.

II .   K EY INGR EDIEN TS OF GR A PH 
SIGNA L PROCESSING

In this section, we introduce basic GSP concepts. While 
more formal derivations of GSP can be developed, e.g., from 
the signal model introduced in the algebraic signal process-
ing (ASP) [46]–[49] or from the spectral perspective devel-
oped in [3] and  [66] based on spectral graph theory [12], 
we choose a more intuitive presentation by first reviewing the 
concept of shift in digital signal processing (DSP) (Section II-A) 
in order to emphasize connections between DSP and GSP. 
We then develop a corresponding notion of shift for GSP 
(Section II-B). This in turns leads to the definition of fre-
quencies for graph signals (Section II-C) and their interpre-
tation (Section II-D). We focus on tools derived from the 
adjacency or Laplacian matrices of the graphs, as these are 
by far the most widely used. However, we note that each of 
these approaches have their own limitations and there are 
active research efforts to build GSP tools on alternative defi-
nitions of frequency (see Section III-A).

A. The Role of Shifts in DSP

DSP  [77]–[81] studies time signals. GSP1 [2], [3], [45] 
extends DSP to signal samples indexed by nodes of a graph. 
At a very high level, DSP and, therefore, GSP study: 1) signals 
and their representations; 2) systems that process signals, 
usually referred to as filters; 3) signal transforms, includ-
ing two very important ones, namely, the ​z​-transform and 
the Fourier transform; and 4) sampling of signals, as well as 
other more specialized topics.

Consider ​N​ samples of a signal ​​s​n​​​, ​n = 0, 1, …, N − 1​. We 
restrict ourselves to signals with a finite number ​N​ of sam-
ples and to filters with finite impulse response (FIR) filters. 
The ​z​-transform ​s(z)​ of the (real or complex valued) time 
signal ​s  = ​ {​s​n​​ : n  =  0, 1, …, N − 1}​​ organizes its samples ​​s​n​​​ 
into an ordered set of time samples, where sample ​​s​n​​​ at time ​
n​ precedes ​​s​n+1​​​ at time ​n + 1​ and succeeds ​​s​n−1​​​ at time ​n − 1​.  
In other words, the signal is given by the ​N​-tuple ​s = ​ (​s​0​​ , ​
s​1​​ , …, ​s​N−1​​)​​. This representation is achieved by using a for-
mal variable, say ​​z​​ −1​​, called the shift (or delay), so that the 
signal of ​N​-samples is represented by 

	​ s(z) = ​ ∑ 
n=0

​ 
N−1

​ ​ ​s​n​​ ​z​​ −n​ .​� (1)

The ​z​-transform ​s(z)​ provides a (formal)2 polynomial 
representation of the signal that is useful in studying how 
signals are processed by filters. Clearly, given ​s(z)​ we can 
recover the signal ​s​ [80], [81].

The discrete Fourier transform (DFT) of the signal ​s​ 
is ​​ s ̂ ​ = ​{​​ s ̂ ​​k​​ : k = 0, …, N − 1}​​ given by 

	​​​  s ̂ ​​k​​ = ​  1 __ 
​√ 

__
 N ​
 ​ ​ ∑ 
n=0

​ 
N−1

​ ​ ​s​n​​ ​e ​​ −j​ 2π ___ N ​ kn​ .​� (2)

The ​​​ s ̂ ​​k​​​ are the Fourier coefficients of the signal. The 
DFT represents the signal ​s​ in the dual or frequency 
domain, leading to concepts such as frequency, spec-
trum, low-, band-, and high-pass signals. The discrete fre-
quencies are ​​Ω​k​​ =  (2π k / N)​, ​k = 0, 1, …, N − 1​, and the ​N​  
signals ​​(​x​k​​ [n])​​

	​​​ {​x​k​​ [n] = ​  1 __ 
​√ 

__
 N ​
 ​ ​e​​ −j ​ 2π ___ N ​kn​ : n = 0, 1, …, N − 1}​​ 

k=0
​ 

N−1
​ ​ �

are the spectral components.
The signal is recovered from its Fourier coefficients by 

the inverse DFT 

	​​ s​n​​ = ​  1 __ 
​√ 

__
 N ​
 ​ ​ ∑ 
k=0

​ 
N−1

​ ​ ​​ s ̂ ​​k​​ ​e​​ j​ 
2π ___ N ​kn​ , s = 0, 1, …, N − 1.​� (3)

In DSP, besides signals, we also have filters ​h​. A FIR fil-
ter is also represented by a polynomial in ​​z​​ −1​​

	​ h(z) = ​ ∑ 
n=0

​ 
N−1

​​h​n​​​ ​z​​ −n​​� (4)

1We consider here only linear GSP.
2While in DSP ​z​ is a complex variable, which leads to the DFT when 

restricted to the unit circle as in (2), here we establish the link to GSP by 
viewing ​z​ as a placeholder for each sample of the signal.
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so that the output ​​s​out​​​ of filter ​h​ applied to signal ​​s​in​​​ is

	​​ s​out​​ (z) = h(z)  ⋅ ​s​in​​ (z) .​� (5)

Because we are only considering finite time signals, and 
the product above could result in ​​s​out​​ (z)​ being a polynomial 
in ​​z​​ −1​​ of degree greater than ​N − 1​, we have to consider 
boundary conditions (b.c.). For simplicity, we consider 
periodic extensions of the signal, i.e., the signal sample ​​s​N​​​ 
is equal to the signal sample ​​s​0​​​; more generally, ​​s​n​​ = ​s​n​​​  mod ​​N​​​.  
In other words, the real line is folded around the circle. 
Defining the shift or delay filter 

​​h​shift​​ (z) = ​z​​ −1​​

and applying it to a signal ​​s​in​​ = ​(​s​0​​ , ​s​1​​ , …, ​s​N−1​​)​​ gives an 
output

	​​ s​out​​ = ​h​shift​​ ⋅ ​s​in​​ = ​(​s​N−1​​ , ​s​0​​ , ​s​1​​ , …, ​s​N−2​​)​​.​�

By (4), any filter ​h​ in DSP is a polynomial in the shift, i.e., it 
is built from series and parallel combinations of shifts. Thus, 
the shift is the basic building block in DSP, from which we 
can build more complicated filters.

A second very important DSP property that is adopted in 
GSP is shift invariance. This readily follows from 

	​​ z​​ −1​ ⋅ h(z) = h(z) ⋅ ​z​​ −1​ .​� (6)

In words, the series combination of filters is commuta-
tive, a filter commutes with the shift filter—delaying the 
input signal ​​s​in​​​ and then filtering the delayed input signal 
leads to the same signal as first filtering the input signal ​​s​in​​​ 
and then delaying the filtered output.

Restating for emphasis, both (1) and (4) show the 
principal role played by the shift ​​z​​ −1​​ in DSP. We rep-
resent signals by (finite degree) polynomials in ​​z​​ −1​​ and 
build filters also as polynomials in ​​z​​ −1​​.

B. Defining Shifts in Graph Signal Processing

We now extend the above concepts and tools to graph 
signals, i.e., signals whose samples are indexed by the nodes 
of arbitrary graphs. To do so, we start by reinterpreting the 
finite signals from the previous section as vectors rather 
than tuples or sequences.

