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MAXIMUM LIKELIHOOD ESTIMATION OF GRAVITY
MODEL PARAMETERS

Ashish Sen*

ABSTRACT. It is shown that, under some very mild conditions, maximum likelihood
estimates of gravity model parameters exist and are unique (up to a scale transformation for
some parameters). An algorithm for finding such estimates is also proposed.

1. INTRODUCTION

One of the most general forms of the gravity model is the following:

where T; is the expected flow (e.g., of people, vehicles, money, or goods) from zone
i=1,...,1tozonej = 1,...,J. The quantities A; and B; may be called origin and
destination factors, respectively, and for the purposes of this paper, as indeed in
most recent papers on the subject, A;’s and B;’s will be considered to be unknown
parameters, the values of which may be estimated from observations of flows. (In
the somewhat distant past the A’s and Bj’s have been, a priori, set equal to
functions of factors such as population, and this has led to unpleasant properties of
the model.) We shall call F;; a separation factor and assume that it has the form

K
2) Fij =F (c,,-, #) = exp [Z ci(ll_t) 0”]
P

where cf,’-" are K measures of separation (e.g., travel time, distance, generalized cost,
psychological distance, etc.) and 6, are unknown parameters. It may readily be
verified that both the frequently used forms

Fij=exp[— c;8] and F;; = ¢ exp [-8 c;jl

and the step function are particular cases of (2). Hence, since ZK_, ¥

polynomials, (2) is as general a function as we are likely to need.

Let X,; be the observed flow from i to j. Then E (X,;) = T};. The aim of this
paper is to discuss the maximum likelihood (ML) estimation of the parameter
vector

8, includes

§=(A,...,A,B,,...,B,8,...,6)

from the observations X,; wherei = 1,..., I angi J =1,... ,.J. These estimates will
be denoted by a hat or circumﬂgx; e.g., A, B), 0,, and { are, respectively, ML
estimates of A;, B}, 0, and {; and T}; = A,B;F}; is an estimate of T; = A;B;F;;. Since,
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in most applications of the gravity model, little attention is paid to the A; and B;
terms, we also will concentrate mainly on estimating 8,’s.

We shall assume that the X,;’s have independent Poisson distributions. It can
readily be shown that the results of this paper would not be altered if we had
assumed that X;;’s had the multinomial distribution. In most of the gravity model
literature in which distributions are explicitly discussed, either a Poisson or a
multinomial distribution is assumed. Intuitively, one should also expect one of
these distributions to hold at least approximately, since the X,;’s are usually counts
of units whose behavior is roughly independent of that of other units. [See also
Smith (1984a, 1984b).]

Since each X;; has a Poisson distribution with E (X;;) = T';, the probability
function for X; is

P (X”|T”) = eXp [7TU] Ti,(”/X”!

and since the X;;’s have been assumed independent, their joint distribution is given
by the probability function

II exp (- 7)) TH/X !
3) ’
= H {eXp [*AiBjFij]} {[AiBjFij]X"}/Xij!

If we treat the T};’s as constants and the expression (3) mainly as a function of the
X,/’s, (3) gives the probabilities of occurrence of each set of values X, X ..., etc.
On the other hand, if we treat the X,;’s as constants and (3) as a function of the A/s,
By’s, and 6,’s, (3) is a likelihood function and values of A;, Bj, and 6, which maximize
(8) are the ML estimates. This paper is concerned with such estimates which have a
number of very nice properties [Kendall and Stuart (1967), Rao (1973)].

Since In\ is a monotonically increasing function of A, maximizing (3) is
equivalent to maximizing its logarithm, which is

]

In order to find necessary conditions for a maximum of (4) we need to set the
partial derivatives of (4) with respect to each of A;, B;, and 6, equal to zero. Thus,
starting with A; we have
a.L
= Z [-B;F; + Xi;/A]l =0

(5) P

Note that in (5) terms not involving A; are zero, which is why we were able to go
from Z;; in (4) to Z; in (5). From (5), we have

(6) Z ABiF; = Z T; - Z Xij

A notation that is very convenient and one we shall use in this paper is to replace a
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subscript by a “+”” when we add over all values of it. For example,

