

Statistical Inference Review

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science and AI University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

January 23, 2025

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference

Probability and inference

- Probability theory is a formalism to work with uncertainty
 - Given a data-generating process, what are properties of outcomes?
- Statistical inference deals with the inverse problem
 - Given outcomes, what can we say on the data-generating process?

Statistical inference refers to the process whereby

- \Rightarrow Given observations $\mathbf{x} = [x_1, \dots, x_n]^T$ from $X_1, \dots, X_n \sim F$
- \Rightarrow We aim to extract information about the distribution F
- Ex: Infer a feature of F such as its mean
- Ex: Infer the CDF F itself, or the PDF f = F'
- Often observations are of the form (y_i, x_i) , i = 1, ..., n
 - \Rightarrow Y is the response or outcome. X is the predictor or feature
- ▶ Q: Relationship between the random variables (RVs) Y and X?
- Ex: Learn $\mathbb{E}[Y | X = x]$ as a function of x
- Ex: Foretelling a yet-to-be observed value y_* from the input $X_* = x_*$

- A statistical model specifies a set \mathcal{F} of CDFs to which F may belong
- A common parametric model is of the form $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$
 - Parameter(s) θ are unknown, take values in parameter space Θ
 - Space Θ has dim $(\Theta) < \infty$, not growing with the sample size *n*
- Ex: Data come from a Gaussian distribution

$$\mathcal{F}_{N} = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, \ \mu \in \mathbb{R}, \ \sigma > 0 \right\}$$

 \Rightarrow A two-parameter model: $\boldsymbol{\theta} = [\mu, \sigma]^{T}$ and $\boldsymbol{\Theta} = \mathbb{R} \times \mathbb{R}_{+}$

A nonparametric model has dim(Θ) = ∞, or dim(Θ) grows with n
 Ex: F_{All} = {All CDFs F}

- Given independent data $\mathbf{x} = [x_1, \dots, x_n]^T$ from $X_1, \dots, X_n \sim F$
 - \Rightarrow Statistical inference often conducted in the context of a model
- Ex: One-dimensional parametric estimation
 - Suppose observations are Bernoulli distributed with parameter p
 - The task is to estimate the parameter p (i.e., the mean)
- Ex: Two-dimensional parametric estimation
 - Suppose the PDF $f \in \mathcal{F}_N$, i.e., data are Gaussian distributed
 - The problem is to estimate the parameters μ and σ
 - May only care about μ , and treat σ as a nuisance parameter

Ex: Nonparametric estimation of the CDF

▶ The goal is to estimate F assuming only $F \in \mathcal{F}_{AII} = \{ AII CDFs F \}$

Regression models

- Suppose observations are from (Y₁, X₁),..., (Y_n, X_n) ~ F_{YX} ⇒ Goal is to learn the relationship between the RVs Y and X
- ► A typical approach is to model the regression function

$$r(x) := \mathbb{E}\left[Y \mid X = x\right] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$$

⇒ Equivalent to the regression model $Y = r(X) + \epsilon$, $\mathbb{E} [\epsilon | X] = 0$ ► Ex: Parametric linear regression model

$$r \in \mathcal{F}_{Lin} = \{r : r(x) = \beta_0 + \beta_1 x\}$$

Ex: Nonparametric regression model, assuming only smoothness

$$r \in \mathcal{F}_{Sob} = \left\{ r : \int_{-\infty}^{\infty} (r''(x))^2 dx < \infty \right\}$$

- ▶ Given data $(y_1, x_1), \ldots, (y_n, x_n)$ from $(Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}$
 - Ex: x_i is the blood pressure of subject *i*, y_i how long she lived
- Model the relationship between Y and X via r(x) = E [Y | X = x] ⇒ Q: What are classical inference tasks in this context?
- Ex: Regression or curve fitting
 - The problem is to estimate the regression function $r \in \mathcal{F}$
- Ex: Prediction
 - The goal is to predict Y_* for a new patient based on their $X_* = x_*$
 - If a regression estimate \hat{r} is available, can do $y_* := \hat{r}(x_*)$

Ex: Classification

- Suppose RVs Y_i are discrete, e.g. live or die encoded as ± 1
- The prediction problem above is termed classification

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference

▶ Point estimation refers to making a single "best guess" about *F*

 \blacktriangleright Ex: Estimate the parameter β in a linear regression model

$$\mathcal{F}_{Lin} = \left\{ r : r(\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} \right\}$$

