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Many networks of interest in the sciences, including social net-
works, computer networks, and metabolic and regulatory net-
works, are found to divide naturally into communities or modules.
The problem of detecting and characterizing this community struc-
ture is one of the outstanding issues in the study of networked
systems. One highly effective approach is the optimization of the
quality function known as ‘‘modularity’’ over the possible divisions
of a network. Here I show that the modularity can be expressed in
terms of the eigenvectors of a characteristic matrix for the net-
work, which I call the modularity matrix, and that this expression
leads to a spectral algorithm for community detection that returns
results of demonstrably higher quality than competing methods in
shorter running times. I illustrate the method with applications to
several published network data sets.

clustering � partitioning � modules � metabolic network � social network

Many systems of scientific interest can be represented as
networks, sets of nodes or vertices joined in pairs by lines

or edges. Examples include the internet and the worldwide web,
metabolic networks, food webs, neural networks, communica-
tion and distribution networks, and social networks. The study of
networked systems has a history stretching back several centu-
ries, but it has experienced a particular surge of interest in the
last decade, especially in the mathematical sciences, partly as a
result of the increasing availability of accurate large-scale data
describing the topology of networks in the real world. Statistical
analyses of these data have revealed some unexpected structural
features, such as high network transitivity (1), power-law degree
distributions (2), and the existence of repeated local motifs (3);
see refs. 4–6 for reviews.

One issue that has received a considerable amount of attention
is the detection and characterization of community structure in
networks (7, 8), meaning the appearance of densely connected
groups of vertices, with only sparser connections between groups
(Fig. 1). The ability to detect such groups could be of significant
practical importance. For instance, groups within the worldwide
web might correspond to sets of web pages on related topics (9);
groups within social networks might correspond to social units
or communities (10). Merely the finding that a network contains
tightly knit groups at all can convey useful information: if a
metabolic network were divided into such groups, for instance,
it could provide evidence for a modular view of the network’s
dynamics, with different groups of nodes performing different
functions with some degree of independence (11, 12).

Past work on methods for discovering groups in networks
divides into two principal lines of research, both with long
histories. The first, which goes by the name of graph partitioning,
has been pursued particularly in computer science and related
fields, with applications in parallel computing and integrated
circuit design, among other areas (13, 14). The second, identified
by names such as block modeling, hierarchical clustering, or
community structure detection, has been pursued by sociologists
and more recently by physicists, biologists, and applied mathe-
maticians, with applications especially to social and biological
networks (7, 15, 16).

It is tempting to suggest that these two lines of research are
really addressing the same question, albeit by somewhat different
means. There are, however, important differences between the

goals of the two camps that make quite different technical
approaches desirable. A typical problem in graph partitioning is
the division of a set of tasks between the processors of a parallel
computer so as to minimize the necessary amount of interpro-
cessor communication. In such an application the number of
processors is usually known in advance and at least an approx-
imate figure for the number of tasks that each processor can
handle. Thus we know the number and size of the groups into
which the network is to be split. Also, the goal is usually to find
the best division of the network regardless of whether a good
division even exists; there is little point in an algorithm or
method that fails to divide the network in some cases.

Community structure detection, by contrast, is perhaps best
thought of as a data analysis technique used to shed light on the
structure of large-scale network data sets, such as social net-
works, internet and web data, or biochemical networks. Com-
munity structure methods normally assume that the network of
interest divides naturally into subgroups and the experimenter’s
job is to find those groups. The number and size of the groups
are thus determined by the network itself and not by the
experimenter. Moreover, community structure methods may
explicitly admit the possibility that no good division of the
network exists, an outcome that is itself considered to be of
interest for the light it sheds on the topology of the network.

This article focuses on community structure detection in
network data sets representing real-world systems of interest.
However, both the similarities and differences between commu-
nity structure methods and graph partitioning will motivate
many of the developments that follow.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

*E-mail: mejn@umich.edu.

© 2006 by The National Academy of Sciences of the USA

Fig. 1. The vertices in many networks fall naturally into groups or commu-
nities, sets of vertices (shaded) within which there are many edges, with only
a smaller number of edges between vertices of different groups.
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The Method of Optimal Modularity
Suppose then that we are given, or discover, the structure of
some network and that we want to determine whether there
exists any natural division of its vertices into nonoverlapping
groups or communities, where these communities may be of any
size.