J I I J
T+=ZlTij T+j=;Tij T++=ZZTU
= i-

in1 j-1
Using this notation, (6) becomes
(7) T, =X,

There are obviously I equations of this form—one for each A, Similarly, by
considering the d.L/8B;’s we have J equations

(8) Ti+ = Xi+
and considering 3.£/66’s we obtain, using (2), the K equations

9) Z P T, Z c® X;

In the next section of this paper we shall present the principal theorem of the
paper. This theorem provides conditions under which Equations (7), (8), and (9)
have solutions. Moreover, the theorem states that these solutions are ML estimates
(MLE’s), and we also make statements about uniqueness. In particular, we provide
conditions under which the MLE’s 8, of 6, are unique. (Notice that Ajsand B s can
never be unique, since if A; and B are MLE’s, then vA; and v B must be MLE’s
for arbitrary v’s.)

The theorem will be proved in Section 3, and in Section 4 we propose an
algorithm for obtaining the MLE’s. A concluding thought is presented briefly in
Section 5.

2. THE PRINCIPAL THEOREM

Before we can state the theorem we need to introduce some further notation.
If we use lower-case letters to denote the logarithms of variables denoted by
corresponding capital letters (e.g., In A; = a;), we can write the gravity model (1)
as

(10) tij=a;+b;+ f;=a,+b; +Zc"”

We shall assume that ¢,;’s exist—i.e., all T';/’s are positive. The only way this could
fail to occur is if some A or B; is zero. Then all T;/’s for that origin or destination
would be zero and we could delete them from conSIderatlon Then it follows from
(7) and (8) that X;, > 0and X ;> 0. Since In (X) is a one-to-one function, knowing
a; is equivalent to knowing A;. Thus, with the gravity model expressed as (10), the
vector of unknown parameters is

£=(ab'-'aalrbly"-’b.hob"')ek),

When we wish to refer to the a/’s, b;’s, and 6,’s without concern for which ones we
are referring to, we shall refer to them as components £, of &.

There are IJ equations of the form (10). Consider the coefficient matrix of the
right-hand side of this system (i.e., the matrix of coefficients of a/s, b;’s, and 6,’s).
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Column Corresponding to

Row (1.9) ST T T LS O

1 (1.1 10 0 1 0 0 ol @
2 (1,2) 10 0o 0o 1 0 )
3 (1,3) 1 o 0o o o 1 i @
4 (2.1) o 1 0 1 0 0 N o
5 (2,2) 6 1 0o 0o 1 0 i o
6 (2,3) 0 1 0 o 0 1 el )
7 (3,1) o 0o 1 1 0 0 eV {2
8 (3,2) 0 o 1 o TN AN
9 (3,3) o0 1 00 1 i P

FIGURE 1. Example of Matrix M.

Call this matrix M. Such a matrix for I = J = 3 and K = 2 is illustrated in Figure 1.
The transpose M’ of M is the matrix of coefficients of T};’s in the system of I + J +
K equations in (7), (8), and (9).

It may be seen that the sum of the first / columns of M is a vector consisting
only of 1’s as is the sum of columns [ + 1to ! + oJ. Thus the first I + / columns of M
are linearly dependent, and the rank of Mis I + J + K — v where v must be at least
1. It is not difficult to show [e.g., following Evans (1970, 1971)] that the rank of the
matrix consisting of the first I + J columns of M is exactly I + J — 1. Thus,
whether v = 1 or v > 1 depends principally on the last K columns of M—i.e., on the

¢{’s. If these columns are either (i) mutually linearly dependent or (ii) linearly
dependent on the remaining columns, then v will be greater than 1; otherwise v = 1.
An example of (ii) is where ¢’ is the parking cost which is destination specific.
Then it is too much for any estlmatlng procedure to separate the effect of such a c{?
from those of b;’s. Usually, for a well-specified problem we should have v = 1.
We can now state our principal theorem:

Theorem 1: The two conditions

(C1) There exist IJ positive numbers y” such that
, Z ) 5O _ Z ¥ X,
+J I u

for all i, j, k (i.e., there exists a solution to (7), (8), and (9), but not necessarily of the
form (1)], and

(C2) Therankof MisI +J + K — 1

(11) ¥ - X, yI =X

are necessary and sufficient for the existence of a unique vector 0= (0,...,0,)
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which is the MLE of # and for which numbers A,, ..., A; and B,,. .., B, can be
found (not uniquely) so as to satisfy (1), (2), (7), (8), and (9).