• **Def:** Given data $\mathbf{x} = [x_1, \dots, x_n]^T$ from $X_1, \dots, X_n \sim F$, a point estimator $\hat{\theta}$ of a parameter θ is some function

$$\hat{\theta} = g(X_1, \ldots, X_n)$$

 $\Rightarrow \text{The estimator } \hat{\theta} \text{ is computed from the data, hence it is a RV} \\\Rightarrow \text{The distribution of } \hat{\theta} \text{ is called sampling distribution}$

• The estimate is the specific value for the given data sample \mathbf{x} \Rightarrow May write $\hat{\theta}_n$ to make explicit reference to the sample size

• **Def:** The bias of an estimator $\hat{\theta}$ is given by $bias(\hat{\theta}) := \mathbb{E} \left[\hat{\theta} \right] - \theta$

Def: The standard error is the standard deviation of $\hat{\theta}$

$$\mathsf{se} = \mathsf{se}(\hat{ heta}) := \sqrt{\mathsf{var}\left[\hat{ heta}
ight]}$$

 \Rightarrow Often, se depends on the unknown *F*. Can form an estimate se

Def: The mean squared error (MSE) is a measure of quality of $\hat{\theta}$

$$\mathsf{MSE} = \mathbb{E}\left[(\hat{ heta} - heta)^2
ight]$$

Expected values are with respect to the data distribution

$$f(x_1,\ldots,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta)$$

Theorem
The
$$MSE = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right]$$
 can be written as

$$\textit{MSE} = \textit{bias}^2(\hat{ heta}) + \mathsf{var}\left[\hat{ heta}
ight]$$

Proof.

• Let
$$\overline{\theta} = \mathbb{E}\left[\hat{\theta}\right]$$
. Then

$$\mathbb{E}\left[(\hat{\theta} - \theta)^2\right] = \mathbb{E}\left[(\hat{\theta} - \overline{\theta} + \overline{\theta} - \theta)^2\right]$$

$$= \mathbb{E}\left[(\hat{\theta} - \overline{\theta})^2\right] + 2(\overline{\theta} - \theta)\mathbb{E}\left[\hat{\theta} - \overline{\theta}\right] + (\overline{\theta} - \theta)^2$$

$$= \operatorname{var}\left[\hat{\theta}\right] + \operatorname{bias}^2(\hat{\theta})$$

▶ The last equality follows since $\mathbb{E}\left[\hat{\theta} - \bar{\theta}\right] = \mathbb{E}\left[\hat{\theta}\right] - \bar{\theta} = 0$

Desirable properties of point estimators

- **•** Q: Desiderata for an estimator $\hat{\theta}$ of the parameter θ ?
- **Def:** An estimator is unbiased if $bias(\hat{\theta}) = 0$, i.e., if $\mathbb{E}\left[\hat{\theta}\right] = \theta$
 - \Rightarrow An unbiased estimator is "on target" on average
- **Def:** An estimator is consistent if $\hat{\theta}_n \xrightarrow{p} \theta$, i.e. for any $\epsilon > 0$

$$\lim_{n \to \infty} \mathsf{P}\left(|\hat{\theta}_n - \theta| < \epsilon \right) = 1$$

 $\Rightarrow A \text{ consistent estimator converges to } \theta \text{ as we collect more data}$ **Def:** An unbiased estimator is asymptotically Normal if

$$\lim_{n \to \infty} \mathsf{P}\left(\frac{\hat{\theta}_n - \theta}{\mathsf{se}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$$

 \Rightarrow Equivalently, for large enough sample size then $\hat{ heta}_n \sim \mathcal{N}(heta, \mathsf{se}^2)$

- Ex: Consider tossing the same coin n times and record the outcomes
 - ▶ Model observations as *X*₁,..., *X_n* ~ Ber(*p*). Estimate of *p*?
 - A natural choice is the sample mean estimator

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- ▶ Recall that for $X \sim \text{Ber}(p)$, then $\mathbb{E}[X] = p$ and var[X] = p(1-p)
- The estimator \hat{p} is unbiased since

$$\mathbb{E}\left[\hat{p}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right] = p$$

 \Rightarrow Also used that the expected value is a linear operator

The standard error is

$$\operatorname{se} = \sqrt{\operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]} = \sqrt{\frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}\left[X_{i}\right]} = \sqrt{\frac{p(1-p)}{n}}$$

 \Rightarrow Unknown *p*. Estimated standard error is $\hat{se} = \sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n}}$

