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Abstract

This article discusses a latent variable model for inference and prediction of sym-
metric relational data. The model, based on the idea of the eigenvalue decomposi-
tion, represents the relationship between two nodes as the weighted inner-product
of node-specific vectors of latent characteristics. This “eigenmodel” generalizes
other popular latent variable models, such as latent class and distance models: It is
shown mathematically that any latent class or distance model has a representation
as an eigenmodel, but not vice-versa. The practical implications of this are exam-
ined in the context of three real datasets, for which the eigenmodel has as good or
better out-of-sample predictive performance than the other two models.

1 Introduction

Let {yi,j : 1 ≤ i < j ≤ n} denote data measured on pairs of a set of n objects or nodes. The
examples considered in this article include friendships among people, associations among words
and interactions among proteins. Such measurements are often represented by a sociomatrix Y ,
which is a symmetric n × n matrix with an undefined diagonal. One of the goals of relational data
analysis is to describe the variation among the entries of Y , as well as any potential covariation of
Y with observed explanatory variables X = {xi,j , 1 ≤ i < j ≤ n}.

To this end, a variety of statistical models have been developed that describe yi,j as some function
of node-specific latent variables ui and uj and a linear predictor βTxi,j . In such formulations,
{u1, . . . , un} represent across-node variation in the yi,j’s and β represents covariation of the yi,j’s
with the xi,j’s. For example, Nowicki and Snijders [2001] present a model in which each node i
is assumed to belong to an unobserved latent class ui, and a probability distribution describes the
relationships between each pair of classes (see Kemp et al. [2004] and Airoldi et al. [2005] for recent
extensions of this approach). Such a model captures stochastic equivalence, a type of pattern often
seen in network data in which the nodes can be divided into groups such that members of the same
group have similar patterns of relationships.

An alternative approach to representing across-node variation is based on the idea of homophily, in
which the relationships between nodes with similar characteristics are stronger than the relationships
between nodes having different characteristics. Homophily provides an explanation to data patterns
often seen in social networks, such as transitivity (“a friend of a friend is a friend”), balance (“the
enemy of my friend is an enemy”) and the existence of cohesive subgroups of nodes. In order to
represent such patterns, Hoff et al. [2002] present a model in which the conditional mean of yi,j is a
function of β′xi,j − |ui − uj |, where {u1, . . . , un} are vectors of unobserved, latent characteristics
in a Euclidean space. In the context of binary relational data, such a model predicts the existence
of more transitive triples, or “triangles,” than would be seen under a random allocation of edges
among pairs of nodes. An important assumption of this model is that two nodes with a strong
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Figure 1: Networks exhibiting homophily (left panel) and stochastic equivalence (right panel).

relationship between them are also similar to each other in terms of how they relate to other nodes:
A strong relationship between i and j suggests |ui − uj | is small, but this further implies that
|ui−uk| ≈ |uj −uk|, and so nodes i and j are assumed to have similar relationships to other nodes.

The latent class model of Nowicki and Snijders [2001] and the latent distance model of Hoff et al.
[2002] are able to identify, respectively, classes of nodes with similar roles, and the locational prop-
erties of the nodes. These two items are perhaps the two primary features of interest in social network
and relational data analysis. For example, discussion of these concepts makes up more than half of
the 734 pages of main text in Wasserman and Faust [1994]. However, a model that can represent
one feature may not be able to represent the other: Consider the two graphs in Figure 1. The graph
on the left displays a large degree of transitivity, and can be well-represented by the latent distance
model with a set of vectors {u1, . . . , un} in two-dimensional space, in which the probability of an
edge between i and j is decreasing in |ui − uj |. In contrast, representation of the graph by a latent
class model would require a large number of classes, none of which would be particularly cohesive
or distinguishable from the others. The second panel of Figure 1 displays a network involving three
classes of stochastically equivalent nodes, two of which (say A and B) have only across-class ties,
and one (C) that has both within- and across-class ties. This graph is well-represented by a latent
class model in which edges occur with high probability between pairs having one member in each
of A and B or in B and C, and among pairs having both members in C (in models of stochastic
equivalence, nodes within each class are not differentiated). In contrast, representation of this type
of graph with a latent distance model would require the dimension of the latent characteristics to be
on the order of the class membership sizes.