Let us approach this question in stages and focus initially on
the problem of whether any good division of the network exists
into just two communities. Perhaps the most obvious way to
tackle this problem is to look for divisions of the vertices into two
groups so as to minimize the number of edges running between
the groups. This ‘‘minimum cut’’ approach is the approach most
often adopted in the graph-partitioning literature. However, as
discussed above, the community structure problem differs cru-
cially from graph partitioning in that the sizes of the commu-
nities are not normally known in advance. If community sizes are
unconstrained then we are, for instance, at liberty to select the
trivial division of the network that puts all of the vertices in one
of our two groups and none in the other, which guarantees we
will have zero intergroup edges. This division is, in a sense,
optimal, but clearly it does not tell us anything of any worth. We
can, if we want, artificially forbid this solution, but then a division
that puts just one vertex in one group and the rest in the other
will often be optimal, and so forth.

The problem is that simply counting edges is not a good way to
quantify the intuitive concept of community structure. A good
division of a network into communities is not merely one in which
there are few edges between communities; it is one in which there
are fewer than expected edges between communities. If the number
of edges between two groups is only what one would expect on the
basis of random chance, then few thoughtful observers would claim
this constitutes evidence of meaningful community structure. On
the other hand, if the number of edges between groups is signifi-
cantly less than we expect by chance, or equivalent if the number
within groups is significantly more, then it is reasonable to conclude
that something interesting is going on.

This idea, that true community structure in a network corre-
sponds to a statistically surprising arrangement of edges, can be
quantified by using the measure known as modularity (17). The
modularity is, up to a multiplicative constant, the number of
edges falling within groups minus the expected number in an
equivalent network with edges placed at random. (A precise
mathematical formulation is given below.)

The modularity can be either positive or negative, with
positive values indicating the possible presence of community
structure. Thus, one can search for community structure pre-
cisely by looking for the divisions of a network that have positive,
and preferably large, values of the modularity (18).

The evidence so far suggests that this approach, of looking for
divisions with high modularity, is a very effective way to tackle
the problem. For instance, Guimerà and Amaral (12) and later
Danon et al. (8) optimized modularity over possible partitions of
computer-generated test networks by using simulated annealing.
In direct comparisons using standard measures, Danon et al.
found that this method outperformed all other methods for
community detection of which they were aware, in most cases by
an impressive margin. On the basis of such results we consider
maximization of the modularity to be perhaps the definitive
current method of community detection, being at the same time
based on sensible statistical principles and highly effective in
practice. Unfortunately, optimization by simulated annealing is
not a workable approach for the large network problems facing
today’s scientists, because it demands too much computational
effort. A number of alternative heuristic methods have been
investigated, such as greedy algorithms (18) and extremal opti-
mization (19). Here we take a different approach based on a

reformulation of the modularity in terms of the spectral prop-
erties of the network of interest.

Suppose our network contains n vertices. For a particular
division of the network into two groups let si � 1 if vertex i
belongs to group 1 and si � �1 if it belongs to group 2. And let
the number of edges between vertices i and j be Aij, which will
normally be 0 or 1, although larger values are possible in
networks where multiple edges are allowed. (The quantities Aij
are the elements of the so-called adjacency matrix.) At the same
time, the expected number of edges between vertices i and j if
edges are placed at random is kikj�2m, where ki and kj are the
degrees of the vertices and m � 1

2
�i ki is the total number of edges

in the network. Thus the modularity Q is given by the sum of
Aij � kikj�2m over all pairs of vertices i, j that fall in the same
group.

Observing that the quantity 1
2
(sisj � 1) is 1 if i and j are in the same

group and 0 otherwise, we can then express the modularity as

Q �
1

4m �
ij

�Aij �
kikj

2m� �si sj � 1� �
1

4m �
ij

�Aij �
kikj

2m�si sj,

[1]

where the second equality follows from the observation that
2m � �i ki � �ij Aij. The leading factor of 1�4m is merely
conventional: it is included for compatibility with the previous
definition of modularity (17).