Rewrite the signal ​s = ​(​s​0​​ , ​s​1​​ , …, ​s​N−1​​)​​ as the vector 

	​ s = ​​[​s​0​​ ​s​1​​ ⋯ ​s​N−1​​]​​​ 
⊤​ ∈ ​ℂ​​ N​​�

where for generality we allow the signal to be complex 
valued. Using this notation, a filter ​h​ is represented by a 
matrix ​H​ and (5) can be simply written as a matrix–vector 
multiplication

​​s​out​​ = H ⋅ ​s​in​​​

where filters are represented by matrices, while signals are 
represented by vectors. In particular, the shift filtering oper-
ation corresponds to multiplication by a circulant matrix ​​A​c​​​

	​​​ [​s​N−1​​ ​s​0​​ . . .  ​s​N−2​​]​​​ ⊤​ = ​A​c​​ ⋅ ​​[​s​0​​ ​s​1​​ . . . ​s​N−1​​]​​​ 
⊤​​�

given by the cyclic shift 

	​​ A​c​​ = ​

⎡

 ⎢ 

⎣

​

0

​ 

   0

​ 

   0

​ 

   ⋯

​ 

   0

​ 

   1

​   

1

​ 

   0

​ 

   0

​ 

   ⋯

​ 

   0

​ 

   0

​   0​     1​     0​     ⋯​     0​     0​   
⋮
​     ⋮​     ⋱​     ⋱​     ⋱​     0​   

0

​ 

   0

​ 

   ⋯

​ 

   1

​ 

   0

​ 

   0

​   

0

​ 

   0

​ 

   ⋯

​ 

   0

​ 

   1

​ 

   0

​

⎤

 ⎥ 

⎦

​​.​� (7)

A graph interpretation for the DSP concepts of Section II-A  
can be achieved by viewing the 0-1 shift matrix ​​A​c​​​ of (7) as 
the adjacency matrix of a graph. Labeling the rows and col-
umns of ​​A​c​​​ from 0 to ​N − 1​, define the graph ​​G​c​​ =  (V, E)​ 
with node set ​V = ​ {0, 1, …, N − 1}​​. Row ​n​ of ​​A​c​​​ represents 
the set of in-edges of node ​n​ in ​​G​c​​​—if there is an entry 1 at 
column ​ℓ​, ​​A​c,nℓ​​ = 1​, then there is an edge from ​ℓ​ to ​n​. ​​A​c​​​ is 
then the adjacency matrix of the cycle graph in Fig. 2.

The key point we make is the dual role of the matrix ​​
A​c​​​ in (7), which represents both the shift ​​z​​ −1​​ in DSP 
and the adjacency matrix of the associated time graph 
in Fig. 2.

This graph interpretation of DSP can be extended to 
develop a linear time shift invariant GSP [2]. Consider now 
a graph signal ​s ∈ ​ℂ​​ N​​, where the entries of the signal ​s​ are 
indexed by the ​N​ nodes of an arbitrary graph ​G  =  (V, E)​,  
​​v​1​​ , …, ​v​N​​​. Assuming that the graph has edge weights ​​w​ij​​​, 
denote an edge of weight ​​w​ij​​​ going from ​​v​j​​​ to ​​v​i​​​, then we  
can define the following algebraic representations associ-
ated to ​G​.

Definition 1 (Algebraic Representations of Graphs): The 
adjacency matrix is a matrix ​A​, such that ​​(A)​ij​​ = ​w​ij​​​. In the 
particular case where the graph is undirected, we have ​​w​ij​​ = ​
w​ji​​​, ​A​ is now symmetric, and we also define the degree matrix 
of ​G​, a diagonal matrix ​D​, with entries ​​(D)​ii​​ = ​∑ j=1​ 

N  ​ ​(A)​ij​​​​ and ​​
(D)​ij​​ = 0​ for ​i ≠ j​, the combinatorial graph Laplacian defined 
as ​L​  =  ​D​ − ​A​, and the symmetric normalized Laplacian  
​ℒ = ​D​​ −1/2​ L ​D​​ −1/2​​.

Fig. 2. Time graph: Cycle graph ​​G​c​​​.
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The adjacency matrix ​A​ can be adopted as the shift 
[2] for this general graph. Other choices have been pro-
posed, including the Laplacians [3], or variations of these 
matrices [52], [53]. Different choices for the shift present 
different tradeoffs. The adjacency matrix ​A​ reduces to the 
shift in classical time DSP and applies to directed and 
undirected graphs,3 while the graph Laplacian applies 
only to undirected graphs, so that ​L​ is symmetric and 
positive semidefinite, which avoids a certain number of 
analytical and numerical difficulties that may arise when 
choosing ​A​. Furthermore, graph Laplacian spectra have 
been widely studied in the field of spectral graph theory 
[12]. In specific applications, one should consider the 
various definitions and choose the one that leads to the 
best tradeoff for the problem being considered [82]. This 
choice is further discussed in Sections II-E and III-A.

For time signals, as discussed with respect to (1), the 
basis ​​​{​z​​ −n​}​​ n=0​ N−1​​ orders the samples of the signal by increasing 
order of the time labels (nodes in time graph). Rewriting 
(1), we get 

	​ s(z) = ​[​​(​z​​ −1​)​​​ 
0
​ ​z​​ −1​ . . .  ​z​​ −(N−1)​]​ ​​[​s​0​​ ​s​1​​ . . . ​s​N−1​​]​​​ 

⊤​.​�

In GSP, ordering the samples corresponds to labeling 
the nodes of the graph. This labeling or numbering fixes the 
adjacency matrix of the graph, and hence the graph shift. 
The columns of the graph shift provide a basis and a repre-
sentation for the graph signals. Other bases could be used, 
leading to different signal representations. We note that 
relabeling the nodes of the graph by a permutation ​Π​ con-
jugates the shift by ​Π​

	​​ A​Π​​ = ΠA ​Π​​ ⊤​.​�

Following the analogy with DSP, we can now define the 
notion of shift invariance and polynomial filters for arbitrary 
graphs. A filter represented by ​H​ will be shift invariant if it 
commutes with the shift 

	​ AH = HA.​�

As proven in [2], if the characteristic polynomial ​​p​A​​(z)​ 
and the minimum polynomial4​​ m​A​​(z)​ of ​A​ are equal, then 
every filter commuting with ​A​ is a polynomial in ​A​, i.e., 

	​ H = h(A).​�

For equality ​​p​A​​(z)   = ​ m​A​​(z)​, to each eigenvalue of ​
A​ there corresponds a single eigenvector.5 A simpler 

condition is for the eigenvalues of ​A​ to be distinct. To keep 
the discussion simple, unless otherwise stated, we assume ​
A​ has ​N​ distinct eigenvalues and hence a complete set of 
eigenvectors.

By the Cayley–Hamilton theorem of linear algebra [83], 
[84] 

​degree(h(z)) = degree(​p​A​​ (z)) ≤ N − 1.​

In fact, ​degree(h(z))  ≤ degree(​m​A​​ (z))  ≤ degree(​p​A​​ (z))​. 
In words, shift invariant filters are polynomials with degree 
at most ​degree(​m​A​​ (z))​.