Many real networks exhibit combinations of structural equivalence and homophily in varying de-
grees. In these situations, use of either the latent class or distance model would only be representing
part of the network structure. The goal of this paper is to show that a simple statistical model based
on the eigenvalue decomposition can generalize the latent class and distance models: Just as any
symmetric matrix can be approximated with a subset of its largest eigenvalues and corresponding
eigenvectors, the variation in a sociomatrix can be represented by modeling yi,j as a function of
β′xi,j + uT

i Λuj , where {u1, . . . , un} are node-specific factors and Λ is a diagonal matrix. In this
article, we show mathematically and by example how this eigenmodel can represent both stochastic
equivalence and homophily in symmetric relational data, and thus is more general than the other two
latent variable models.

The next section motivates the use of latent variables models for relational data, and shows mathe-
matically that the eigenmodel generalizes the latent class and distance models in the sense that it can
compactly represent the same network features as these other models but not vice-versa. Section 3
compares the out-of-sample predictive performance of these three models on three different datasets:
a social network of 12th graders; a relational dataset on word association counts from the first chap-
ter of Genesis; and a dataset on protein-protein interactions. The first two networks exhibit latent
homophily and stochastic equivalence respectively, whereas the third shows both to some degree.
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In support of the theoretical results of Section 2, the latent distance and class models perform well
for the first and second datasets respectively, whereas the eigenmodel performs well for all three.
Section 4 summarizes the results and discusses some extensions.

2 Latent variable modeling of relational data

2.1 Justification of latent variable modeling

The use of probabilistic latent variable models for the representation of relational data can be moti-
vated in a natural way: For undirected data without covariate information, symmetry suggests that
any probability model we consider should treat the nodes as being exchangeable, so that

Pr({yi,j : 1 ≤ i < j ≤ n} ∈ A) = Pr({yπi,πj : 1 ≤ i < j ≤ n} ∈ A)

for any permutation π of the integers {1, . . . , n} and any set of sociomatrices A. Results of Hoover
[1982] and Aldous [1985, chap. 14] show that if a model satisfies the above exchangeability condi-
tion for each integer n, then it can be written as a latent variable model of the form

yi,j = h(µ, ui, uj , εi,j) (1)

for i.i.d. latent variables {u1, . . . , un}, i.i.d. pair-specific effects {εi,j : 1 ≤ i < j ≤ n} and some
function h that is symmetric in its second and third arguments. This result is very general - it says
that any statistical model for a sociomatrix in which the nodes are exchangeable can be written as a
latent variable model.

Difference choices of h lead to different models for y. A general probit model for binary network
data can be put in the form of (1) as follows:

{εi,j : 1 ≤ i < j ≤ n} ∼ i.i.d. normal(0, 1)
{u1, . . . , un} ∼ i.i.d. f(u|ψ)

yi,j = h(µ, ui, uj , εi,j) = δ(0,∞)(µ+ α(ui, uj) + εi,j),

where µ and ψ are parameters to be estimated, and α is a symmetric function, also potentially
involving parameters to be estimated. Covariation between Y and an array of predictor variables
X can be represented by adding a linear predictor βTxi,j to µ. Finally, integrating over εi,j we
obtain Pr(yi,j = 1|xi,j , ui, uj) = Φ[µ+ βTxi,j + α(ui, uj)]. Since the εi,j’s can be assumed to be
independent, the conditional probability of Y given X and {u1, . . . , un} can be expressed as

Pr(yi,j = 1|xi,j , ui, uj) ≡ θi,j = Φ[µ+ βTxi,j + α(ui, uj)] (2)

Pr(Y |X,u1, . . . , un) =
∏
i<j

θ
yi,j

i,j (1− θi,j)yi,j

Many relational datasets have ordinal, non-binary measurements (for example, the word association
data in Section 3.2). Rather than “thresholding” the data to force it to be binary, we can make use of
the full information in the data with an ordered probit version of (2):

Pr(yi,j = y|xi,j , ui, uj) ≡ θ
(y)
i,j = Φ[µy + βTxi,j + α(ui, uj)]− Φ[µy+1 + βTxi,j + α(ui, uj)]

Pr(Y |X,u1, . . . , un) =
∏
i<j

θ
(yi,j)
i,j ,

where {µy} are parameters to be estimated for all but the lowest value y in the sample space.