Condition (C1) deserves some attention. Figure 2 illustrates a situation where
¥§s satisfying (11) do not exist. But such situations are rare. In order to
investigate them further, first set K = 1. Then let

Yy = Cv(yu) = (:y117y127~ ey Yy Yors e e - yYojs ey Yy syIJ),

[The symbol V' simply writes the matrix (y;;) of y;;’s as a vector.] Consider the
region R of y’s such that

(12) Yis =Xi+ y+j=X+j y,J>O (foralliandj)
K=1
(egy)) ((x;5)
1 50 ) 0 0
50 1 0 5
For any x(o) such that y,(ig) s X,H_, yig) = X+j for all i and j, we have

Y y;$- 5 Gty % 1352 + i)
SRR TR A
5 0 ) - 5o -1
=50 (g2 + 1% - 0 4 )
= 48 (5” + {0
whenever the yigo)'s are positive. Thus

This example also illustrates that the Xij's are in a lowest cost configuration.

FIGURE 2. Example in Which y{’s Satisfying (11) Do Not Exist.
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To see that B is nonempty, note that if X;/’s are positive we can set y;; = X;. If
some X,, = 0, then there must be a nonzero Xs,) and a nonzero X, (since X;, > 0
and X,; > 0). Then, for a small enough é > 0, if we set z, =6, 2, = X, — 0,
2y = Xy — 0, 24 = X + 0 and z;; = X;; otherwise, then z, > 0, z;; > 0 whenever
X;>0 and 2, =Xin2Z,;=X,;. If we repeat a similar procedure for all nonzero
X s we would ultimately reach a point in R©.

Now it can be shown that if y{’s obeying (12) fail to exist [i.e., they obey (12),
but not (11)], X,/’s are in an extremal configuration with respect to costs cP—le.,
we have either

> clfyy> Y e Xyforally € R
or
Z cf vy < 2_clf Xy forally € R
. ,:]

To prove this, assume that we have y'” and y® in #'” such that

M (1) o) 1 .,
ZCU Yij <Zc Xy Zcu Yij
ij

0)

Thenforalle, 0 <a <1,y = ay™ 4+ (1 — @) y? isin #'? and for some «

(D, (1)
Z Cij yua Z Cij X
ij

violating the nonexistence of y“’” s.

This result, although worthwhile, is not entirely startling. The maximum
value of £, if it does not lie in &, must lie on the boundary of R where V (X))
is. The result also reminds one of the fact that minimum and maximum cost
configurations occur when 6, — « or #; — —« [Evans (1973)]. It can be extended to
K = 1 in the following way:

Lemma 1: Let R%’ denote a nonempty region

Yiy = Xi+ Yij= X+j Z Cllf)yll Z C‘J i
yi; >0 forall{ and j and k sKl
Then if

Z My # Z M X
forally & #* and K, < n < K we must have either

Z Cz(]n)ylj < Z Ci(}"l)Xij for all y E ﬁ(Kl)
u
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or

Z C;'(Jn)yij > Z C,'(}I)Xij for all y & ﬂ(Kl)
ij ij

Proof: Similar to the discussion above.

3. PROOF OF THEOREM 1

Results similar to Theorem 1 have been proved by Haberman (1974) and
others for contexts other than the gravity model. Hence, we shall mainly adapt
Haberman’s work to the gravity model.

Lemma 2 (Haberman): A necessary and sufficient condition for the existence
of MLE’s Tij of the form given by (1) and (2) is that there exists a vector 5 = V (n;))
such that M’ 9 = 0 and X;; + »;; > O for all { and j. Moreover, such T,-j’s are unique,
and solve Equations (7), (8), and (9).