C. Frequency Representations for Graph Signals

In DSP and in linear systems, we are interested in signals 
that are invariant when processed by a (linear) filter, i.e., 

	​ h ⋅ ​s​in​​ = α ​s​in​​​�

where ​α​ is a scalar (from the base field). Such ​​s​in​​​ are, of course, 
the eigensignals of the filter ​h​. In GSP, we define filters as 
matrices and thus the eigensignals of ​h​ are the eigenvectors of 
the corresponding ​H​. More interestingly, since shift-invariant 
filters are polynomials of a single matrix, the shift ​A​, we only 
need to consider the eigenvectors of ​A​. Then, write 

	​ A = V Λ ​V​​ −1​​� (8)

where ​V = ​[​v​0​​ . . . ​v​N−1​​]​​ is the matrix of the ​N​ eigenvectors  
of ​A​, and ​Λ  =  diag​[​λ​ 0​​ . . . ​λ​ N−1​​]​​ is the matrix of distinct 
eigenvalues of ​A​. Because we assume that ​A​ has a complete 
set of eigenvectors, ​V​ is invertible. Then, it is straightfor-
ward to verify that for each (polynomial) filter 

	​​

 H =

​ 

h(A )

​ 
        =

​ 
h​(V A ​V​​ −1​)​

​  
      =​ 

​ ∑ 
m=0

​ 
M−1

 ​​h​m​​​ ​​(V Λ ​V​​ −1​)​​​ 
m

​
​  

      =

​ 

Vh​(Λ)​ ​V​​ −1​

 ​​

� (9)

where ​h​(Λ)​​ is the diagonal matrix 

	​ h​(Λ)​ = diag ​[h​(​λ​ 0​​)​ . . . h​(​λ​ N−1​​)​]​​.​� (10)

We can promptly verify that the eigenvectors of ​A​ are 
the eigenfunctions of the (polynomial) filter 

	​​
 H ​v​m​​ =

​ 
Vh​(Λ)​ ​V​​ −1​ ​v​m​​

​            =​  Vh​(Λ)​ ​e​m​​​  
           =

​ 
h​(​λ​ m​​)​ ​v​m​​

 ​​
� (11)

where ​​e​m​​​ is the zero vector except for entry ​m​ that is a one. 
Equation (11) is the GSP counterpart to the classical DSP 
fact that exponentials are eigenfunctions of linear systems. 
As such the response of the filter to an exponential is the 
same exponential amplified or attenuated by a gain that 
is the frequency response of the filter at the frequency 

3Note that the graph defined by ​​A​c​​​ in (7) is directed in order to 
match exactly the behavior of shifts in time in DSP, which are always 
directed, i.e., we either move forward or backward in time. But, in 
general, the notion of a graph shift applies to any adjacency matrix, 
whether corresponding to a directed or an undirected graph. In what 
follows both directed and undirected graphs are considered.

4For a matrix ​A​, the minimal polynomial ​​m​A​​ (z)​ is the polynomial of 
minimal degree having ​A​ as a root.

5In other words, the Jordan form of ​A​ has single blocks for each 
distinct eigenvalue.
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of the exponential. We refer to this as the invariance prop-
erty of exponentials with respect to linear systems in DSP. 
Accordingly, (11) shows the invariance of the eigenvectors 
of the shift operator ​A​ with respect to graph filters.

Finally, we can introduce the Fourier transform for 
graph signals. The cyclic shift in (7) can be written as 

	​​ A ​c​​ = DF ​T​ N​ −1 ​​

⎛
 ⎜ 

⎝
​
​e​​ −j ​ 2π ⋅0 _____ N ​ ​

​ 
​
​ 

​
​  ​​  ⋱​  ​​  

​

​ 

​

​ 

​e​​ −j ​ 
2π ⋅(N−1)

 _________ N ​ ​

​

⎞
 ⎟ 

⎠
​ DF ​T​N​​​� (12)

where ​DF ​T​N​​ = ​ (1 / ​√ 
__

 N ​)​​[​w​ N​ kn​]​​, ​​w​ N​​ = ​ exp​​ −j(2π/N)​​, is the dis-
crete Fourier matrix. The inverse ​DF ​T​ N​ −1​  =  DF ​T​ N​ H​​ is the 
matrix of eigenvectors of ​​A​c​​​. The eigenvalues of ​​A​c​​​ are ​​
e​​ −j(2π⋅n/N)​​, ​n = 0, …, N − 1​, the diagonal entries of the mid-
dle matrix in (12). The graph Fourier transform (GFT) fol-
lows by analogy with (12). From the eigendecomposition of ​
A​ in (8), the graph Fourier transform is the inverse of the 
matrix ​V​ of eigenvectors of the shift ​A​

	​ F = ​V​​ −1​ .​� (13)

The eigenvectors of the shift ​A​, columns of ​V​, are the 
graph spectral components, and the eigenvalues of ​A​, the 
diagonal entries ​​λ​ k​​​ of matrix ​Λ​ in (8), are the graph frequen-
cies. The graph frequencies are complex valued for a general 
nonsymmetric (directed graph) shift ​A​.

The graph Fourier transform of graph signal ​s​ is given by 
the graph Fourier analysis decomposition 

	​​    s​ = Fs = ​V​​ −1​ s = ​​[​f​0​​ s . . . ​f​N−1​​ s]​​​ ⊤​​� (14)

where ​​f​k​​​ is a row vector, the ​k-​th row of ​F​. The graph Fourier 
coefficients or graph spectral coefficients of signal ​s​ are com-
puted using the inner product as ​​s ̂ ​ (​λ​ k​​) = ​​ s ̂ ​​k​​ = ​f​k​​ s = ​<​f​ k​ H​ , s>​​.  
Then, the Fourier spectral decomposition of the signal is 
obtained by the graph inverse Fourier transform. Equivalently, 
it is given by the graph Fourier synthesis expression 

	  ​s = ​F​​ −1​​   s​ = V​   s​​�

	​ = ​ ∑ 
k=0

​ 
N−1

​ ​ ​​s ̂ ​​k​​ ​v​k​​​�

	  ​ = ​ ∑ 
k=0

​ 
N−1

​ ​​<​f​ k​ H​ , s>​ ​v​k​​​�
(15)

	  ​ = V ​​[​<​f​ 0​ H​ , s>​ . . . ​<​f​ N−1​ 
H ​  , s>​]​​​ 

⊤
​.​�

The eigenvectors ​​v​k​​​ of ​A​, columns of ​V​, are the spectral 
components. Equation (15) synthesizes the original signal ​s​ 
from the spectral components ​​v​k​​​; the coefficients ​​​ s ̂ ​​k​​​ of the 
decomposition are the spectral coefficients of ​s​.

D. Interpreting Graph Frequencies

We can now interpret filtering a graph signal (i.e., 
multiplying the corresponding vector by ​H​) in the spec-
tral domain. From (9), the output of ​​s​in​​​ to filter ​h​ is 
successively 

​​s​out​​ =​ ​H ⋅ ​s​in​​​

​=​ ​Vh​(Λ)​ ​ ​ (​V​​ −1​ ​s​in​​)​ 
 
 


  

Fourier  transf.

​​� (16)

​=​ ​V ​ diag​[h​(​λ​ 0​​)​ . . . h​(​λ​ N−1​​)​]​ ​​   s​​in​​ 
 
 


  

 Filtering  in  graph  Fourier  space

​​�

​=​ ​​V diag​​[h​(​λ​ 0​​)​ ​​   s​​​in​0​​​​ . . . h​(​λ​ N−1​​)​ ​​   s​​​in​N−1​​​​]​​​ ⊤​  
 
  


  

 Inverse  Fourier  transf.

 ​  .​� (17)

Thus, according to (16), filtering by ​H​ can be performed 
by first taking the graph Fourier transform of the input  
​​(​V​​ −1​ ​s​in​​)​​, followed by pointwise multiplication in the fre-
quency domain of the graph Fourier transform signal  
​​​   s​​in​​​ by the filter frequency response ​diag​​​​[h​(​λ​ 0​​)​ . . . h​(​λ​ N−1​​)​]​​​ ⊤​​ 
given by (17). Finally, an inverse graph Fourier transform 
computes the output back in the graph node domain. This 
is the graph Fourier filtering theorem that reduces graph 
filtering to two graph Fourier transforms and a pointwise 
multiplication in the spectral domain [2].

With a notion of frequency we can now consider the GSP 
equivalents to classical concepts of low-, high-, and band-
pass signals or filters, as well as the question of efficient fil-
ter design. In the classical time domain, these concepts are 
directly related to values of frequency. In the time domain, 
the frequency is actually defined from the eigenvalues of the 
cyclic shift ​​A ​c​​​ in (12) as 

​​Ω​k​​ = ​ 2πk ____ N ​  , k = 0, 1, …, N − 1.​

These frequencies are directly related to the degree of 
variation of the spectral components. For example, the low-
est frequency ​​Ω​0​​ = 0​ corresponds to the least varying spec-
tral component, the constant or DC-spectral component, 
the next frequency ​​Ω​1​​ = (2π / N)​ represents a higher variation 
spectral component, and so on. There is a nice one-to-one 
correspondence between the ordered value of the frequency 
and the corresponding degree of variation or complexity of 
the time spectral component.