2.2 Effects of nodal variation

The latent variable models described in the Introduction correspond to different choices for the
symmetric function α:

Latent class model:
α(ui, uj) = mui,uj

ui ∈ {1, . . . ,K}, i ∈ {1, . . . , n}
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M a K ×K symmetric matrix

Latent distance model:

α(ui, uj) = −|ui − uj |
ui ∈ RK , i ∈ {1, . . . , n}

Latent eigenmodel:

α(ui, uj) = uT
i Λuj

ui ∈ RK , i ∈ {1, . . . , n}
Λ a K ×K diagonal matrix.

Interpretations of the latent class and distance models were given in the Introduction. An inter-
pretation of the latent eigenmodel is that each node i has a vector of unobserved characteristics
ui = {ui,1, . . . , ui,K}, and that similar values of ui,k and uj,k will contribute positively or nega-
tively to the relationship between i and j, depending on whether λk > 0 or λk < 0. In this way,
the model can represent both positive or negative homophily in varying degrees, and stochastically
equivalent nodes (nodes with the same or similar latent vectors) may or may not have strong rela-
tionships with one another.

We now show that the eigenmodel generalizes the latent class and distance models: Let Sn be the
set of n× n sociomatrices, and let

CK = {C ∈ Sn : ci,j = mui,uj , ui ∈ {1, . . . ,K}, M a K ×K symmetric matrix};
DK = {D ∈ Sn : di,j = −|ui − uj |, ui ∈ RK};
EK = {E ∈ Sn : ei,j = uT

i Λuj , ui ∈ RK , Λ a K ×K diagonal matrix}.

In other words, CK is the set of possible values of {α(ui, uj), 1 ≤ i < j ≤ n} under a K-
dimensional latent class model, and similarly for DK and EK .

EK generalizes CK: LetC ∈ CK and let C̃ be a completion ofC obtained by setting ci,i = mui,ui
.

There are at most K unique rows of C̃ and so C̃ is of rank K at most. Since the set EK contains
all sociomatrices that can be completed as a rank-K matrix, we have CK ⊆ EK . Since EK includes
matrices with n unique rows, CK ⊂ EK unless K ≥ n in which case the two sets are equal.

EK+1 weakly generalizes DK: Let D ∈ DK . Such a (negative) distance matrix will generally be
of full rank, in which case it cannot be represented exactly by an E ∈ EK for K < n. However,
what is critical from a modeling perspective is whether or not the order of the entries of each D can
be matched by the order of the entries of an E. This is because the probit and ordered probit model
we are considering include threshold variables {µy : y ∈ Y}which can be adjusted to accommodate
monotone transformations of α(ui, uj). With this in mind, note that the matrix of squared distances
among a set of K-dimensional vectors {z1, . . . , zn} is a monotonic transformation of the distances,
is of rank K + 2 or less (as D2 = [z′1z1, . . . , z

′
nzn]T 1T + 1[z′1z1, . . . , z

′
nzn] − 2ZZT ) and so is

in EK+2. Furthermore, letting ui = (zi,
√
r2 − zT

i zi) ∈ RK+1 for each i ∈ {1, . . . , n}, we have
u′iuj = z′izj +

√
(r2 − |ui|2)(r2 − |uj |2). For large r this is approximately r2−|zi−zj |2/2, which

is an increasing function of the negative distance di,j . For large enough r the numerical order of the
entries of this E ∈ EK+1 is the same as that of D ∈ DK .