This is essentially a restatement of Theorem 2.1 and 2.2 in Haberman (1974,
pp. 35-37).

Lemma 3: A necessary and sufficient condition for the existence of MLE’s of
the form given by (1) and (2) is condition (C1). Moreover, such 7T, ;'S are unique and
solve Equations (7), (8), and (9).

Proof: Let X =V (X)) and y© = ¥ (y). Then from (11), M’ X = M’ y©.
Thus setting 7 = y© — X the lemma follows from Lemma 2.

From the above we have the uniqueness of the T’,»j’s but we still need to show
the uniqueness of 6.

Lemma 4: Let T}’s be positive numbers of the form given by (1) and (2). Then
(C2) is necessary and sufficient for the uniqueness of .

Proof: Call the colurnns of M, m, m,, ..., m,,,, . Recall that under condi-
tions of the lemma, ¢;; = In T;; can be written in the form (10).

Suppose there were two distinct values 0= (0~1, ey 05)' and 8 = @, ..., 6g)
such that (¢,,...,&,,,0,,...,0¢) and (¢, ..., &, 0, ..., 08¢) were both solutions
to (10), that is

I+d K
t= Z &m, + bemy, . g
s=1 k=1

and
I+d K

t - Z gsms + Z 6ka+J+K

s=1 k=1

On subtracting the second of these equations from the first we have
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I+d K
(13) 0=> ¢ —&)m, +y (0 — 0 my .«
s=1 k=1

Since § # 0, some 8, # 6,. Let 8, # 6,. Then from (13)
I+J

K
(14) my ., = Z (gs — £)/(8;, - él) m; + (ék — 0,)/(8, — 91) my, ,p
s=1 k=2

One of the m,, say m,, can be eliminated from the right-hand side of (14) since
=l m, = =/*J,, m,. Then we have two columns m,,;,, and m,, both of which can
be expressed in terms of the remaining I + J + K — 2 columns of M. Therefore M
can have at most I + J + K —2 independent columns. This contradicts (C2) and
proves that when M has rank I + J + K —1, 6 is unique.

The necessity of condition (C1) follows immediately on noting that if @ is
unique and if we arbitrarily chose one other £, the remaining £’s would be uniquely
determined by the T}/’s.

4. A COMPUTATIONAL PROCEDURE

Several procudures have been given for obtaining ML estimates of 6,’s for
some special cases of (2). For example, when K — 1, effective procedures have been
supplied by Evans (1971), Hyman (1969), and others, and when Fj; is a step
function, a procedure given by Evans and Kirby (1974) works very well. Batty
(1976) has presented and compared several procedures for obtaining ML estimates
when K = 2, and these procedures can be easily generalized to when K > 2. In this
section we propose a procedure which is possibly significantly faster than any of
those described by Batty (1976).

The procedure we propose is a gradient search procedure; but unlike the
gradient search procedure described by Batty (1976), a key step within each
iteration is handled analytically (rather than through a search algorithm). We
believe that this significantly cuts down on computer time. This conjecture has
been borne out in trials using small (5 x 5) matrices of X;’s. Figure 3 shows a trace
of the iterations for our gradient search procedure. Figure 4 shows a trace using the
same data and an alternative method—often called the method of scoring in
statistics [Rao (1973)]. This latter procedure [also given in Batty (1976)] is
essentially based on the multidimensional Newton-Raphson procedure and con-
sists of taking the linear part of Taylor expansions of the nonlinear ML equations
about the point £ obtained from the previous iteration and then solving these
linear equations to obtain £+ for the next iteration. For this problem 8 = (6, 6,),
and this procedure requires three initial points (0-1, 0-2, 0-3). If we notice the
different scales used in the two figures we see that, at least in this case, the gradient
search procedure does better than its competitor. While this was one of the less
favorable performances of the scoring procedure among several hundred known to
this author [some of these, including details of this one, are given in Sue (1985)], it
does illustrate comparative merits of the two procedures. Our gradient search
procedure always moved smoothly towards the estimate, while the scoring proce-
dure zig-zagged, sometimes causing overflow or underflow. However, more and
larger scale demonstrations are needed before its computational behavior is fully
understood.
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from 0 (3.2,4.5)

1.0

0.5

0.0 T T T T | — T — T 1
2.80 2.88 2.96 3.04 3.12 3.20 3.28

é,
FIGURE 3: Trace of Gradient Search.