In GSP, the frequencies are defined by the eigenvalues 
of the shift. We can order the graph frequencies by relat-
ing them to the complexity of the spectral component. For 
example, this can be measured by the total variation of the 
associated spectral component through 

	​​ TV​ G​​​(​v​k​​)​ = ​​‖​v​k​​ − ​A​​ norm​ ​v​k​​‖​​1​​​�

where ​‖ ⋅ ​‖​1​​​ is norm 1, and ​​A​​ norm​  =  (1 /|​λ ​  max​​|)A​. Other 
norms could be used to define the total variation; see [3] 
and [51]. Using this, graph frequency ​​λ​ m​​​ is larger than graph 
frequency ​​λ​ ℓ​​​ if 

​​TV​ G​​​(​v​m​​)​ > ​TV​G​​​(​v​ℓ​​)​​.​ 

Assuming that the graph frequencies have been ordered 
from low to high, graph signal ​s​ is low-pass if its graph 
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Fourier coefficients are zero for ​​Ω​k​​​, ​k  >  ℓ​, for some ​ℓ​, ​
0 ≤ ℓ < N − 1​. We can similarly define band- and high-pass 
signals and filters.6

E. Frequency Representations Based  
on the Laplacian

The notions of frequency that arise in conventional 
signal processing provide a sound mathematical and intui-
tive basis for analyzing signals. While it is mathematically 
possible, as just discussed, to define notions of frequency 
for graph signals, developing a corresponding intuition to 
understand these elementary frequencies is not as straight-
forward. For the total variation criterion it has been shown 
experimentally and justified theoretically that the fre-
quency bases obtained from the shift operator tend to be 
ordered [51].

Up to this point, we have focused primarily on fre-
quency representations derived from the adjacency matrix 
of a graph, an approach that can be applied to both directed 
and undirected graphs, and can be linked to DSP concepts 
in the case of the cycle graph. A frequency representation 
can be similarly built on top of the Laplacian matrix of an 
undirected graph. Since this matrix is positive semidefi-
nite, all the eigenvalues are real and nonnegative, and a 
full set of orthogonal eigenvectors can be obtained, so that 
we can write 

	​ L = U Λ ​U​​ ⊤​​� (18)

with ​U​ the GFT matrix, which is real valued and orthogonal 
in this case. Because the eigenvalues are real, they provide 
a natural way to order the GFT basis vectors in terms of  
frequency (the variations of their values on the graph). In 
this case, the eigenvalue/eigenvector pairs can be viewed as 
successive optimizers of the Rayleigh quotient, where the  
​k​-th pair ​​λ​ k​​, ​u​k​​​ solves

	​​ u​k​​ = ​arg​
​x​​ ⊤​​u​​k ′ ​​​= 0, 

​​ ​  min​ 
​k ′ ​=0, …, k−1

​​ ​ ​x​​ ⊤​ Lx ____ 
​x​​ ⊤​ x

 ​​�  (19)

with ​​λ​ k​​ = ​u​ k​ ⊤​ L​u​​u ​k​​​​​, if ​​u​k​​​ is normalized. Thus, for the explicit 
variation metric induced by the Laplacian quadratic form, 
the GFT provides an orthogonal basis with increased vari-
ation, and such that, from (19), each additional basis vec-
tor minimizes the increase in variation while guaranteeing 
orthogonality. More generally, the relationships between 
eigenvectors and eigenvalues of the Laplacian and the 
structure of a graph are part of a deep and beautiful domain 
of mathematics known as spectral graph theory [12]. When 
graphs have structures closely related to those used in 
DSP (e.g., circulant adjacency matrices [85]) frequency 

interpretation is clear. If the graph is more general than 
the ring graph, part of the intuition remains, as illustrated 
by Fig. 3. Indeed, eigenvectors ​​u​i​​​ are oscillating over the 
vertex set. As the eigenvalue index ​i​ increases, the num-
ber of oscillations tends to increase as well [86]. However, 
the irregular nature of graphs means that the analogies to 
DSP cannot always be extended easily. For example, the 
spacing between frequencies (as measured by the eigen-
values of the Laplacian, for example) can be highly irregu-
lar, or some frequencies may have high multiplicity. Also, 
the high-frequency eigenvectors of irregular graphs can be 
highly localized [87], [88]. This potentially indicates that a 
direct ordering of frequencies may be insufficient to fully 
understand signal decompositions induced by current GSP 
techniques. To be complete, note that, while Laplacians 
can be easily defined for undirected graphs, there has been 
work to introduce definitions appropriate for directed 
graphs as well [89], [90]. In summary, a full understand-
ing of the best frequency representation for a specific GSP 
application, as a function of the type of graph considered, 
is still an active research topic. This is discussed further in 
Section III-A.

F. Implementation

Finally, let us quickly touch on the issue of computa-
tional complexity of the filtering operation. A straightfor-
ward algorithm would consist in computing the GFT matrix ​
V​ and explicitly applying it to the input signal as in (16). This 
is simple and accurate for small graphs thanks to fast SVD 
algorithms. Partial SVD can also be used if the filter ​h​ should 
only be evaluated on the top or bottom eigenvalues [91]. In 
general, and for large graphs, it is better to avoid computing 
even a partial SVD. One efficient possibility is to compute a 
polynomial approximation to ​h​ with Chebyshev filters [66]. 
For large but sparse graphs, this reduces computations to 
sparse matrix–vector multiply, which is very efficient.

Furthermore, filter implementation via polynomial 
approximation can be interpreted in terms of localization in 
the vertex domain. Note that when the input signal is a per-
fect impulse located at a given vertex ​s = ​e​i​​​, the filtered signal 
depends only on the graph filter and the vertex location in 
the graph: ​​f​i​​  =  H​e​i​​​. Even though ​​f​i​​​ changes with the cho-
sen vertex, it was proved in [92] that this signal is localized 
around ​i​ in a way that only depends on the smoothness of the 
filter ​h​. This is interesting because it allows to design filters 
that act locally and in a controlled way over the vertex set. 
After a filter ​h(λ)​ is chosen, one can choose an approxima-
tion ​​h​k​​ (λ)​, a polynomial of degree ​k​ in ​λ​. Note that ​​h​k​​ (λ)​ can 
then be implemented as shown in (9) by applying a polyno-
mial of the shift operator. This does not require knowing the 
eigenvalues and eigenvectors associated to the graph, so that 
it is possible to process signals on very large graphs locally, 
by processing ​k​-hop neighborhoods of nodes in the vertex 
domain, without a need to find the graph spectrum first.

6The total variation is the ​l1​-norm of a vector multiplied by ​I − ​A​​ norm​​. 
Assume for simplicity that the graph is undirected, then the largest 
eigenvalue of ​I − ​A​​ norm​​, and thus the largest TV, will be ​1 − ​λ​ min​​ / |​λ​  max​​|​, 
where ​​λ​ min​​​ is the smallest eigenvalue of ​A​, which intuitively, as seen in 
Fig. 3, corresponds to high variation in the eigenvector.
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III .   STATE OF THE A RT A ND 
CH A LLENGES

A. Frequency Definition

One can guarantee the existence of an orthogonal basis for 
any undirected graph. Thus, once a graph has been cho-
sen (see Section III-E) a definition of frequency is readily 
available, which allows us to address other questions con-
sidered in this section (sampling, signal representation, 
etc.). Multiple choices are possible, as a function of the 
graph type, the selected shift operator and its normaliza-
tion, etc. Making these choices appropriately for a given 
application remains an open question, which is actively 
being investigated.