• Since \hat{p}_n is unbiased, then MSE = $\mathbb{E}\left[(\hat{p}_n - p)^2\right] = \frac{p(1-p)}{n} \rightarrow 0$

• Thus \hat{p} converges in the mean square sense, hence also $\hat{p}_n \xrightarrow{p} p$

Establishes \hat{p} is a consistent estimator of the parameter p

• Also, \hat{p} is asymptotically Normal by the Central Limit Theorem

- Set estimates specify regions of Θ where θ is likely to lie on
- Def: Given i.i.d. data X₁,..., X_n ~ F, a 1 − α confidence interval of a parameter θ is an interval C_n = (a, b), where a = a(X₁,...,X_n) and b = b(X₁,...,X_n) are functions of the data such that

$$\mathsf{P}(\theta \in C_n) \ge 1 - \alpha$$
, for all $\theta \in \Theta$

 \Rightarrow In words, $C_n = (a, b)$ traps θ with probability $1 - \alpha$

- \Rightarrow The interval C_n is computed from the data, hence it is random
- We call 1α the coverage of the confidence interval
- Ex: It is common to report 95% confidence intervals, i.e., $\alpha = 0.05$

Aside on the standard Normal distribution

• Let X be a standard Normal RV, i.e., $X \sim \mathcal{N}(0,1)$ with CDF $\Phi(x)$

$$\Phi(x) = P(X \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

• Define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$, i.e., the value such that

$$\mathsf{P}\left(X > z_{lpha/2}
ight) = lpha/2$$
 and $\mathsf{P}\left(-z_{lpha/2} < X < z_{lpha/2}
ight) = 1 - lpha$

Nice point estimators θ̂_n are Normal as n→∞, i.e., θ̂_n ~ N(θ, ŝe²)
 ⇒ Useful property in constructing confidence intervals for θ

Theorem

Suppose that $\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{s}e^2)$ as $n \to \infty$. Let Φ be the CDF of a standard Normal and define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$. Consider the interval

$$C_n = (\hat{ heta}_n - z_{\alpha/2}\hat{s}e, \hat{ heta}_n + z_{\alpha/2}\hat{s}e).$$

Then $\mathsf{P}(\theta \in C_n) \rightarrow 1 - \alpha$, as $n \rightarrow \infty$

▶ These intervals only have approximately (large *n*) correct coverage

Proof

Proof.

Consider the normalized (centered and scaled) RV

$$X_n = \frac{\hat{\theta}_n - \theta}{\hat{se}}$$

▶ By assumption $X_n \to X \sim \mathcal{N}(0,1)$ as $n \to \infty$. Hence,

$$P(\theta \in C_n) = P\left(\hat{\theta}_n - z_{\alpha/2}\hat{s}e < \theta < \hat{\theta}_n + z_{\alpha/2}\hat{s}e\right)$$
$$= P\left(-z_{\alpha/2} < \frac{\hat{\theta}_n - \theta}{\hat{s}e} < z_{\alpha/2}\right)$$
$$\to P\left(-z_{\alpha/2} < X < z_{\alpha/2}\right) = 1 - \alpha$$

• The last equality follows by definition of $z_{\alpha/2}$

Ex: Given observations $X_1, \ldots, X_n \sim Ber(p)$. Estimate of p?

► We studied properties of the sample mean estimator

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

By the Central Limit Theorem, it follows that

$$\hat{p} \sim \mathcal{N}\left(p, rac{\hat{p}(1-\hat{p})}{n}
ight)$$
 as $n
ightarrow \infty$

▶ Therefore, an approximate $1 - \alpha$ confidence interval for *p* is

$$C_n = \left(\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

- In hypothesis testing we start with some default theory
 - Ex: The data come from a zero-mean Gaussian distribution
- Q: Do the data provide sufficient evidence to reject the theory?
- ► The hypothesized theory is called null hypothesis, written as H_0 ⇒ Specify also an alternative hypothesis to the null, H_1
- Formally, given i.i.d. data x = [x₁,...,x_n]^T from X₁,...,X_n ~ F
 (i) Form a test statistic T(x), i.e., a function of the data
 (ii) Define a rejection region R of the form

$$\mathcal{R} = \{\mathbf{x} : T(\mathbf{x}) > c\}$$

- ▶ If data $\mathbf{x} \in \mathcal{R}$ we reject H_0 , otherwise we retain (do not reject) H_0
- ▶ The problem is to select the test statistic *T* and the critical value *c*