DK does not weakly generalize E1: Consider E ∈ E1 generated by Λ = 1, u1 = 1 and ui =
r < 1 for i > 1. Then r = e1,i1 = e1,i2 > ei1,i2 = r2 for all i1, i2 6= 1. For which K is such an
ordering of the elements of D ∈ DK possible? If K = 1 then such an ordering is possible only if
n = 3. For K = 2 such an ordering is possible for n ≤ 6. This is because the kissing number in
R2, or the number of non-overlapping spheres of unit radius that can simultaneously touch a central
sphere of unit radius, is 6. If we put node 1 at the center of the central sphere, and 6 nodes at the
centers of the 6 kissing spheres, then we have d1,i1 = d1,i2 = di1,i2 for all i1, i2 6= 1. We can only
have d1,i1 = d1,i2 > di1,i2 if we remove one of the non-central spheres to allow for more room
between those remaining, leaving one central sphere plus five kissing spheres for a total of n = 6.
Increasing n increases the necessary dimension of the Euclidean space, and so for any K there are
n and E ∈ E1 that have entry orderings that cannot be matched by those of any D ∈ DK .
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A less general positive semi-definite version of the eigenmodel has been studied by Hoff [2005],
in which Λ was taken to be the identity matrix. Such a model can weakly generalize a distance
model, but cannot generalize a latent class model, as the eigenvalues of a latent class model could
be negative.

3 Model comparison on three different datasets

3.1 Parameter estimation

Bayesian parameter estimation for the three models under consideration can be achieved via Markov
chain Monte Carlo (MCMC) algorithms, in which posterior distributions for the unknown quantities
are approximated with empirical distributions of samples from a Markov chain. For these algo-
rithms, it is useful to formulate the probit models described in Section 2.1 in terms of an additional
latent variable zi,j ∼ normal[β′xi,j + α(ui, uj)], for which yi,j = y if µy < zi,j < µy+1. Using
conjugate prior distributions where possible, the MCMC algorithms proceed by generating a new
state φ(s+1) = {Z(s+1), µ(s+1), β(s+1), u

(s+1)
1 , . . . , u

(s+1)
n } from a current state φ(s) as follows:

1. For each {i, j}, sample zi,j from its (constrained normal) full conditional distribution.
2. For each y ∈ Y , sample µy from its (normal) full conditional distribution.
3. Sample β from its (multivariate normal) full conditional distribution.
4. Sample u1, . . . , un and their associated parameters:

• For the latent distance model, propose and accept or reject new values of the ui’s with
the Metropolis algorithm, and then sample the population variances of the ui’s from
their (inverse-gamma) full conditional distributions.

• For the latent class model, update each class variable ui from its (multinomial) con-
ditional distribution given current values of Z, {uj : j 6= i} and the variance of the
elements ofM (but marginally overM to improve mixing). Then sample the elements
of M from their (normal) full conditional distributions and the variance of the entries
of M from its (inverse-gamma) full conditional distribution.

• For the latent vector model, sample each ui from its (multivariate normal) full con-
ditional distribution, sample the mean of the ui’s from their (normal) full conditional
distributions, and then sample Λ from its (multivariate normal) full conditional distri-
bution.

To facilitate comparison across models, we used prior distributions in which the level of prior vari-
ability in α(ui, uj) was similar across the three different models (further details and code to imple-
ment these algorithms are available at my website).

3.2 Cross validation

To compare the performance of these three different models we evaluated their out-of-sample pre-
dictive performance under a range of dimensions (K ∈ {3, 5, 10}) and on three different datasets
exhibiting varying combinations of homophily and stochastic equivalence. For each combination of
dataset, dimension and model we performed a five-fold cross validation experiment as follows:

1. Randomly divide the
(
n
2

)
data values into 5 sets of roughly equal size, letting si,j be the set

to which pair {i, j} is assigned.
2. For each s ∈ {1, . . . , 5}:

(a) Obtain posterior distributions of the model parameter conditional on {yi,j : si,j 6= s},
the data on pairs not in set s.

(b) For pairs {k, l} in set s, let ŷk,l = E[yk,l|{yi,j : si,j 6= s}], the posterior predictive
mean of yk,l obtained using data not in set s.

This procedure generates a sociomatrix Ŷ , in which each entry ŷi,j represents a predicted value
obtained from using a subset of the data that does not include yi,j . Thus Ŷ is a sociomatrix of
out-of-sample predictions of the observed data Y .
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Table 1: Cross validation results and area under the ROC curves.
K Add health Genesis Protein interaction

dist class eigen dist class eigen dist class eigen
3 0.82 0.64 0.75 0.62 0.82 0.82 0.83 0.79 0.88
5 0.81 0.70 0.78 0.66 0.82 0.82 0.84 0.84 0.90

10 0.76 0.69 0.80 0.74 0.82 0.82 0.85 0.86 0.90
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Figure 2: Social network data and unscaled ROC curves for the K = 3 models.