In order to describe the procedure, we shall first outline gradient search
procedures in general. For some value {’ of {, denote by grad (£, ) the gradient
vector of £ at §@

N ad '
grad (L, {©) = 0L oL £ )
K

ETR AR TR
where { is as in Section 1, and the partial derivatives are evaluated at §©. It is

known that of all directions around {®, £ increases the fastest if we choose the
direction given by grad (£, {). Therefore, we augment £® to

(15) §O + pgrad (L, §7)

and choose a value p” of p as indicated below. If £ were linear it would keep

increasing as p were increased. However, £ is not linear and is bounded and for

some value p* of p it attains its maximum value over all points (15). [Notice that p
- ‘
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FIGURE 4: Trace of Scoring Method.

is the only variable in (15).] This value of p can be obtained sometimes by setting
the derivative of (15) with respect to p equal to zero; when this is difficult, as it
often is in practice, an approximate value of p" is found by evaluating (15) for
several values of p in a method of enumeration. Most gradient search algorithm
packages provide the latter option. Once such a p"” is found, we would set gy
equal to (15) and continue our iterations, at each stage raising the value of £ until
we are satisfied.

Copvright © 2001. All Rights Reseved. oo,



SEN: MAXIMUM LIKELIHOOD ESTIMATION OF GRAVITY MODEL 471

Now let us return to the specific form of £ that we have. As for (7), (8), and (9)
we can readily compute

9L 9L

3% A" ATV (X, - T.) (whenl=<i=<I)
oL oL .
3 '=5§=B,~‘1(XH-—T+J») (whenl=<j<dJ)
+J J
and
oL . .
=— =2 X;c® -3 Ty = v (say) (when1 < k& < K)

a§]+J+k 60}: ij

For any set of positive F;;'s, we can easily solve 3.L/dA; = 0 and 8.L/dB; = 0 [which
are, of course, the same as (7) and (8)] for all i and j using the well- known Furness
iterations, which we shall call the DSF procedure, after Deming and Stephan
(1940) and Furness (1965), who apparently independently discovered it. After
choosing a set of arbitrary positive A?’s, the procedure consists of using alternately
and iteratively the two formulae

J
a0 - X, [¥ B,

j=1

I
B}ZPH) _ X+j/Z A}Zp) Fij

i=1

until an adequate level of convergence is attained.

Suppose we start with some value 8 of 8 and use the DSF procedure to obtain
the corresponding As, B"s, and T;(0”)’s. We see that 4.L/34; = d.L/dB; = 0 for
all { and } (approx1matelv 80, since the DSF procedure is iterative). We use the
symbol T;(6”) to indicate that the T’s are functions of 6. Then, letting
O = (AP, .. AP, B, ... BP0, ..., 68, only the last K components of grad
(L, ™ would be nonzero and these would be ». Thus in order to get (15) we
would leave the A{”’s and B{’s unchanged and augment each 6,” by p®»".

In order to obtain p, cons1der

I+J+K
(16) EE _ a.L d¢,

dp T 965 dp

-

K
k=1

(all other 9.£/3¢,’s being approximately zero)
_ Z (Z c(k)X Z c(k)A(r)B(r) eXpl:Z c(l) (ggr) + pyy))} Vk(r))
K
_ Z (Z c(k)X _ Z c(k)T (o(r)) exp [Z ij p ”;r)J) Vk(r)
I=1

6 (p), say
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Thus solving the equation 8(p) = 0 for p will give us the desired value p". Since
K
5(p) =2 W")P=0
k=1

when p = 0 and dé(p)/dp

K K K
k
ST T, @ 3 b exp (3 el
{=1

k=1 ij sm=1
K K 2
o [ o) <o
ij s=1 k=1

there is one and only one such solution.