Testing if a coin is fair

- Ex: Consider tossing the same coin n times and record the outcomes
 - Model observations as $X_1, \ldots, X_n \sim Ber(p)$. Is the coin fair?
 - Let H_0 be the hypothesis that the coin is fair, and H_1 the alternative \Rightarrow Can write the hypotheses as

$$H_0: p = 1/2$$
 versus $H_1: p \neq 1/2$

Consider the test statistic given by

$$T(X_1,\ldots,X_n)=\left|\hat{p}_n-\frac{1}{2}\right|=\left|\frac{1}{n}\sum_{i=1}^n X_i-\frac{1}{2}\right|$$

▶ It seems reasonable to reject H_0 if $(X_1, ..., X_n) \in \mathcal{R}$, where

$$\mathcal{R} = \{(X_1,\ldots,X_n): T(X_1,\ldots,X_n) > c\}$$

▶ Will soon see this is a Wald's test, hence $c = z_{\alpha/2}$ se. More later

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference

- Consider a sample of *n* i.i.d. observations $X_1, \ldots, X_n \sim F$
- Q: How can we perform inference about the mean µ = ℝ [X₁]?
 ⇒ Practical and canonical problem in statistical inference
- A natural estimator of μ is the sample mean estimator

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

 \Rightarrow Well motivated since by the strong law of large numbers

$$\lim_{n\to\infty}\hat{\mu}_n=\mu\quad\text{almost surely}\quad$$

- ▶ It is a simple example of a method of moments estimator (MME)...
- ...and also a maximum likelihood estimator (MLE)

▶ In parametric inference we wish to estimate $\theta \in \Theta \subseteq \mathbb{R}^p$ in

$$\mathcal{F} = \{f(x; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta\}$$

For $1 \le j \le p$, define the *j*-th moment of $X \sim F$ as

$$\alpha_j \equiv \alpha_j(\boldsymbol{\theta}) = \mathbb{E}\left[X^j\right] = \int_{-\infty}^{\infty} x^j f(x; \boldsymbol{\theta}) dx$$

• Likewise, the *j*-th sample moment is an estimate of α_j , namely

$$\hat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

⇒ The *j*-th moment $\alpha_j(\theta)$ depends on the unknown θ ⇒ But $\hat{\alpha}_j$ does not, a function of the data only

- A first method for parametric estimation is the method of moments
 MMEs are not optimal, yet typically easy to compute
- **Def:** The method of moments estimator (MME) $\hat{\theta}_n$ is the solution to

$$\begin{array}{rcl} \alpha_1(\hat{\boldsymbol{\theta}}_n) &=& \hat{\alpha}_1\\ \alpha_2(\hat{\boldsymbol{\theta}}_n) &=& \hat{\alpha}_2\\ \vdots &\vdots &\vdots\\ \alpha_p(\hat{\boldsymbol{\theta}}_n) &=& \hat{\alpha}_p \end{array}$$

 \Rightarrow This is a system of p (nonlinear) equations with p unknowns

▶ Ex: Back to estimating a mean μ , p = 1 and $\mu = \theta = \alpha_1(\theta)$ so

$$\hat{\mu}_n^{MM} = \hat{\alpha}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

Example: Gaussian data model

- Ex: Suppose now $X_1,\ldots,X_n\sim\mathcal{N}(\mu,\sigma^2)$, i.e., the model is $F\in\mathcal{F}_N$
 - Q: What is the MME of the parameter vector $\boldsymbol{\theta} = [\mu, \sigma^2]^T$?

• The first
$$p = 2$$
 moments are given by

$$\alpha_1(\boldsymbol{\theta}) = \mathbb{E}[X_1] = \mu, \quad \alpha_2(\boldsymbol{\theta}) = \mathbb{E}[X_1^2] = \sigma^2 + \mu^2$$

• The MME $\hat{\theta}_n$ is the solution to the following system of equations

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\hat{\sigma}_n^2 + \hat{\mu}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

The solution is

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$$

- Often "the" method for parametric estimation is maximum likelihood
- Consider i.i.d. data X_1, \ldots, X_n from a PDF $f(x; \theta)$
- ▶ The likelihood function $\mathcal{L}_n(\theta) : \Theta \to \mathbb{R}_+$ is defined by

$$\mathcal{L}_n(\theta) := \prod_{i=1}^n f(X_i; \theta)$$

 $\Rightarrow \mathcal{L}_n(\theta) \text{ is the joint PDF of the data, treated as a function of } \theta$ $\Rightarrow \text{ The log-likelihood function is } \ell_n(\theta) := \log \mathcal{L}_n(\theta)$