As an example, the eigenvalues of the chosen operator 
matrix (Laplacian or adjacency) can have high multiplic-
ity. In this situation, a graph with ​N​ nodes will have fewer 
than ​N​ unique frequencies. A particular concern is that one 
can choose any set of orthogonal vectors within the sub-
space corresponding to this frequency, leading to different 
GFTs and thus potentially irreproducible results. As a way 
to address this scenario, recent work [93] suggests using 
oblique projections to measure the energy within such a 
subspace, using this information to represent the overall 
energy at that frequency.

For directed graphs, additional problems arise given that 
a full set of eigenvectors may not exist. Results for directed 
graphs are often restricted to cases where the adjacency 
matrix is invertible and eigenvectors do exist (as discussed 
in Section II-C). If these conditions do not hold, the Jordan 
canonical form is used to obtain the GFT [2], but this is well 
known to be a numerically unstable procedure. As an alter-
native, some authors have proposed to approximate directed 
graphs by undirected ones, using approaches such as the 
hub authority model [94], [95]. Recent work has also con-
sidered alternative definitions of frequency. For example, 
the work in [96] advocates using the random walk Laplacian 
normalization, while in [97], the authors propose alterna-
tive choices of a graph signal inner product and explore the 
resulting frequency definitions. Other techniques make use 
of explicit optimization to choose a set of graph frequen-
cies. As an example, the work in [98] uses an optimiza-
tion procedure to construct explicitly an orthogonal basis 
set that minimizes a quantity related to the cut size. With 
this approach, successive eigenvectors provide increasingly 
higher frequencies in the sense of corresponding to higher 
cut costs, while being orthogonal to those eigenvectors pre-
viously selected. The work in [99] also uses optimization 
techniques with a different criterion to define a set of fre-
quencies associated to a graph. In summary, this is a very 

Fig. 3. Example of elementary frequencies obtained from different algebraic representations of the same graph. (a) Adjacency matrix. 
(b) Laplacian matrix. In each case, four different frequencies are shown, corresponding to different eigenvalues, ranging from lowest 
frequency to highest frequency. In the Laplacian case, the lowest frequency is ​λ = 0​, representing a constant value throughout the graph, 
and the highest is ​λ = 4 . 53​, where we can observe a large number of sign changes across graph edges. Note that for any given graph with ​N​ 
nodes we will have ​N​ eigenvectors that can be ordered in terms of their variation covering the whole range of frequencies for that graph. In 
this example, the graph is unweighted. Unlike conventional signal processing, some of the eigenvectors can be localized in the graph (e.g., 
the highest frequency eigenvector of the Laplacian).
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active area of research, and the best approach to define a set 
of frequencies for graphs in a specific application remains to 
some extent an open question.

B. Representations

Designing representations for graph signals having 
desirable properties (e.g., localization, critical sampling, 
orthogonality, etc.) has been one of the first and most 
important research goals in GSP. Pioneering contributions 
[61] and [100] provided early examples of designs based on 
vertex domain and spectral domain characteristics, respec-
tively. Vertex domain designs such as [100] or [101] have 
the advantage of defining exactly localized basis functions 
on the graph, but do not have a clear spectral interpreta-
tion. Conversely, diffusion wavelets [61] are defined in the 
spectral domain, but do not guarantee exact vertex domain 
localization (only energy decay properties). The spectral 
graph wavelet transform design [66] was the first to com-
bine a spectral design with vertex-domain localization, by 
defining smooth filter kernels in the spectral domain and 
approximating these with polynomials.

The filterbanks developed in [66] were not critically 
sampled, unlike [61] or [101]. Thus, much recent work has 
focused on developing critically sampled filterbanks having 
both a spectral interpretation and vertex localized imple-
mentation. These types of filterbanks have been designed for 
bipartite graphs [68], [102], thus requiring the graph to be 
decomposed into a series of bipartite subgraphs [68], [103]. 
An alternative approach proposed in [85] and  [104] can be 
applied to circulant graphs, for which the GFT corresponds 
to the DFT. Recent work [105], [106] has shown that simi-
lar filterbank designs can be developed for directed graphs, 
where these designs are only possible for ​M​-block cyclic 
graphs, which play a similar role to that of bipartite graphs 
in the undirected case. Note that in all these cases, critical 
sampling combined with polynomial analysis and synthesis 
filtering is restricted to specific types of graphs (bipartite, ​M​
-block cyclic, and circulant.) Note also that critical sampling 
with polynomial analysis and synthesis filters on undirected 
graphs can only be achieved in the bipartite case [107].7 
Ongoing work is focusing on 1) providing better tools to 
characterize ​M​-block cyclic graphs, including, for example, 
the definition of polyphase representations [105], [106], 
[108], [109]; 2) development of improved filters by exploit-
ing conventional filter designs and/or relaxing the critical 
sampling requirement [110]–[113]; and 3) novel approaches 
for downsampling, e.g., frequency domain techniques [114], 
that allow extending critically sampled filterbanks to nonbi-
partite graphs.

While much of the work to date has focused on represen-
tations with bases functions selected in terms of frequency 
content (e.g., low-pass versus high-pass bases), some recent 
work is also exploring representations for piecewise smooth 
signal models [4]. The design of representations that adapt 
to the specific properties of graph signal classes has further 
been addressed from the viewpoint of dictionary learning 
[115]–[117]. The main objective is to design dictionary of 
atoms that are able to sparsely represent signals on graphs 
while incorporating the structure of the graph.

C. Sampling

The problem of sampling signals on graphs is modeled on 
the corresponding problem in conventional signal process-
ing. The basic idea is to define a class of signals (for example, 
signals that are bandlimited to the first ​K​ frequencies of the 
GFT) and then define necessary and sufficient conditions to 
reconstruct a signal in that class from its samples. The first 
problem formulation and a sufficient condition for unique 
recovery were presented in [118]. A necessary and sufficient 
condition for unique recovery in undirected graphs was 
introduced in [119], and, subsequently, several papers pro-
posed solutions for different aspects of the problem [120]–
[122]. In particular, sampling results have been generalized 
to directed graphs [121], [122] and to other classes of signals 
such as piecewise smooth signals [123].

A key difference when comparing sampling in conven-
tional signal processing and in the context of graph signals 
is the lack of “regular” sampling patterns in the latter. The 
lack of regularity in the graph itself prevents us from defin-
ing the idea of sampling “every other node.” Thus, multi-
ple approaches have been suggested to identify the most 
informative vertices on a graph so that these can be sam-
pled. While the sampling problem is formalized based on 
the assumption that signals to be sampled belong to a cer-
tain class (e.g., bandlimited), in practice, these can never 
be guaranteed and thus the observed signals will be noisy 
and, in general, will not belong to the prespecified class. To 
address this problem, several methods approach the prob-
lem of sampling set selection from an experiment design 
perspective [121], [122], [124], setting as a goal to identify 
a set of vertices that minimizes some measure of worst case 
reconstruction error in cases where noise or model mis-
match is present. The measure can also be mean squared 
reconstruction error instead of worst case in the experiment 
design paradigm [122].

Complexity is a key challenge in sampling set identifi-
cation, especially for large-scale graphs. Some techniques 
require computing and storing the first ​K​ basis vectors of 
the GFT [121]. For larger graph sizes, where this may not be 
practical, the approach in [122] uses spectral proxies instead 
of exact graph frequencies leading to lower complexity. 
To reduce complexity even further, the work in [125] pro-
poses a random sampling technique where the probability 

7Under some conditions on the analysis filters, critical sampling and 
perfect reconstruction can be achieved for any graph, but this requires a 
synthesis operation corresponding to an ​N × N​ matrix multiplication, 
which may not be practical for large graphs [107]. As an example, the 
approach in [85] guarantees invertibility but reconstruction is 
nonpolynomial.
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of selecting a given vertex is based on a locally computed 
metric. This leads to significantly lower complexity but, as a 
random sampling technique, it may not always lead to per-
formance comparable to those of more complex greedy opti-
mization methods such as [121] and  [122].