However, in our efforts to work with (16) we found that a modification of it
substantially reduced the number of interations. This modification consists of
writing, instead of (16),

K K
an Y [zj B X, — 7Y T, (67) exp (Z p )] W - 5 ()
i I=1

k=1 ij

il

where

K
= T;;(8") exp (Z o v}'))/TJ .
iy I=1
Let us now summarize the gradient search procedure:

Step 1: Choose a value 8 of 8. For the procedure to work efficiently 8” should
be a reasonably good estimate of §. Now compute F (c;;, 8) and (i) use the DSF
procedure to obtain the 7';(8®)’s corresponding to 6°. These t;; (0”)’s approxi-
mately satisfy (7) and (8); (ii) then set

v = Z Ci(,"” (X, — Tij(o(m]
ij

and compute the terms in 6*(p), given in Equation (17). Solve the equation
*(p) = 0 using the Newton-Raphson or other procedure for p and call the unique
solution p®. Now obtain 6 from (15).

This 8 is used in Step 2 to obtain 8, etc. At the (r + 1)th step we have:

Step r + 1: (i) From the value 8 given by the previous step, compute
F(c;;, 8") and then use the DSF procedure to obtain the T; (6") which satisfy (7)
and (8).

(ii) Compute »{" and the terms in 6*(p). Find the unique solution o to
8*(p) = 0 and obtain " from (15).

Continue this process until the »{"’s are small enough indicating that (7), (8),
and (9) are approximately satisfied.

As already stated, in the above 8(p) could be used in lieu of 6*(p) but our
experience indicates that this would slow down the rate of convergence of the
procedure. Notice that each step contains two substeps: in the first we hold 8
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constant and choose A{”’s and B{”’s to maximize £, and in the second we hold A"’
and B{’s constant and choose §7*? such that £ increases rapidly. From the form of
the functions involved it would appear that convergence would be reasonably
rapid, although gradient search procedures in general are often quite slow. Notice
also that changes in 8 from step to step will occur as long as all equations in (7),
(8), and (9) are not satisfied, and the extent to which (9) is not satisfied determines
the amount of this change.

Although we do not have enough experience to recommend them, some
short-cuts may be possible in the procedure. One of the more time-consuming parts
of the algorithm is the repeated computation of the “exp” function in 5*(p). In the
earlier part of the algorithm (i.e., for small r) perhaps we can be fairly rough; as
such, rather than using the computer-supplied algorithm for “exp” a simpler but
less accurate formula consisting of the first two or three terms of the Taylor Series
for “exp” may suffice. During the later stages of the iteration the argument of
“exp” will be small enough to render this Taylor Series formula quite accurate.
Consequently, for all iterations such an approximation may be desirable. Further-
more, with this approximation the equation 6*(p) = 0 can be solved directly by
formula; hence, the iterative Newton-Raphson algorithm would become unneces-
sary. On the other hand, it may increase the total number of iterations needed.
Thus, while we conjecture that a linear approximation will lead to greater
efficiencies in many cases, it is not clear whether this is true for all cases.

5. A CONCLUDING REMARK

Although we conjecture that the procedure given in the last section is simpler
than other comparable procedures, it is still a fairly time-consuming procedure.
Usually ML procedures are easy only when they are also least-squares (LS)
procedures. If the X,/’s are large enough so that their distributions, which we have
assumed to be Poisson, are close enough to being normal, then we can approximate
our ML procedures (since under the assumption of normality ML and LS
procedures would coincide).

Two classes of particularly simple LS procedures have been given in Sen and
Soot (1981), Gray and Sen (1983), and Sen and Pruthi (1983). For the data sets (on
interstate flows of coal and food grains in India) in Sen and Pruthi (1983), the ML
and LS estimates were nearly identical—which should have been anticipated,
given that the observations were very large. How small do X ;i’s have to be for this to
continue to hold? Do LS procedures continue to perform well when more than
three-quarters of the X;’s are zeros, as frequently happens in intraurban O-D
tables? These are questions that have not yet been answered. We know, however,
that under realistic conditions ML estimates of 6,’s are unique as (of course) are LS
estimates. Thus, it is at least valid to compare the two.
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