Def: The maximum likelihood estimator (MLE) $\hat{\theta}_n$ is given by

$$\hat{\boldsymbol{ heta}}_n = rg\max_{\theta} \mathcal{L}_n(heta)$$

▶ Very useful: The maximizer of $\mathcal{L}_n(\theta)$ coincides with that of $\ell_n(\theta)$

Example: Bernoulli data model

► Suppose
$$X_1, \ldots, X_n \sim \text{Ber}(p)$$
. MLE of $\mu = p$?
⇒ The data PMF is $f(x; p) = p^x (1-p)^{1-x}$, $x \in \{0, 1\}$

• The likelihood function is (define $S_n = \sum_{i=1}^n X_i$)

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S_n} (1-p)^{n-S_n}$$

 \Rightarrow The log-likelihood is $\ell_n(p) = S_n \log(p) + (n - S_n) \log(1 - p)$

• The MLE \hat{p}_n is the solution to the equation

$$\left.\frac{\partial \ell_n(p)}{\partial p}\right|_{p=\hat{p}_n} = \frac{S_n}{\hat{p}_n} - \frac{n-S_n}{1-\hat{p}_n} = 0$$

The solution is

$$\hat{\mu}_n^{ML} = \hat{p}_n = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Example: Gaussian data model

► Suppose
$$X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)$$
. MLE of μ ?
⇒ The data PDF is $f(x; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2}\right\}$, $x \in \mathbb{R}$

• The likelihood function is (up to constants independent of μ)

$$\mathcal{L}_n(\mu) = \prod_{i=1}^n f(X_i;\mu) \propto \exp\left\{-\sum_{i=1}^n \frac{(X_i-\mu)^2}{2}\right\}$$

 \Rightarrow The log-likelihood is $\ell_n(\mu) \propto -\sum_{i=1}^n (X_i - \mu)^2$

• The MLE $\hat{\mu}_n$ is the solution to the equation

$$\frac{\partial \ell_n(\mu)}{\partial \mu}\Big|_{\mu=\hat{\mu}_n} = 2\sum_{i=1}^n (X_i - \hat{\mu}_n) = 0$$

The solution is, once more, the sample mean estimator

$$\hat{\mu}_n^{ML} = \frac{1}{n} \sum_{i=1}^n X_i$$

- MLEs have desirable properties under loose conditions on $f(x; \theta)$
- P1) Consistency: $\hat{\theta}_n \xrightarrow{p} \theta$ as the sample size *n* increases
- P2) Equivariance: If $\hat{\theta}_n$ is the MLE of θ , then $g(\hat{\theta}_n)$ is the MLE of $g(\theta)$
- P3) Asymptotic Normality: For large *n*, one has $\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{se}^2)$
- P4) Efficiency: For large n, $\hat{\theta}_n$ attains the Cramér-Rao lower bound
 - Efficiency means no other unbiased estimator has smaller variance
 - Ex: Can use the MLE to create a confidence interval for μ , i.e.,

$$C_n = \left(\hat{\mu}_n^{ML} - z_{\alpha/2}\hat{se}, \hat{\mu}_n^{ML} + z_{\alpha/2}\hat{se}\right)$$

⇒ By asymptotic Normality, P ($\mu \in C_n$) ≈ 1 − α for large n⇒ For the $\mathcal{N}(\mu, 1)$ model, $\hat{\mu}_n^{ML} \pm \frac{z_{\alpha/2}}{\sqrt{n}}$ has exact coverage

 \blacktriangleright Consider the following hypothesis test regarding the mean μ

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$

Let μ̂_n be the sample mean, with estimated standard error ŝe
 Def: Given α ∈ (0, 1), the Wald test rejects H₀ when

$$T(X_1,\ldots,X_n):=\left|\frac{\hat{\mu}_n-\mu_0}{\hat{se}}\right|>z_{\alpha/2}$$

If H₀ is true, μ̂_n-μ₀/se ~ N(0,1) by the Central Limit Theorem
 ⇒ Probability of incorrectly rejecting H₀ is no more than α
 The value of α is called the significance level of the test

The *p*-value

- ► Reporting "reject H₀" or "retain H₀" is not too informative ⇒ Could ask, for each α, whether the test rejects at that level
- ▶ Let $T_{obs} := T(\mathbf{x})$ be the test statistic value for the observed sample