Eq. 1 can conveniently be written in matrix form as

Q �
1

4m
sTBs, [2]

where s is the column vector whose elements are the si and we
have defined a real symmetric matrix B with elements

Bij � Aij �
kikj

2m
, [3]

which we call the modularity matrix. Much of our attention in
this article will be devoted to the properties of this matrix. For
the moment, note that the elements of each of its rows and
columns sum to zero, so that it always has an eigenvector
(1,1,1, . . .) with eigenvalue zero. This observation is reminiscent
of the matrix known as the graph Laplacian (20), which is the
basis for one of the best-known methods of graph partitioning,
spectral partitioning (21, 22), and has the same property. And
indeed, the methods presented here have many similarities to
spectral partitioning, although there are some crucial differences
as well, as we will see.

Given Eq. 2, we proceed by writing s as a linear combination
of the normalized eigenvectors ui of B so that s � �i�1

n aiui with
ai � ui

T�s. Then we find

Q �
1

4m �
i

aiui
TB�

j

a juj �
1

4m �
i�1

n

�ui
T�s�2� i, [4]

where �i is the eigenvalue of B corresponding to eigenvector ui.
Let us assume that the eigenvalues are labeled in decreasing

order, �1 � �2 � � � � � �n. We want to maximize the modularity
by choosing an appropriate division of the network, or equiva-
lently by choosing the value of the index vector s. This means
choosing s so as to concentrate as much weight as possible in
terms of the sum in Eq. 4 involving the largest (most positive)
eigenvalues. If there were no other constraints on our choice of
s (apart from normalization), this would be an easy task: we
would simply chose s proportional to the eigenvector u1. This
places all of the weight in the term involving the largest
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eigenvalue �1, the other terms being automatically zero, because
the eigenvectors are orthogonal.

Unfortunately, there is another constraint on the problem im-
posed by the restriction of the elements of s to the values �1, which
means s cannot normally be chosen parallel to u1. Let us do our best,
however, and make it as close to parallel as possible, which is
equivalent to maximizing the dot product u1

T�s. It is straightforward
to see that the maximum is achieved by setting si � �1 if the
corresponding element of u1 is positive and si � �1 otherwise. In
other words, all vertices whose corresponding elements are positive
go in one group and all of the rest in the other. This then gives us
the algorithm for dividing the network: we compute the leading
eigenvector of the modularity matrix and divide the vertices into
two groups according to the signs of the elements in this vector.

We immediately notice some satisfying features of this
method. First, as has been made clear, it works even though the
sizes of the communities are not specified. Unlike conventional
partitioning methods that minimize the number of between-
group edges, there is no need to constrain the group sizes or
artificially forbid the trivial solution with all vertices in a single
group. There is an eigenvector (1,1,1, . . .) corresponding to such
a trivial solution, but its eigenvalue is zero. All other eigenvectors
are orthogonal to this one and hence must possess both positive
and negative elements. Thus, as long as there is any positive
eigenvalue this method will not put all vertices in the same group.

It is, however, possible for there to be no positive eigenvalues of
the modularity matrix. In this case the leading eigenvector is the
vector (1,1,1, . . .) corresponding to all vertices in a single group
together. But this is precisely the correct result: the algorithm is in
this case telling us that there is no division of the network that
results in positive modularity, as can immediately be seen from Eq.
4, because all terms in the sum will be zero or negative. The
modularity of the undivided network is zero, which is the best that
can be achieved. This is an important feature of the algorithm. The
algorithm has the ability not only to divide networks effectively, but
also to refuse to divide them when no good division exists. The
networks in this latter case will be called indivisible. That is, a
network is indivisible if the modularity matrix has no positive
eigenvalues. This idea will play a crucial role in later developments.

The algorithm as described makes use only of the signs of the
elements of the leading eigenvector, but the magnitudes convey
information, too. Vertices corresponding to elements of large
magnitude make large contributions to the modularity, Eq. 4,
and conversely for small ones. Alternatively, if we take the
optimal division of a network into two groups and move a vertex
from one group to the other, the vector element for that vertex
gives an indication of how much the modularity will decrease:
vertices corresponding to elements of large magnitude cannot be
moved without incurring a large modularity penalty, whereas
those corresponding to smaller elements can be moved at
relatively little cost. Thus, the elements of the leading eigenvec-
tor measure how firmly each vertex belongs to its assigned
community, those with large vector elements being strong
central members of their communities, whereas those with
smaller elements are more ambivalent.

