Network Science Analytics

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.hajim.rochester.edu/ece/sites/gmateos/

January 12, 2023
Introductions

Networks - A birds-eye view

Class description and contents
Who we are, where to find me, lecture times

- Gonzalo Mateos
- Associate Professor, Dept. of Electrical and Computer Engineering
- CSB 726, gmateosb@ece.rochester.edu
- http://hajim.rochester.edu/ece/sites/gmateos
- Where? We meet in Computer Studies Building 601
- When? Mondays and Wednesdays 3:25 pm to 4:40 pm
- My office hours, Tuesdays at 2 pm
 - Anytime, as long as you have something interesting to tell me
- Class website
 - http://hajim.rochester.edu/ece/sites/gmateos/ECE442.html
Teaching assistant

- A great TA to help you with your homework and project
- Narges Mohammadi
- Email: nmohamm4@ur.rochester.edu
- Her office hours, Thursdays at 2 pm
- Computer Studies Building 633
Prerequisites

(I) **Graph theory and statistical inference**
- Graphs are mathematical abstractions of networks
- Statistical inference useful to “learn” from network data
- Basic knowledge expected. **Will review in first four lectures**

(II) **Probability theory and linear algebra**
- Random variables, distributions, expectations, Markov processes
- Vector/matrix notation, systems of linear equations, eigenvalues

(III) **Programming**
- Will use e.g., Python/Matlab for homework and your project
- You can use the language/network analysis package you prefer
- Plenty of libraries in Python and R
Homework, project and grading

(I) Homework sets (3 in 14 weeks) worth 20%
- Mix of analytical problems and programming assignments
- Collaboration accepted, welcomed, and encouraged

(II) Research project on a topic of your choice, worth 80%
- Important and demanding part of this class. Three deliverables:
 1) Proposal by the end of week 6, worth 15%
 2) Progress report by the end of week 10, worth 15%
 3) Final report and in-class presentation, worth 50%
- This is a special topics, research-oriented graduate level class
 ⇒ Focus should be on thinking, reading, asking, implementing
 ⇒ Goal is for everyone to earn an A
Reading material

- We will use lecture slides to cover the material
 - Research papers, tutorials also posted in the class website
- Basic book I will follow is: Eric D. Kolaczyk, “Statistical Analysis of Network Data: Methods and Models,” Springer

- Available online from http://www.library.rochester.edu/
Additional bibliography

Be nice

- I work hard for this course, expect you to do the same
- ✓ Come to class, be on time, pay attention, ask
- ✓ Check out the additional suggested readings
- ✓ Play with network analysis software
- ✓ Search for datasets
- ✓ Do all of your homework
- ✗ Do not hand in as yours the solution of others
- ➤ Let me know of your interests. I can adjust topics accordingly
- ➤ Come and learn. Useful down the road. More on impact next
Introductions

Networks - A birds-eye view

Class description and contents
Networks

- As per the dictionary: *A collection of inter-connected things*
- Ok. There are **multiple things**, they are **connected**. Two extremes

1. A real (complex) system of inter-connected components
2. A graph representing the system

- Understand complex systems ⇔ Understand networks behind them
Historical background

- Network-based analysis in the sciences has a long history
- Mathematical foundations of graph theory (L. Euler, 1735)
- The seven bridges of Königsberg
- Laws of electrical circuitry (G. Kirchhoff, 1845)
- Molecular structure in chemistry (A. Cayley, 1874)
- Network representation of social interactions (J. Moreno, 1930)
- Power grids (1910), telecommunications and the Internet (1960)
- Google (1997), Facebook (2004), Twitter (2006), ...
Why networks? Why now?

- Understand complex systems ⇔ Understand networks behind them

- Relatively small field of study up until ∼ the mid-90s

- Epidemic-like explosion of interest recently. A few reasons:
 - Systems-level perspective in science, away from reductionism
 - Ubiquitous high-throughput data collection, computational power
 - Globalization, the Internet, connectedness of modern societies
Network Science

- Study of complex systems through their network representations
 Ex: economy, metabolism, brain, society, Web, . . .

- Universal language for describing complex systems and data
 - Striking similarities in networks across science, nature, technology

- Shared vocabulary across fields, cross-fertilization
 - From biology to physics, economics to statistics, CS to sociology

- **Impact:** social networking, drug design, smart infrastructure, . . .
Economic impact

- **Google**
 Market cap: $1.24 trillion

- **Facebook**
 Market cap: $736 billion

- **Cisco**
 Market cap: $188 billion

- **Apple**
 Market cap: $2.22 trillion
Healthcare impact

- Prediction of epidemics, e.g. the 2009 H1N1 pandemic

- Human Connectome Project to map-out brain circuitry
Homeland security impact

▶ Social network analysis key to capturing S. Hussein
What are the goals of Network Science?
- Reveal patterns and statistical properties of network data
- Understand the underpinnings of network behavior and structure
- Engineer more resource-efficient, robust, socially-intelligent networks

Characteristics: interdisciplinary, empirical, quantitative, computational

Empirical study of graph-valued data to find patterns and principles
- Collection, measurement, summarization, visualization?

Mathematical models. Graph theory meets statistical inference
- Understand, predict, discern nominal vs anomalous behavior?