► The probability $p := P_{H_0}(|T(\mathbf{X})| \ge T_{obs})$ is called the *p*-value ⇒ Smallest level at which we would reject H_0

▶ A small *p*-value (< 0.05) indicates reduced evidence supporting H_0

• Methods discussed so far are termed frequentist, where:

- F1: Probability refers to limiting relative frequencies
- F2: Parameters are fixed, unknown constants
- F3: Statistical procedures offer guarantees on long-run performance

► Alternatively, Bayesian inference is based on these postulates:

- B1: Probability describes degree of belief, not limiting frequency
- B2: We can make probability statements about parameters
- B3: A probability distribution for θ is produced to make inferences
- Controversial? Inherently embraces a subjective notion of probability
 - Bayesian methods do not offer long-run performance guarantees
 - Very useful to combine prior beliefs with data in a principled way

- Bayesian inference is usually carried out in the following way
 - Step 1: Choose a probability density $f(\theta)$ called the prior distribution
 - The prior expresses our beliefs about θ , before seeing any data
 - **Step 2**: Choose a statistical model $f(x \mid \theta)$ (compare with $f(x; \theta)$)
 - Reflects our beliefs about the data-generating process, i.e., X given θ

Step 3: Given data $\mathbf{X} = [X_1, \dots, X_n]^T$, we update our beliefs and calculate the posterior distribution $f(\theta|\mathbf{X})$ using Bayes' rule

$$f(\theta|\mathbf{X}) \propto \prod_{i=1}^{n} f(X_i \mid \theta) f(\theta) = \mathcal{L}_n(\theta) f(\theta)$$

 \Rightarrow Point estimates, confidence intervals obtained from $f(\theta|\mathbf{X})$

Ex: A maximum a posteriori (MAP) estimator $\hat{\theta}_n = \arg \max_{\theta} f(\theta | \mathbf{X})$

- Consider $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Suppose σ^2 is known \Rightarrow To estimate θ we adopt the prior $\theta \sim \mathcal{N}(a, b^2)$
- Using Bayes' rule, can show the posterior is also Gaussian where

$$\hat{\theta}_n^{MAP} = \mathbb{E}\left[\theta \mid \mathbf{X}\right] = \frac{w}{n} \sum_{i=1}^n X_i + (1-w)a, \text{ with } w = \frac{\operatorname{se}^{-2}}{\operatorname{se}^{-2} + b^{-2}}$$

⇒ Weighted average of the sample mean $\hat{\theta}_n^{ML}$ and the prior mean a⇒ Here, se = σ/\sqrt{n} is the standard error for the sample mean

Asymptotics: Note that w → 1 as the sample size n → ∞
 ⇒ For large n the posterior is approximately N(Â^{ML}_n, se²)
 ⇒ Same holds if n is fixed but b → ∞, i.e., prior is uninformative

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference

Linear regression

- Suppose observations are from (Y₁, X₁),..., (Y_n, X_n) ~ F_{YX} ⇒ Goal is to learn the relationship between the RVs Y and X
- ► A workhorse approach is to model the regression function

$$r(x) = \mathbb{E}\left[Y \mid X = x\right] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$$

• The simple linear regression model specifies that given $X_i = x_i$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n$$

The y_i's are modeled as noisy samples of the line r(x) = β₀ + β₁x
 Errors ε_i are i.i.d., with E [ε_i|X_i = x_i] = 0 and var [ε_i|X_i = x_i] = σ²

▶ With the linear model, regression amounts to parametric inference

$$\hat{r}(x) \Leftrightarrow [\hat{\beta}_0, \hat{\beta}_1]^T$$

- ▶ More generally, suppose we observe data (y₁, x₁),..., (y_n, x_n)
 ⇒ Each input x_i = [x_{i1},..., x_{ip}]^T is a p × 1 feature vector
- The multiple linear regression model specifies

$$y_i = \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i + \epsilon_i, \quad i = 1, \dots, n$$

• Typically $x_{i1} = 1$ for all *i*, providing an intercept term

For Errors ϵ_i are i.i.d., with $\mathbb{E}[\epsilon_i | \mathbf{X}_i = \mathbf{x}_i] = 0$ and $\operatorname{var}[\epsilon_i | \mathbf{X}_i = \mathbf{x}_i] = \sigma^2$

• Can be compactly represented as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, defining