Given the samples of a graph signal, the next objective is 
to reconstruct an estimation of the signal at the nodes that 
were not sampled (observed). Reconstruction algorithms 
based on polynomial filters approximating ideal reconstruc-
tion filters have been proposed in order to reconstruct an 
estimated signal on the whole graph based on the observed 
vertex measurements [126], [127].

While theoretical aspects of graph signal sampling are by 
now well understood, the relevance of proposed techniques 
to practical applications is still an open question. A key chal-
lenge in this regard is to identify what are relevant signal 
models for real data sets, while potentially adapting pro-
posed generic sampling methods to specific types of graphs 
(e.g., exploiting properties of nearly regular graphs).

D. Extending Conventional Signal Processing  
to Graph Signals

Challenges in extending ideas and concepts from con-
ventional signal processing to signal processing on graphs 
can be further exemplified by research into notions of sta-
tionarity and localization. For conventional time signals, a 
test for stationarity can be based on determining whether 
time shifts affect the statistical properties of a signal or, 
equivalently, observing a signal at different times. However, 
these two views are not equivalent for finite dimension 
graphs: we can observe a given signal at different nodes, but 
this is not necessarily the same as “shifting” the signal while 
observing it at always at the same node. For graphs with ​N​ 
vertices, shifting can be defined via a spectral domain opera-
tor [66]; or, instead, the graph shift based on the adjacency 
matrix can be used. Some authors have proposed a definition 
of stationarity based on spectral properties of the vertex shift 
operator [128]. To overcome challenges associated to exist-
ing shift operators, one solution, first proposed by [129], is 
to introduce alternative graph shift operators (see also [52]) 
or localization operators that have both a spectral interpre-
tation and vertex domain localization [130], [131]. Notions 
of stationarity can help develop probabilistic GSP methods 
leading to graph-based Wiener filtering [131], [132].

A study of vertex/spectral localization and uncertainty 
principles was first developed by [133], where it was shown 
that, in general, it is not possible to achieve arbitrarily good 
localization in both spectral and vertex domains simultane-
ously. However, a limitation in this study was that bounds 
had to be derived for individual vertices. More recently, 
[134] has shown that for graph signals it is in fact possible 
to have compact support in both spectral and vertex domain 
(something that can never occur in conventional signal pro-
cessing). As was already noted in Section II-E, this occurs 

due to the irregular nature of graphs: for example, a graph 
consisting of several loosely connected clusters is likely to 
lead to some columns of ​V​ having nonzero entries only in 
some of the clusters. Other contributions, such as [135] and  
[136], have also explored the challenges in directly extend-
ing the concept of an uncertainty principle to graph signals, 
while other recent work considers alternative frequency 
representations that can take into consideration the spe-
cific localization properties encountered in irregular graphs 
[137]–[139]

Work in these two areas shows that direct extensions 
of signal processing concepts to graphs are not straightfor-
ward, and thus further research is still needed to develop 
techniques that can provide insights about graph signal 
behavior (localization, stationarity) while accommodating 
key characteristics of graphs (e.g., irregular node connectiv-
ity and spectral characteristics).

E. Graph Learning

Much recent work on GSP assumes that the graph is 
given or can be defined in a reasonable way based on the 
nature of the application. As an example, in communica-
tion or social networks, the connectivity of the network 
(directed or undirected) can be used to define the graph. 
In other applications, edge weights between nodes can be 
chosen as a decreasing function of distance, e.g., physical 
distance between sensors in the case of sensor networks or 
distance in feature space in the case of learning applications 
[5], [140], [141].

Recent work has been considering alternative tech-
niques where the goal is to learn graphs from data. This 
work is motivated by scenarios where 1) no reasonable ini-
tial graph exists or 2) it is desirable to modify a known graph 
(based on network connectivity for example) by selecting 
weights derived from data. The key idea in these approaches 
is to select a graph such that the most likely vectors in the 
data (the graph signals) correspond to the lowest frequen-
cies of the GFT or to the more likely signals generated by 
Gauss Markov random field (GMRF) related to the graph.

Examples of approaches based on smoothness include 
[43], [142], and [143], while representative methods based on 
the GMRF model are [44] and  [144]. The basic idea in the 
latter approaches is to identify GMRF models such that the 
inverse covariance (precision) matrix has the form of a graph 
Laplacian (e.g., combinatorial or generalized). Note that this 
work extends popular approaches for graph learning (e.g., 
graphical Lasso [145]) to precision matrices restricted to have 
a Laplacian form (corresponding to a graph with positive edge 
weights). Other approaches have addressed graph selection 
under the assumption that the observed data were obtained 
through graph-based diffusion. Examples of these approaches 
include [146]–[149]. While not explicitly a graph learning 
problem, the related question of blind identification of graph 
filters has also been studied [150].
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There remain several major challenges in the develop-
ment of graph learning methods. Graphs derived from data 
are essentially models, and as such the “right” graph model 
should be selected based on the number of parameters it 
uses, its data fit, and its ability to provide useful interpre-
tations. While a sparsity criterion addresses some of these 
requirements, other constraints may also be important. For 
example, it will be useful to develop methods to select graphs 
with specific topology properties [151], spectral properties 
(eigenvalue distribution, eigenvector localization), or even 
computational properties (e.g., leading to GFTs with lower 
computation cost.)

I V.   GR A PH SIGNA L PROCESSING 
A PPLIC ATIONS

Networks are present in very different application domains, 
where graphs can provide a generic representation of the 
structure present in the data sets. In this section, we dis-
cuss a wide set of applications where the GSP framework 
has been used. We consider four different types of scenarios, 
where both the scale and the domain of the networks con-
sidered are very different. We start with physical networks, 
including both large scale networks (sensor networks in 
Section IV-A) and human-scale ones (biological networks 
in Section IV-B), where the goal is to use measurements to 
better understand physical phenomena. We then consider 
“logical” networks, where GSP is introduced as an alterna-
tive for existing processing techniques for conventional sig-
nals (images and point clouds in Section IV-C), or as a tool 
to analyze large scale data sets (machine learning and data 
science applications in Section IV-D). In each of these cases, 
we provide a few, nonexhaustive, examples to highlight the 
different types of domains and graph representations that 
have been studied. More detailed discussion of graph-based 
techniques in specific domains are considered in other 
papers in this special issue [152].

A. Sensor Networks

One of the most natural applications of GSP is in the 
context of sensor networks. A graph represents the relative 
positions of sensors in the environment, and the application 
goals include compression, denoising, reconstruction, or 
distributed processing of sensor data. Indeed, some of the 
initial explorations of graph-based processing focused on 
sensor networks [64], [65], [153], [154].

A first approach to define a graph associated to a sensor 
network is to choose edge weights as a decreasing function 
of distance between nodes (sensors). Then, data observa-
tions that are similar at neighboring nodes lead naturally to 
a smooth (low-pass) graph signal. Such a smooth graph sig-
nal model makes it possible to detect outliers or abnormal 
values by high-pass filtering and thresholding [51], [155], 
or to build effective signal reconstruction methods from 

sparse set of sensor readings, as in [156]–[158], which can 
potentially lead to significant savings in energy resources, 
bandwidth, and latency in sensor network applications.