Algorithms for graph analytics
- Computational challenges, scalability, tractability vs optimality?
Examples of networks

- Network analysis spans the sciences, humanities and arts
- Let’s see a few examples from four general areas
 - Technological
 - Biological
 - Social
 - Informational
- Standard taxonomy, by no means the only one
 ⇒ “Soft” classification, networks may fall in multiple categories
Technological networks

- **Ex**: communication, transportation, energy, sensor networks

![Diagram of the Abilene network in the Internet. Different nodes represent various forms of network entities, while different colors of links indicate various levels of communication bandwidth. Note that some node names appear more than once, corresponding to the phenomena of 'multi-homing', wherein a given network connects to another at more than one location. Figure courtesy of Sucharita Gopal.](image)

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncommercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network Data: Methods and Models (2009) Springer Science+Business Media LLC.

- **Q1**: What does the Internet look like today? How big is it?
- **Q2**: How will the traffic from New York to Chicago look tomorrow?
- **Q3**: How can we unveil anomalous traffic patterns?
Biological networks

- **Ex:** neurons, gene regulatory, protein interaction, metabolic paths, predator-prey, ecological networks

Q1: Are certain gene interactions more common than expected?
Q2: Which parts of the brain “communicate” during a given task?
Q3: Can we predict biological function of proteins from interactions?
Social networks

- **Ex:** friendship, corporate, email exchange, international relations, financial networks

- **Q1:** What are the mechanisms underpinning friendship formation?
- **Q2:** Which actors are central to the network and which peripheral?
- **Q3:** Can we identify overlapping communities?
Informational networks

- **Ex:** WWW, Twitter, co-citation between academic journals, blogosphere, paper co-authorship, peer-to-peer networks

- **Q1:** How does the size and structure of the WWW change in time?
- **Q2:** How can we use network analysis for authorship attribution?
- **Q3:** Can we track information cascades in online social media?
Class contents

Introductions

Networks - A birds-eye view

Class description and contents
What is this class about?

- **Our focus:** Statistical analysis of network data
- Measurements of or from a system conceptualized as a network
- **Unique challenges**
 - Relational aspect of the data
 - Complex statistical dependencies
 - High-dimensional and often massive in quantity
- Will examine how these challenges arise in relation to
 - Visualization
 - Summarization and description
 - Sampling and inference
 - Modeling
Q: How does one go about ‘mapping’ the ‘landscape’ of ‘Science’?

Statistical challenges

- Defining the population of interest
- Representativeness of our data
- Appropriate notions of units (vertices and edges)
- How to visualize it effectively?
Understanding epilepsy

Q: How to describe/summarize the complex interactions during a seizure?

Statistical challenges
- Criterion for defining ‘brain networks’
- Choice of network summary statistics
- Assessing significance of changes/differences
Q: Can we monitor characteristics of massive social media networks?

Fig. 5.2: Schematic illustration of induced subgraph sampling. Selected nodes are shown in yellow, while observed edges are shown in orange.

Statistical challenges
- Computer protocols correspond to what sampling designs?
- What sort of biases are inherent to the sampling?
- Can we compensate for those biases?
Predicting protein function

▶ **Q:** Can we leverage protein-protein interactions to infer function?

![Network of interactions among proteins known to be responsible for cell communication in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling cascades, a specific form of communication in the cell. The remaining proteins are indicated in blue.]

▶ **Statistical challenges**

- To what extent do interacting proteins share common function?
- How do we incorporate a network as an explanatory variable?
- Can we account for uncertainty in the training data and/or network?
Four thematic blocks in this class

(I) **Graph theory, probability and statistical inference review** (≈ 4 lectures)
 - Vertices and edges, degrees, subgraphs, families of graphs, connectivity, . . .
 - Algebraic graph theory, adjacency and Laplacian matrices, spectrum, . . .
 - Estimation, prediction and hypothesis testing. Case studies

 ⇒ Will follow a statistical taxonomy: descriptive an inferential techniques
 ⇒ Issues on data collection, data management and computing

(II) **Descriptive analysis and properties of large networks** (≈ 7 lectures)

(III) **Sampling, modeling and inference of networks** (≈ 9 lectures)

(IV) **Processes evolving over network graphs** (≈ 8 lectures)
The WWW and other large directed graphs exhibit a “bowtie” structure

Power-law degree distributions are ubiquitous in real-world networks

Of interest: network graph construction and visualization, centrality measures, community detection, network sampling, small-world

Applications: Google’s PageRank, marketing, epilepsy, transportation
Watts-Strogatz model captures small-world structure in real graphs

- Highly structured locally (like social groups); and
- “Small” globally (like purely random graphs)

Of interest: random graph models, network topology inference, growth models for evolving networks, preferential attachment

Applications: detecting motifs, inferring gene-regulatory interactions, mapping the Internet, predicting popularity in Twitter
Processes evolving over network graphs

- Tracking of end-to-end delay in the Internet
 - Only 30 out of 62 paths sampled, routing induces spatial correlations
 - "Ground-truth" delays compared to real-time estimates

- Of interest: Markov random fields, kernel regression on graphs, epidemic modeling, network flow models, traffic matrix estimation

- Applications: computer network health monitoring, electric load data cleansing, information cascades in social media, viral marketing