3.3 Adolescent Health social network

The first dataset records friendship ties among 247 12th-graders, obtained from the National Longi-
tudinal Study of Adolescent Health (www.cpc.unc.edu/projects/addhealth). For these data,
yi,j = 1 or 0 depending on whether or not there is a close friendship tie between student i and j
(as reported by either i or j). These data are represented as an undirected graph in the first panel of
Figure 2. Like many social networks, these data exhibit a good deal of transitivity. It is therefore not
surprising that the best performing models considered (in terms of area under the ROC curve, given
in Table 1) are the distance models, with the eigenmodels close behind. In contrast, the latent class
models perform poorly, and the results suggest that increasing K for this model would not improve
its performance.

3.4 Word neighbors in Genesis

The second dataset we consider is derived from word and punctuation counts in the first chapter
of the King James version of Genesis (www.gutenberg.org/dirs/etext05/bib0110.txt).
There are 158 unique words and punctuation marks in this chapter, and for our example we take
yi,j to be the number of times that word i and word j appear next to each other (a model extension,
appropriate for an asymmetric version of this dataset, is discussed in the next section). These data
can be viewed as a graph with weighted edges, the unweighted version of which is shown in the
first panel of Figure 3. The lack of a clear spatial representation of these data is not unexpected,
as text data such as these do not have groups of words with strong within-group connections, nor
do they display much homophily: a given noun may appear quite frequently next to two different
verbs, but these verbs will not appear next to each other. A better description of these data might be
that there are classes of words, and connections occur between words of different classes. The cross
validation results support this claim, in that the latent class model performs much better than the
distance model on these data, as seen in the second panel of Figure 3 and in Table 1. As discussed in
the previous section, the eigenmodel generalizes the latent class model and performs equally well.
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Figure 3: Relational text data from Genesis and unscaled ROC curves for the K = 3 models.

We note that parameter estimates for these data were obtained using the ordered probit versions of
the models (as the data are not binary), but the out-of-sample predictive performance was evaluated
based on each model’s ability to predict a non-zero relationship.

3.5 Protein-protein interaction data

Our last example is the protein-protein interaction data of Butland et al. [2005], in which yi,j = 1
if proteins i and j bind and yi,j = 0 otherwise. We analyze the large connected component of this
graph, which includes 230 proteins and is displayed in the first panel of 4. This graph indicates
patterns of both stochastic equivalence and homophily: Some nodes could be described as “hubs”,
connecting to many other nodes which in turn do not connect to each other. Such structure is better
represented by a latent class model than a distance model. However, most nodes connecting to hubs
generally connect to only one hub, which is a feature that is hard to represent with a small number
of latent classes. To represent this structure well, we would need two latent classes per hub, one for
the hub itself and one for the nodes connecting to the hub. Furthermore, the core of the network
(the nodes with more than two connections) displays a good degree of homophily in the form of
transitive triads, a feature which is easiest to represent with a distance model. The eigenmodel is
able to capture both of these data features and performs better than the other two models in terms of
out-of-sample predictive performance. In fact, theK = 3 eigenmodel performs better than the other
two models for any value of K considered.

4 Discussion

Latent distance and latent class models provide concise, easily interpreted descriptions of social
networks and relational data. However, neither of these models will provide a complete picture of
relational data that exhibit degrees of both homophily and stochastic equivalence. In contrast, we
have shown that a latent eigenmodel is able to represent datasets with either or both of these data
patterns. This is due to the fact that the eigenmodel provides an unrestricted low-rank approximation
to the sociomatrix, and is therefore able to represent a wide array of patterns in the data.

The concept behind the eigenmodel is the familiar eigenvalue decomposition of a symmetric ma-
trix. The analogue for directed networks or rectangular matrix data would be a model based on the
singular value decomposition, in which data yi,j could be modeled as depending on uT

i Dvj , where
ui and vj represent vectors of latent row and column effects respectively. Statistical inference using
the singular value decomposition for Gaussian data is straightforward. A model-based version of
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Figure 4: Protein-protein interaction data and unscaled ROC curves for the K = 3 models.

the approach for binary and other non-Gaussian relational datasets could be implemented using the
ordered probit model discussed in this paper.
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