A second scenario is where the graph to be used for data 
analysis is given by the application. For example, urban data 
processing relies on data that naturally live on networks, 
such as energy, transportation, or road networks. In these 
applications cases, GSP has been used to monitor urban air 
pollution [159], or to monitor and analyze power consump-
tion [160], for example. Some works such as [161]–[163] 
have used GSP tools for analyzing traffic and mobility in 
large cities. For example, wavelets on graphs can serve to 
extract useful traffic patterns to detect disruptive traffic 
events such as congestion [164]. Graph wavelet coefficients 
at different scales permit to infer useful information such as 
origin, propagation, and the span of traffic congestion.

In some cases, relations between sensor readings are 
not exclusively explained by the distance between sensor 
locations, or by some actual network constraints. Other 
factors can influence the data values observed at the sen-
sor readings such as the presence of geographical obstacles 
(e.g., in temperature measurements), or the interaction 
between networks of different types (e.g., how proximity 
to a freeway affects pollution measurements in a city). In 
some cases, the phenomena that can explain these rela-
tions between measurements are latent and this leads 
to the challenging problem of learning a graph (see also 
Section III-E) that can explain the data observations under 
signal smoothness or other signal model assumptions [43], 
[142], [149]. This allows inferring system features and 
behaviors that are hidden in the measured data sets (e.g., 
ozone data sets in [165]).

Finally, several of the GSP operators presented in this 
paper are amenable to distributed implementations that 
are particularly interesting for large sensor networks, and 
which motivated some of the early work mentioned at the 
beginning of this section. For example, the graph multiplier 
operators can be approximated by Chebyshev polynomials 
in distributed implementation of smoothing, denoising, 
inverse filtering, or semisupervised learning tasks [166]. 
The work in [167], for example, studies the problem of dis-
tributed reconstruction of time-varying bandlimited graph 
signals recorded by a subset of temperature sensor nodes. 
There is, however, still a lot of opportunities for the develop-
ment of distributed GSP algorithms that are able to extend 
to large-scale networks and big data applications.

B. Biological Networks

Biological networks have also proved to be a popular 
application domain for GSP, with recent research works 
focusing on the analysis of data from systems known to have 
a network structure, such as the human brain, and also on 
the inference of a priori unknown biological networks.
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Several works have studied human brain networks using 
the GSP framework. For example, it has been observed that 
human brain activity signals can be mapped on a network 
(graph) where each node corresponds to a brain region. The 
network links (edge weights) are considered to be known 
a priori and represent the structural connectivity or the 
functional coherence between brain regions [170], [171]. 
GSP tools such as the graph signal representations described 
in Section III-B can then be used to analyze the brain activ-
ity signal on the functional or structural brain network. 
For example, low frequencies in the graph signal represent 
similar activities in regions that are highly connected in the 
functional brain networks, while high frequencies denote 
very different activities in such brain regions.

These ideas have been used to analyze brain signals, 
leading to biologically plausible observations about the 
behavior the human cognitive system, as in, for example, 
[168] and  [169]. Fig. 4 illustrates the signal distribution of 
different graph frequency components in an active motor 
learning task. Interestingly, regions with strong signal in 
low and high graph frequency components overlap well 
with the regions known to contribute to better motor learn-
ing [172]. Additionally, it has been observed that there is a 
strong association between the actual brain networks (char-
acterized by their spectral properties) and the level of expo-
sure of subject to different tasks [173]. Some works further 
build on the multiresolution properties of spectral graph 
wavelet transforms to capture subtle connected patterns of 
brain activity or provide biologically meaningful decompo-
sitions of functional magnetic resonance imaging (fMRI) 
data [174]–[176]. Interestingly, it is also possible to com-
bine different sources of information in the analysis of the 
brain networks. For example, the work in [177] integrates 
infra-slow neural oscillations and anatomical-connectivity 
maps derived from functional and diffusion magnetic reso-
nance imaging (MRI), in a multilayer-graph framework that 
captures transient networks of spatiotemporal connectivity. 

These networks group anatomically wired and temporary 
synchronized brain regions and encode the propagation of 
functional activity on the structural connectome, which 
contributes to a deeper understanding of the important 
structure–function relationships in the human brain.

The GSP framework has also been proposed for the 
classification of brain graph signals [178] and the analysis 
of anomalies or diseases [179], [180]. For example, source 
localization algorithms based on sparse regularization can 
be used to localize the possible origins of Alzheimer’s disease 
based on a large set of repeated MRI scans. This can help 
understand the dynamics and origin of dementia, which is 
an important step toward developing effective treatment of 
neurodegenerative diseases [181]. The growing number of 
publications studying brain activity or brain network fea-
tures from a GSP perspective indicates that these are prom-
ising applications for the methods described in this paper.

It should finally be noted that brain networks are not 
the only biological networks where GSP offers promising 
solutions. GSP elements and biological priors are combined 
to infer networks and discover meaningful interactions in 
gene regulatory networks, as in [182] and  [183]. The infer-
ence of the structure of protein interaction networks has 
also been addressed with help of spectral graph templates 
[148]. In particular, the observed matrix of mutual infor-
mation can be approximated by some (unknown) analytic 
matrix function of the unobserved structure to be recovered. 
Observed data are then used to obtain the eigenvectors of 
the matrix representation of the graph model, and then the 
eigenvalues are estimated with the help of sparsity priors. 
The above examples are only some illustrations of the recent 
works that attempt to infer structures of biological networks 
using a GSP perspective. Biological networks that cannot 
be explicitly recorded and measured are potentially good 
applications for graph learning and inference methods in 
particular, which can uncover unknown interactions in the 
biological data.

Fig. 4. Distribution of decomposed signals. (a)Ð(c) Absolute magnitudes for all brain regions with respect to graph low frequencies, graph 
middle frequencies, and graph high frequencies, respectively. Higher concentration in graph low frequency results in better learning 
performance, when subjects are unfamiliar with the task [168]. Concentration in graph low frequency also helps faster response in 
switching attention between actions [169]. From [168], with permission.
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C. Image and 3-D Point Cloud Processing

While GSP is often applied to data sets that naturally 
exhibit irregular structures, it has also been applied to other 
data sets where conventional signal processing has been used 
for many years, including, for example, images and video 
sequences. An image to be processed can be viewed as a set 
of pixels, each associated to a vertex, forming a regular graph 
with all edge weights equal to 1 (e.g., a line graph or a grid 
graph). Indeed processing using the discrete Fourier trans-
form or the discrete cosine transform (DCT) can be shown 
to have a simple interpretation in terms of the frequencies 
associated to those regular graphs [184] (see also Section 
I-B). Instead, recent work uses regular line and grid graph 
topologies, but with unequal edge weights that can adapt to 
the specific characteristic of an image or a set of images.

A first set of approaches associates a different graph to 
each image, by associating smaller edge weights to connect 
pixels that are on opposite sides of an image contour. This 
type of image-dependent graph representation is strongly 
connected to popular image processing techniques, such 
as the bilateral filter and related methods [73], which also 
apply signal-dependent filtering and are widely used in 
applications such as image restoration or denoising. Graphs 
are used to capture the geometric structure in images, such 
as contours that carry crucial visual information, in order to 
avoid blurring them during the filtering process. In addition 
to works that effectively extend image priors such as total 
variation (TV) minimization to graph representations (e.g., 
[185] and  [186]), other works such as [187] or [188] use 
more specific GSP operators for denoising or filtering. In 
particular, the authors in [187] use graph spectral denoising 
methods to enhance the quality of images, while the work 
in [188] uses graph-based filters that influence the strength 
and direction of filtering for effective enhancement of natu-
ral images.

