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Probability and inference

 
Data-generating process 

 

 
Observed data 

 

Probability theory 

Inference and data mining 

▶ Probability theory is a formalism to work with uncertainty
▶ Given a data-generating process, what are properties of outcomes?

▶ Statistical inference deals with the inverse problem
▶ Given outcomes, what can we say on the data-generating process?

Network Science Analytics Statistical Inference Review 3



Statistical inference

▶ Statistical inference refers to the process whereby

⇒ Given observations x = [x1, . . . , xn]
T from X1, . . . ,Xn ∼ F

⇒ We aim to extract information about the distribution F

▶ Ex: Infer a feature of F such as its mean

▶ Ex: Infer the CDF F itself, or the PDF f = F ′

▶ Often observations are of the form (yi , xi ), i = 1, . . . , n

⇒ Y is the response or outcome. X is the predictor or feature

▶ Q: Relationship between the random variables (RVs) Y and X?

▶ Ex: Learn E
[
Y
∣∣X = x

]
as a function of x

▶ Ex: Foretelling a yet-to-be observed value y∗ from the input X∗ = x∗
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Models

▶ A statistical model specifies a set F of CDFs to which F may belong

▶ A common parametric model is of the form F = {f (x ; θ) : θ ∈ Θ}
▶ Parameter(s) θ are unknown, take values in parameter space Θ
▶ Space Θ has dim(Θ) < ∞, not growing with the sample size n

▶ Ex: Data come from a Gaussian distribution

FN =

{
f (x ;µ, σ) =

1√
2πσ2

e−
(x−µ)2

2σ2 , µ ∈ R, σ > 0

}
⇒ A two-parameter model: θ = [µ, σ]T and Θ = R× R+

▶ A nonparametric model has dim(Θ) = ∞, or dim(Θ) grows with n

▶ Ex: FAll = {All CDFs F}
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Models and inference tasks

▶ Given independent data x = [x1, . . . , xn]
T from X1, . . . ,Xn ∼ F

⇒ Statistical inference often conducted in the context of a model

Ex: One-dimensional parametric estimation
▶ Suppose observations are Bernoulli distributed with parameter p
▶ The task is to estimate the parameter p (i.e., the mean)

Ex: Two-dimensional parametric estimation
▶ Suppose the PDF f ∈ FN , i.e., data are Gaussian distributed
▶ The problem is to estimate the parameters µ and σ
▶ May only care about µ, and treat σ as a nuisance parameter

Ex: Nonparametric estimation of the CDF
▶ The goal is to estimate F assuming only F ∈ FAll = {All CDFs F}
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Regression models

▶ Suppose observations are from (Y1,X1), . . . , (Yn,Xn) ∼ FYX

⇒ Goal is to learn the relationship between the RVs Y and X

▶ A typical approach is to model the regression function

r(x) := E
[
Y
∣∣X = x

]
=

∫ ∞

−∞
yfY |X (y |x)dy

⇒ Equivalent to the regression model Y = r(X ) + ϵ, E
[
ϵ
∣∣X ] = 0

▶ Ex: Parametric linear regression model

r ∈ FLin = {r : r(x) = β0 + β1x}

▶ Ex: Nonparametric regression model, assuming only smoothness

r ∈ FSob =

{
r :

∫ ∞

−∞
(r ′′(x))2dx < ∞

}
Network Science Analytics Statistical Inference Review 7



Regression, prediction and classification

▶ Given data (y1, x1), . . . , (yn, xn) from (Y1,X1), . . . , (Yn,Xn) ∼ FYX

▶ Ex: xi is the blood pressure of subject i , yi how long she lived

▶ Model the relationship between Y and X via r(x) = E
[
Y
∣∣X = x

]
⇒ Q: What are classical inference tasks in this context?

Ex: Regression or curve fitting
▶ The problem is to estimate the regression function r ∈ F

Ex: Prediction
▶ The goal is to predict Y∗ for a new patient based on their X∗ = x∗
▶ If a regression estimate r̂ is available, can do y∗ := r̂(x∗)

Ex: Classification
▶ Suppose RVs Yi are discrete, e.g. live or die encoded as ±1
▶ The prediction problem above is termed classification
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Fundamental concepts in inference

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
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Point estimators

▶ Point estimation refers to making a single “best guess” about F

▶ Ex: Estimate the parameter β in a linear regression model

FLin =
{
r : r(x) = βTx

}
▶ Def: Given data x = [x1, . . . , xn]

T from X1, . . . ,Xn ∼ F , a point
estimator θ̂ of a parameter θ is some function

θ̂ = g(X1, . . . ,Xn)

⇒ The estimator θ̂ is computed from the data, hence it is a RV

⇒ The distribution of θ̂ is called sampling distribution

▶ The estimate is the specific value for the given data sample x

⇒ May write θ̂n to make explicit reference to the sample size
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Bias, standard error and mean squared error

▶ Def: The bias of an estimator θ̂ is given by bias(θ̂) := E
[
θ̂
]
− θ

▶ Def: The standard error is the standard deviation of θ̂

se = se(θ̂) :=

√
var
[
θ̂
]

⇒ Often, se depends on the unknown F . Can form an estimate ŝe

▶ Def: The mean squared error (MSE) is a measure of quality of θ̂

MSE = E
[
(θ̂ − θ)2

]
▶ Expected values are with respect to the data distribution

f (x1, . . . , xn; θ) =
n∏

i=1

f (xi ; θ)
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The bias-variance decomposition of the MSE

Theorem
The MSE = E

[
(θ̂ − θ)2

]
can be written as

MSE = bias2(θ̂) + var
[
θ̂
]

Proof.