As an example of the operation of this algorithm, Fig. 2 shows
the result of its application to a famous network from the social
science literature, which has become something of a standard
test for community detection algorithms. The network is the
‘‘karate club’’ network of Zachary (23), which shows the pattern
of friendships between the members of a karate club at an
American university in the 1970s. This example is of particular
interest because, shortly after the observation and construction
of the network, the club in question split in two as a result of an
internal dispute. Applying our eigenvector-based algorithm to
the network, we find the division indicated by the dotted line in
Fig. 2, which coincides exactly with the known division of the club
in real life, indicated by the shapes of the vertices.

The vertices in Fig. 2 are shaded according to the values of the
elements in the leading eigenvector of the modularity matrix, and
these values seem also to accord well with known social structure
within the club. In particular, the three vertices with the heaviest
weights, either positive or negative (black and white vertices in
Fig. 2), correspond to the known ringleaders of the two factions.

Dividing Networks into More than Two Communities
In the preceding section a simple matrix-based method for
finding a good division of a network into two parts is described.
Many networks, however, contain more than two communities,
so we would like to extend the method to find good divisions of
networks into larger numbers of parts. The standard approach to
this problem, and the one adopted here, is repeated division into
two: we use the algorithm of the previous section first to divide
the network into two parts, then divide those parts, and so forth.

In doing this it is crucial to note that it is not correct, after first
dividing a network in two, to simply delete the edges falling
between the two parts and then apply the algorithm again to each
subgraph. This is because the degrees appearing in the defini-
tion, Eq. 1, of the modularity will change if edges are deleted, and
any subsequent maximization of modularity would thus maxi-
mize the wrong quantity. Instead, the correct approach is to write
the additional contribution �Q to the modularity upon further
dividing a group g of size ng in two as

�Q �
1

2m �1
2 �

i, j�g

Bij�si sj � 1� � �
i, j�g

Bij�
�

1
4m � �

i, j�g

Bijsi sj � �
i, j�g

Bij�
�

1
4m �

i, j�g
�Bij � �ij �

k�g

Bik�si sj

�
1

4m
sTB�g�s, [5]

where �ij is the Kronecker �-symbol, we have made use of si
2 �

1, and B(g) is the ng 	 ng matrix with elements indexed by the
labels i,j of vertices within group g and having values

Fig. 2. Application of the eigenvector-based method to the karate club
network of ref. 23. Shapes of vertices indicate the membership of the corre-
sponding individuals in the two known factions of the network, and the
dotted line indicates the split found by the algorithm, which matches the
factions exactly. The shades of the vertices indicate the strength of their
membership, as measured by the value of the corresponding elements of the
eigenvector.
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Bij
�g� � Bij � � ij �

k�g

Bik. [6]

Because Eq. 5 has the same form as Eq. 2 we can now apply the
spectral approach to this generalized modularity matrix, just as
before, to maximize �Q. Note that the rows and columns of B(g)

still sum to zero and that �Q is correctly zero if group g is
undivided. Note also that for a complete network Eq. 6 reduces
to the previous definition of the modularity matrix, Eq. 3,
because �k Bik is zero in that case.

In repeatedly subdividing the network, an important question
we need to address is at what point to halt the subdivision
process. A nice feature of this method is that it provides a clear
answer to this question: if there exists no division of a subgraph
that will increase the modularity of the network, or equivalently
that gives a positive value for �Q, then there is nothing to be
gained by dividing the subgraph and it should be left alone; it is
indivisible in the sense of the previous section. This happens
when there are no positive eigenvalues to the matrix B(g), and
thus the leading eigenvalue provides a simple check for the
termination of the subdivision process: if the leading eigenvalue
is zero, which is the smallest value it can take, then the subgraph
is indivisible.

Note, however, that although the absence of positive eigen-
values is a sufficient condition for indivisibility, it is not a
necessary one. In particular, if there are only small positive
eigenvalues and large negative ones, the terms in Eq. 4 for
negative �i may outweigh those for positive. It is straightforward
to guard against this possibility, however; we simply calculate the
modularity contribution �Q for each proposed split directly and
confirm that it is greater than zero.