A second avenue of research has considered situations 
where a graph is constructed as an efficient representation 
for a set of images, in particular, in the context of image 
and video compression applications. The Karhunen–Loève 
transform (KLT) is known to provide the best transform 
coding gains under the assumption that the signals can 
be modeled as stationary Gaussian processes (which is 
often a good assumption for images). Indeed, extensive 
use of the DCT is often justified because it is optimal for 
a GMRF with correlation 1, which is an appropriate model 
for natural images. The inverse covariance matrix, or pre-
cision matrix, then corresponds to a line graph with equal 
weights. From this perspective, graph learning approaches 
can be used to learn precision matrices with structures and 
weights that capture statistics of specific types of images. 
For example, piecewise smooth images can be compressed 
using suitable graph Fourier transforms (GFTs), which can 
be adapted to different types of image pixel blocks [189], 
[190]. Graph-based transforms have also been used to code 

motion-compensated residuals in predictive video coding 
[191] with effective rate-distortion performance.

New visual modalities such as 3-D meshes or 3-D point 
clouds where data are sampled in irregular locations in 3-D 
space, lend themselves naturally to graph representations. 
The color or 3-D information supported by nodes or voxels 
is connected to its nearest neighbors to form a graph. Graph-
based transforms can then be used to compress the result-
ing graph signals in static or dynamic point clouds [192], 
[193]. In particular, the temporal redundancy between 3-D 
point cloud frames at different instants can be effectively 
estimated with help of graph spectral features [192], as illus-
trated in Fig. 5. Graph-based transforms permit to properly 
exploit both the spatial correlation inside each frame and 
the temporal correlation between the frames, which even-
tually results in effective compression. Compression, how-
ever, is not the only application of GSP in 3-D point clouds. 
Fast resampling methods, which are important in process-
ing, registering, or visualizing large point clouds, can also 
be built on graph-based randomized strategies to select rep-
resentative subsets of points while preserving application-
dependent features [194].

D. Machine Learning and Data Science

Graph methods have long played an important role in 
machine learning applications, as they provide a natural way 
to represent the structure of a data set. In this context, each 
vertex represents one data point to which a label can be asso-
ciated, and a graph can be formed by connecting vertices with 
edge weights that are assigned based on a decreasing func-
tion of the distance between data points in the feature space. 
GSP then enables different types of processing, learning, or 

Fig. 5. Example of motion estimation in a 3-D point cloud sequence. 
Each frame is represented as a graph signal that captures the 
color and the geometry information of each voxel. Graph spectral 
features at each voxel capture the local graph signal properties 
and permit to find correspondences between frames at different 
instances. A subset of the correspondences between the target 
(red) and the reference frame (green) are highlighted between 
small cubes that correspond to voxels. From [192], with permission.
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filtering operations on values associated to graph vertices. In 
a different context, GSP elements can be helpful to construct 
architectures to classify signals that live on irregular struc-
tures. We give below some examples of machine learning 
applications in both contexts.

When data labels are presented as signals on a (nearest-
neighbor) graph, graph signal regularization techniques can 
be used in the process of estimating labels [5], optimizing 
the prediction of unknown labels in classification [51] or 
semisupervised learning problems [195]. Furthermore, as 
labeled samples are often a scarce and expensive resource in 
semisupervised learning applications, graph sampling strat-
egies such as those presented in Section III-C can be helpful 
in determining the actual needs for labeled data and develop 
effective active learning algorithms [141].

Graphs can also be constructed to describe similarities 
between users or items in recommendation systems that 
assist customers in making decisions by collecting infor-
mation about how other users rate particular services or 
items [196]. Leveraging the notions of graph frequency 
and graph filters, classical collaborative filtering methods 
(such as ​k​-nearest-neighbors strategies), can then be imple-
mented with specific band-stop graph filters on graphs [197]. 
Furthermore, linear latent factor models, such as low-rank 
matrix completion, can be viewed as bandlimited interpo-
lation algorithms that operate in a frequency domain given 
by the spectrum of a joint user and item network. This can 
serve to design effective graph filtering algorithms that lead 
to enhanced rating prediction in video recommendation 
applications, for example, [197]. Content-based recommen-
dation can also be addressed as an online learning problem 
solved with spectral bandit algorithms [198]. The key idea is 
to represent the reward function in an online recommenda-
tion system as a linear combination of the eigenvectors of the 
similarity graph that connects the different items. With this 
representation it is possible to optimize the reward function 
by favoring smoothness on the graph, which has been shown 
to be effective in video recommendation examples [198].

Data clustering or community detection can also ben-
efit from tools developed under the GSP framework. For 
example, graph transforms, and especially graph wavelets, 

have been used to solve the classical problem of community 
detection [199]. The problem of detecting multiscale com-
munity in networks is cast as the problem of clustering nodes 
based on graph wavelets features. This allows the introduc-
tion of a notion of scale in the analysis of the network, as 
well as a sort of “egocentered” view of how a particular node 
“sees” the network (see Fig. 6). Furthermore, the extension 
of clustering or community detection tasks to large-scale 
systems generally relies on sampling or randomized strategy 
where GSP methods can also be very helpful. For example, 
fast graph-based filtering of random signals can be used to 
estimate the graph structure, and in particular to approxi-
mate eigenvectors that are often crucial in the design of 
clustering algorithms and other machine learning tasks. 
One of the initial works in this direction [200] proposes to 
use power methods (that can be shown to be related to graph 
filter operators) to speed up the computation of eigenvec-
tors used in spectral clustering applications. More recently, 
a fast graph clustering algorithm that is provably as good as 
spectral clustering has been developed based on random sig-
nal filtering techniques [14]. Related ideas have been used 
in sketching [201], [202], data visualization applications on 
large real-world data sets of millions of nodes [194], [203], 
or in analysis of dynamic networks [204]. These examples 
provide evidence for the potential benefits of using GSP 
principles in big data applications.

Finally, the GSP framework can also be used to design 
architectures to analyze or classify whole graph signals that 
originally live on irregular structures. In particular, the GSP 
toolbox has been extensively used to extend convolutional 
deep learning techniques to data defined on graphs. The 
convolutional neural network paradigm has been general-
ized with help of GSP elements for the extraction of feature 
descriptors for 3-D shapes [205], [206]. A localized spec-
tral network architecture leveraging on localized vertex-
frequency analysis has also been proposed in [207], and the 
use of heat kernels defined in the graph spectral domain has 
been developed in [208]. While the previous works mostly 
address the analysis of 3-D shapes, convolutional neural 
networks (CNNs) can actually be extended to many other 
signals in high-dimensional irregular domains, such as 

Fig. 6. Multiscale community structures in a graph of social interactions between children in a primary school. The different figures show 
the partition of the original social network in two, five, and ten communities, respectively. From [199], with permission.
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social networks, brain connectomes, or words embedding, 
by reformulation in the context of spectral graph theory. 
Here, the GSP framework leads to the development of fast 
localized convolutional filters on graphs [209] along with 
adapted pooling operators [210]. Unsurprisingly, deep net-
work architectures for graphs signals have been actually 
tested in various applications domains, such as chemical 
molecule properties prediction [211], classification tasks on 
social networks [212], autism spectrum disorder classifica-
tion [213], or traffic forecasting [214].

V.  CONCLUSION

While recent papers have developed key principles for signal 
processing of graph signals, and these have shown signifi-
cant promise for some important applications, there remain 
significant challenges. On the theoretical front, work to 
date has focused on results that can be applied to arbitrary 
graphs. But given the significant differences between the 
spectral properties of graphs, there is strong current inter-
est in developing tools that can take into consideration the 

particular characteristics of specific classes of graphs. On 
the application front, GSP is a good match for data sets 
exhibiting irregular relationships between samples that can 
be captured by a graph. However, additional research is 
needed within each application to further understand the 
best ways to combine GSP tools with existing techniques in 
order to achieve significant gains in terms of the metrics of 
interest for each application. Finally, it is worth mentioning 
that many of the basic GSP tools described here are available 
in several Matlab/Python toolboxes: GSPBox [215], GraSP 
[216], and PyGSP [217].
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