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}, \ \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \ \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

• A sound estimate $\hat{\beta}$ minimizes the residual sum of squares (RSS)

$$\mathsf{RSS}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^T \mathbf{x}_i)^2 = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

 \Rightarrow Residuals are the distances from y_i to hyperplane $r(\mathbf{x}) = \beta^T \mathbf{x}$

Def: The least-squares estimator (LSE) $\hat{\beta}_n$ is the solution to

$$\hat{\boldsymbol{\beta}}_n = \arg\min_{\boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta})$$

► Carrying out the optimization yields the LSE $\hat{\boldsymbol{\beta}}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ ⇒ Only defined if $\mathbf{X}^T \mathbf{X}$ invertible $\Leftrightarrow \mathbf{X}$ has full column rank p

▶ In least squares we seek the vector $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} \in \mathsf{span}(\mathbf{X})$ closest to \mathbf{y}

Solution: Orthogonal projection of **y** onto span(**X**), i.e., (let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$)

$$\hat{\mathbf{y}} = P_{\mathbf{X}}(\mathbf{y}) = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$

The residual y − ŷ lies in the orthogonal complement (span(X))[⊥] ⇒ This way RSS(β̂) = ||y − ŷ||² is minimum

► LSE $\hat{\boldsymbol{\beta}}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is a linear combination of the random \mathbf{y}

P1) Unbiasedness:
$$\mathbb{E}\left[\hat{\boldsymbol{\beta}}_{n} \,|\, \mathbf{X}\right] = \boldsymbol{\beta}$$
 with var $\left[\hat{\boldsymbol{\beta}}_{n} \,|\, \mathbf{X}\right] = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1}$

P2) Consistency: $\hat{\boldsymbol{\beta}}_n \stackrel{p}{\to} \boldsymbol{\beta}$ as the sample size *n* increases

- P3) Asymptotic Normality: For large *n*, one has $\hat{\beta}_n \sim \mathcal{N}(\beta, \sigma^2(\mathbf{X}^T \mathbf{X})^{-1})$
- P4) If errors $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, then $\hat{\boldsymbol{\beta}}_n \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1})$ exactly; and Efficiency: No other unbiased estimator of $\boldsymbol{\beta}$ has smaller variance

Ex: Can use the LSE to create confidence intervals for each β_j , i.e.,

$$C_n = \left(\hat{\beta}_j - z_{\alpha/2}\hat{\mathbf{se}}(\hat{\beta}_j), \hat{\beta}_j + z_{\alpha/2}\hat{\mathbf{se}}(\hat{\beta}_j)\right)$$

⇒ By asymptotic (or exact) Normality, P ($\beta_j \in C_n$) ≈ 1 − α ⇒ Note that $\hat{se}(\hat{\beta}_j) = \hat{\sigma} \sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}$, where $\hat{\sigma}^2 = \frac{RSS(\hat{\beta})}{n-p}$ Ex: Consider the hypothesis test regarding the parameter β_i

$$H_0: eta_j = eta_j^{(0)}$$
 versus $H_1: eta_j
eq eta_j^{(0)}$

▶ By asymptotic (or exact) Normality of the LSE, an α -level test is

Reject
$$H_0$$
 if $T_j := \left| \frac{\hat{\beta}_j - \beta_j^{(0)}}{\hat{se}(\hat{\beta}_j)} \right| > z_{\alpha/2}$

Ex: Can predict an unobserved value $Y_* = y_*$ from a given \mathbf{x}_* via

$$y_* = \mathbf{x}_*^T \hat{\boldsymbol{\beta}}$$

May define a notion of standard error for y_{*}, and predictive intervals
 ⇒ Should account for the variability in estimating β and in ε_{*}

The LSE as a MLE

- Suppose that conditioned on $\mathbf{X}_i = \mathbf{x}_i$, the errors ϵ_i are i.i.d. Normal \Rightarrow The conditional PDF is $f(\epsilon_i | \mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{\epsilon_i^2}{2\sigma^2}\right\}$
- Assume σ^2 is known. The (conditional) likelihood function is

$$\mathcal{L}_n(\boldsymbol{\beta}) = \prod_{i=1}^n f(y_i \,|\, \mathbf{x}_i; \boldsymbol{\beta}) \propto \exp\Big\{-\sum_{i=1}^n \frac{(y_i - \boldsymbol{\beta}^T \mathbf{x}_i)^2}{2\sigma^2}\Big\}$$