Thus the algorithm is as follows. We construct the modularity
matrix, Eq. 3, for the network and find its leading (most positive)
eigenvalue and the corresponding eigenvector. We divide the
network into two parts according to the signs of the elements of
this vector, and then repeat the process for each of the parts,
using the generalized modularity matrix, Eq. 6. If at any stage we
find that a proposed split makes a zero or negative contribution
to the total modularity, we leave the corresponding subgraph
undivided. When the entire network has been decomposed into
indivisible subgraphs in this way, the algorithm ends.

One immediate corollary of this approach is that all ‘‘com-
munities’’ in the network are, by definition, indivisible sub-
graphs. A number of authors have in the past proposed formal
definitions of what a community is (9, 16, 24). The present
method provides an alternative first-principles definition of a
community as an indivisible subgraph.

Further Techniques for Modularity Maximization
In this section I describe briefly another method for dividing
networks in two by modularity optimization, which is entirely
different from the spectral method. Although not of special
interest on its own, this second method is, as will be shown
shortly, very effective when combined with the spectral method.

Suppose we are given some initial division of our vertices into
two groups. We then find among the vertices the one that, when
moved to the other group, will give the biggest increase in the
modularity of the complete network, or the smallest decrease if
no increase is possible. We make such moves repeatedly, with the
constraint that each vertex is moved only once. When all n
vertices have been moved, we search the set of intermediate
states occupied by the network during the operation of the
algorithm to find the state that has the greatest modularity.
Starting again from this state, we repeat the entire process
iteratively until no further improvement in the modularity
results. Those familiar with the literature on graph partitioning
may find this algorithm reminiscent of the Kernighan–Lin

algorithm (25), and indeed the Kernighan–Lin algorithm pro-
vided the inspiration for the method.

Despite its simplicity, we find that this method works moder-
ately well. It is not competitive with the best previous methods,
but it gives respectable modularity values in the trial applications
we have made. However, the method really comes into its own
when it is used in combination with the spectral method intro-
duced earlier. It is a common approach in standard graph
partitioning problems to use spectral partitioning based on the
graph Laplacian to give an initial broad division of a network
into two parts, and then refine that division by using the
Kernighan–Lin algorithm. For community structure problems
we find that the equivalent joint strategy works very well. The
spectral approach based on the leading eigenvector of the
modularity matrix gives an excellent guide to the general form
that the communities should take and this general form can then
be fine-tuned by the vertex moving method to reach the best
possible modularity value. The whole procedure is repeated to
subdivide the network until every remaining subgraph is indi-
visible, and no further improvement in the modularity is possible.
(We note in passing that in principle the fine-tuning method
could also be used to refine results from other modularity
maximization algorithms, such as the extremal optimization
algorithm of ref. 19.)

Typically, the fine-tuning stages of the algorithm add only a
few percent to the final value of the modularity. For the karate
club network of Fig. 2, for instance, the spectral method on its
own finds a division of the network with modularity Q � 0.393,
which improves to Q � 0.419 upon fine-tuning. Nonetheless, an
improvement of this magnitude is enough, as we will see, to make
the difference between a method that is merely good and one
that is exceptional.

Example Applications
In practice, the algorithm developed here gives excellent results.
For a quantitative comparison between this algorithm and others
we follow Duch and Arenas (19) and compare values of the
modularity for a variety of networks drawn from the literature.
Results are shown in Table 1 for six different networks, the exact
same six used by Duch and Arenas. We compare modularity
figures against three previously published algorithms: the be-
tweenness-based algorithm of Girvan and Newman (10), which
is widely used and has been incorporated into some of the more
popular network analysis programs; the fast algorithm of Clauset

Table 1. Comparison of modularities for the network divisions
found by the algorithm described here and three other
previously published methods as described in the text, for six
networks of varying sizes

Network Size n

Modularity Q

GN CNM DA This article

Karate 34 0.401 0.381 0.419 0.419
Jazz musicians 198 0.405 0.439 0.445 0.442
Metabolic 453 0.403 0.402 0.434 0.435
E-mail 1,133 0.532 0.494 0.574 0.572
Key signing 10,680 0.816 0.733 0.846 0.855
Physicists 27,519 — 0.668 0.679 0.723