 \Rightarrow The log-likelihood is $\ell_n(oldsymbol{eta}) \propto -\mathsf{RSS}(oldsymbol{eta})$

• The MLE $\hat{\beta}_n^{ML}$ maximizes the log-likelihood function, thus

$$\hat{eta}_n^{ML} = rg\max_{eta} \ell_n(eta) = rg\min_{eta} \mathsf{RSS}(eta) = \hat{eta}_n^{LS}$$

► Take-home: Under a linear-Gaussian model the LSE is also a MLE

- Consider again Gaussian errors, i.e., $f(\epsilon_i | \mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{\epsilon_i^2}{2\sigma^2} \right\}$ \Rightarrow Gaussian prior to model the parameters: $\beta \sim \mathcal{N}(\mathbf{0}, \tau^2 \mathbf{I})$
 - \Rightarrow Variances σ^2 and τ^2 assumed known. Define $\lambda := (\frac{\sigma}{\tau})^2$

▶ Bayesian approach: posterior $F_{\beta|\mathbf{Y},\mathbf{X}}$ is Gaussian, with log-density

$$\log f(\boldsymbol{\beta} \mid \mathbf{Y}, \mathbf{X}) \propto -\sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^T \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{p} \beta_j^2$$

• MAP estimator $\hat{\boldsymbol{\beta}}_n^{MAP} := \arg \max_{\boldsymbol{\beta}} f(\boldsymbol{\beta} \mid \mathbf{Y}, \mathbf{X})$ is thus the solution to

$$\hat{\boldsymbol{\beta}}_{n}^{MAP} = \arg\min_{\boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_{2}^{2}$$

• Carrying out the optimization yields $\hat{\boldsymbol{\beta}}_{n}^{MAP} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{T}\mathbf{y}$ \Rightarrow Recover the LSE as $\lambda \rightarrow 0 \Leftrightarrow$ Uninformative prior when $\tau^{2} \rightarrow \infty$

Ridge regression

▶ Non-Bayesian, ℓ_2 -norm penalized LSE also known as ridge regression

$$\hat{oldsymbol{eta}}^{\mathsf{ridge}} = rg\min_{oldsymbol{eta}} \mathsf{RSS}(oldsymbol{eta}) + \lambda \|oldsymbol{eta}\|_2^2$$

• For $\lambda > 0$, the ridge estimator $\hat{\boldsymbol{\beta}}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

- Differs from the LSE $\hat{\boldsymbol{\beta}}^{LS} := \arg \min_{\boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta})$
- Is biased, and bias($\hat{\boldsymbol{\beta}}^{ridge}$) increases with λ
- Is well defined even when X is not of full rank

• In exchange for bias, potential to reduce variance below var $\left[\hat{\boldsymbol{\beta}}^{LS}\right]$

• Ex: Large var $\left[\hat{\boldsymbol{\beta}}^{LS}\right]$ when **X** nearly rank-deficient, unstable $(\mathbf{X}^T\mathbf{X})^{-1}$

From bias-variance MSE decomposition, fruitful tradeoff may yield

$$\mathsf{MSE}(\hat{\boldsymbol{eta}}^{\mathsf{ridge}}) < \mathsf{MSE}(\hat{\boldsymbol{eta}}^{\mathsf{LS}})$$

 \Rightarrow Tradeoff depends on λ , chosen subjectively or via cross validation

Complexity-penalized LSE

Ridge an instance from the general class of complexity-penalized LSE

$$\hat{\boldsymbol{\beta}}^{J} = \arg\min_{\boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta}) + \lambda J(\boldsymbol{\beta})$$

- Function $J(\cdot)$ penalizes (i.e., constrains) the parameters in β
- Constrained parameter space Θ effects 'less complex' models
- Tuning λ balances goodness-of-fit and model complexity

▶ Ex: ℓ_1 -norm penalized LSE for sparsity, i.e., variable selection

- Statistical inference
- Outcome or response
- Predictor, feature or regressor
- (Non) parametric model
- Nuisance parameter
- Regression function
- Prediction
- Classification
- Point and set estimation
- Estimator and estimate
- Standard error

- Consistent estimator
- Confidence interval
- Hypothesis test
- Null hypothesis
- Test statistic and critical value
- Method of moments estimator
- Maximum likelihood estimator
- Likelihood function
- ► Significance level and *p* − *value*
- Prior and posterior distribution
- Multiple linear regression
- Least-squares estimator