The networks are, in order, the karate club network of Zachary (23), the
network of collaborations between early jazz musicians of Gleiser and Danon
(27), a metabolic network for the nematode Caenorhabditis elegans (28), a
network of e-mail contacts at a university (29), a trust network of mutual
signing of cryptography keys (30), and a coauthorship network of scientists
working in condensed matter physics (31). No modularity figure is given for
the last network with the GN algorithm because the slow O(n3) operation of
the algorithm prevents its application to such large systems. GN, Glrvan and
Newman (10); CNM, Clauset et al. (26); DA, Duch and Arenas (19).
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et al. (26), which optimizes modularity by using a greedy algo-
rithm; and the extremal optimization algorithm of Duch and
Arenas (19), which is arguably the best previously existing
method, by standard measures (8), if one discounts methods
impractical for large networks, such as exhaustive enumeration
of all partitions or simulated annealing. Table 1 reveals some
interesting patterns. The algorithm clearly outperforms the
methods of Girvan and Newman and Clauset et al. for all of the
networks in the task of optimizing the modularity. The extremal
optimization method, on the other hand, is more competitive.
For the smaller networks, up to 
1,000 vertices, there is essen-
tially no difference in performance between the method of this
article and extremal optimization; the modularity values for the
divisions found by the two algorithms differ by no more than a
few parts in 1,000 for any given network. For the larger networks,
however, the spectral algorithm does better than extremal op-
timization, and furthermore the gap widens as network size
increases, to a maximum modularity difference of 
6% for the
largest network studied. For the very large networks that have
been of particular interest in the last few years, therefore, it
appears that the spectral method for detecting community
structure may be the most effective of the methods considered
here.

The modularity values given in Table 1 provide a useful
quantitative measure of the success of the algorithm when
applied to real-world problems. It is worthwhile, however, also
to confirm that it returns sensible divisions of networks in
practice. I have given one example demonstrating such a division
in Fig. 2. I have also checked the method against many of the
example networks used in previous studies (10, 17). Here I give
two more examples, both involving network representations of
American politics.

The first example is a network of books about politics,
compiled by V. Krebs (personal communication). In this net-
work the vertices represent 105 recent books on American
politics bought from the on-line bookseller Amazon.com, and
edges join pairs of books that are frequently purchased by the
same buyer. Books were divided (by me) according to their
stated or apparent political alignment, liberal or conservative,
except for a small number of books that were explicitly bipartisan
or centrist, or had no clear affiliation.

Fig. 3 shows the result of feeding this network through the
algorithm. The algorithm finds four communities of vertices,
denoted by the dotted lines in Fig. 3, with a modularity of 0.526.
As can be seen, one of these communities consists almost entirely
of liberal books and one almost entirely of conservative books.
Most of the centrist books fall in the two remaining communities.
Thus the books appear to form communities of copurchasing

that align closely with political views, a finding that encourages
us to believe that the algorithm is capable of extracting mean-
ingful results from raw network data. It is particularly interesting
to note that the centrist books belong to their own communities
and are not, in most cases, merely lumped in with the liberals or
conservatives; this finding may indicate that political moderates
form their own purchasing community.

For the second example, we consider a network of political
commentary web sites, also called ‘‘weblogs’’ or ‘‘blogs,’’ com-
piled from online directories by Adamic and Glance,† who also
assigned a political alignment, conservative or liberal, to each
blog based on content. The 1,225 vertices in the network studied
here correspond to the 1,225 blogs in the largest component of
Adamic and Glance’s network, and undirected edges connect
vertices if either of the corresponding blogs contained a hyper-
link to the other on its front page. On feeding this network
through the algorithm we discover that the network divides
cleanly into conservative and liberal communities and, remark-
ably, the optimal modularity of Q � 0.426 is found for a division
into just two communities. One community has 638 vertices of
which 620 (97%) represent conservative blogs. The other has 587
vertices of which 548 (93%) represent liberal blogs. The algo-
rithm found no division of either of these two groups that gives
any positive contribution to the modularity; as near as the
algorithm is able to tell, these groups are ‘‘indivisible’’ in the
sense defined here. This behavior is unique in my experience
among networks of this size and is perhaps a testament not only
to the widely noted polarization of the current political land-
scape in the United States but also to the strong cohesion of the
two factions.

Implementation
This algorithm is fast as well as accurate. The most time-
consuming part of the algorithm is the evaluation of the leading
eigenvector of the modularity matrix. The fastest method for
finding this eigenvector is the simple power method, the re-
peated multiplication of the matrix into a trial vector. Although
it appears at first glance that matrix multiplications will be slow,
taking O(n2) operations each because the modularity matrix is
dense, we can in fact perform them much faster by exploiting the
particular structure of the matrix. Writing B � A � kkT�2m,
where A is the adjacency matrix and k is the vector whose
elements are the degrees of the vertices, the product of B and an
arbitrary vector x can be written

Bx � Ax �
k�kT�x�

2m
. [7]

The first term is a standard sparse matrix multiplication taking
time O(m � n). The inner product kT�x takes time O(n) to
evaluate and hence the second term can be evaluated in total
time O(n) also. Thus the complete multiplication can be per-
formed in O(m � n) time. Typically O(n) such multiplications
are needed to converge to the leading eigenvector, for a running
time of O[(m � n)n] overall. Often we are concerned with sparse
graphs with m � n, in which case the running time becomes
O(n2). It is a simple matter to extend this procedure to find the
leading eigenvector of the generalized modularity matrix, Eq. 6,
also.

Although I will not go through the details here, it is straight-
forward to show that the fine-tuning stage of the algorithm can
also be completed in O[(m � n)n] time, so that the combined
running time for a single split of a graph or subgraph scales as
O[(m � n)n], or O(n2) on a sparse graph.

†Adamic, L. A. & Glance, N., WWW-2005 Workshop on the Weblogging Ecosystem, May
10–14, 2005, Chiba, Japan.

Fig. 3. Krebs’ network of books on American politics. Vertices represent
books and edges join books frequently purchased by the same readers.
Dashed lines divide the four communities found by the algorithm, and shapes
represent the political alignment of the books (circles are liberal, squares are
conservative, and triangles are centrist or unaligned).
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We then repeat the division into two parts until the network
is reduced to its component indivisible subgraphs. The running
time of the entire process depends on the depth of the tree or
‘‘dendrogram’’ formed by these repeated divisions (10, 16). In
the worst case the dendrogram has depth linear in n, but only
a small fraction of possible dendrograms realize this worst
case. A more realistic figure for running time is given by the
average depth of the dendrogram, which goes as log n, giving
an average running time for the whole algorithm of O(n2log n)
in the sparse case. This is considerably better than the O(n3)
running time of the betweenness algorithm (10), and slightly
better than the O(n2log2 n) of the extremal optimization
algorithm (19). It is not as good as the O(nlog2 n) running time
for the greedy algorithm of ref. 26, but the results are of far
better quality than those for the greedy algorithm. In practice,
running times are reasonable for networks up to 
100,000
vertices with current computers. For the largest of the net-
works studied here, the collaboration network, which has

27,000 vertices, the algorithm takes 
20 min to run on a
standard personal computer (circa 2006).

Conclusions
In this article we have examined the problem of detecting
community structure in networks, which is framed as an opti-

mization task in which one searches for the maximal value of the
quantity known as modularity over possible divisions of a
network. We have shown that this problem can be rewritten in
terms of the eigenvalues and eigenvectors of a matrix called the
modularity matrix, and by exploiting this transformation created
a computer algorithm for community detection that demonstra-
bly outperforms the best previous general-purpose algorithms in
terms of both quality of results and speed of execution. The
algorithm has been applied to a variety of real-world network
data sets, including social and biological examples, the results
showing it to give both intuitively reasonable divisions of net-
works and quantitatively better divisions as measured by the
modularity.

Note. After this article was submitted, I was informed of a recent
conference presentation by White and Smyth (32) in which a result
similar to Eq. 2 was derived and used as the basis for a modularity
maximization algorithm quite different from the one presented here. I
thank Christian Pich for bringing this presentation to my attention.

I thank Lada Adamic, Alex Arenas, and Valdis Krebs for graciously
providing network data. This work was funded in part by National
Science Foundation Grant DMS-0405348 and the James S. McDonnell
Foundation.
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