▶ Let θ̄ = E
[
θ̂
]
. Then

E
[
(θ̂ − θ)2

]
= E

[
(θ̂ − θ̄ + θ̄ − θ)2

]
= E

[
(θ̂ − θ̄)2

]
+ 2(θ̄ − θ)E

[
θ̂ − θ̄

]
+ (θ̄ − θ)2

= var
[
θ̂
]
+ bias2(θ̂)

▶ The last equality follows since E
[
θ̂ − θ̄

]
= E

[
θ̂
]
− θ̄ = 0
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Desirable properties of point estimators

▶ Q: Desiderata for an estimator θ̂ of the parameter θ?

▶ Def: An estimator is unbiased if bias(θ̂) = 0, i.e., if E
[
θ̂
]
= θ

⇒ An unbiased estimator is “on target” on average

▶ Def: An estimator is consistent if θ̂n
p→ θ, i.e. for any ϵ > 0

lim
n→∞

P
(
|θ̂n − θ| < ϵ

)
= 1

⇒ A consistent estimator converges to θ as we collect more data

▶ Def: An unbiased estimator is asymptotically Normal if

lim
n→∞

P

(
θ̂n − θ

se
≤ x

)
=

1√
2π

∫ x

−∞
e−u2/2du

⇒ Equivalently, for large enough sample size then θ̂n ∼ N (θ, se2)
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Coin tossing example

Ex: Consider tossing the same coin n times and record the outcomes

▶ Model observations as X1, . . . ,Xn ∼ Ber(p). Estimate of p?

▶ A natural choice is the sample mean estimator

p̂ =
1

n

n∑
i=1

Xi

▶ Recall that for X ∼ Ber(p), then E [X ] = p and var [X ] = p(1− p)

▶ The estimator p̂ is unbiased since

E [p̂] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi ] = p

⇒ Also used that the expected value is a linear operator
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Coin tossing example (continued)

▶ The standard error is

se =

√√√√var

[
1

n

n∑
i=1

Xi

]
=

√√√√ 1

n2

n∑
i=1

var [Xi ] =

√
p(1− p)

n

⇒ Unknown p. Estimated standard error is ŝe =
√

p̂(1−p̂)
n

▶ Since p̂n is unbiased, then MSE = E
[
(p̂n − p)2

]
= p(1−p)

n → 0

▶ Thus p̂ converges in the mean square sense, hence also p̂n
p→ p

▶ Establishes p̂ is a consistent estimator of the parameter p

▶ Also, p̂ is asymptotically Normal by the Central Limit Theorem
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Confidence intervals

▶ Set estimates specify regions of Θ where θ is likely to lie on

▶ Def: Given i.i.d. data X1, . . . ,Xn ∼ F , a 1− α confidence interval
of a parameter θ is an interval Cn = (a, b), where a = a(X1, . . . ,Xn)
and b = b(X1, . . . ,Xn) are functions of the data such that

P (θ ∈ Cn) ≥ 1− α, for all θ ∈ Θ

⇒ In words, Cn = (a, b) traps θ with probability 1− α

⇒ The interval Cn is computed from the data, hence it is random

▶ We call 1− α the coverage of the confidence interval

▶ Ex: It is common to report 95% confidence intervals, i.e., α = 0.05
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Aside on the standard Normal distribution

▶ Let X be a standard Normal RV, i.e., X ∼ N (0, 1) with CDF Φ(x)

Φ(x) = P (X ≤ x) =
1√
2π

∫ x

−∞
e−

u2

2 du

zα/2−zα/2

α/2α/2 1− α

▶ Define zα/2 = Φ−1(1− (α/2)), i.e., the value such that

P
(
X > zα/2

)
= α/2 and P

(
−zα/2 < X < zα/2

)
= 1− α
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Normal-based confidence intervals

▶ Nice point estimators θ̂n are Normal as n → ∞, i.e., θ̂n ∼ N (θ, ŝe2)

⇒ Useful property in constructing confidence intervals for θ

Theorem
Suppose that θ̂n ∼ N (θ, ŝe2) as n → ∞. Let Φ be the CDF of a standard
Normal and define zα/2 = Φ−1(1− (α/2)). Consider the interval

Cn = (θ̂n − zα/2ŝe, θ̂n + zα/2ŝe).

Then P (θ ∈ Cn) → 1− α, as n → ∞
▶ These intervals only have approximately (large n) correct coverage
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Proof

Proof.

▶ Consider the normalized (centered and scaled) RV

Xn =
θ̂n − θ

ŝe

▶ By assumption Xn → X ∼ N (0, 1) as n → ∞. Hence,

P (θ ∈ Cn) = P
(
θ̂n − zα/2ŝe < θ < θ̂n + zα/2ŝe

)
= P

(
−zα/2 <

θ̂n − θ

ŝe
< zα/2

)
→ P

(
−zα/2 < X < zα/2

)
= 1− α

▶ The last equality follows by definition of zα/2
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Coin tossing example (encore)

Ex: Given observations X1, . . . ,Xn ∼ Ber(p). Estimate of p?

▶ We studied properties of the sample mean estimator

p̂ =
1

n

n∑
i=1

Xi

▶ By the Central Limit Theorem, it follows that

p̂ ∼ N
(
p,

p̂(1− p̂)

n

)
as n → ∞

▶ Therefore, an approximate 1− α confidence interval for p is

Cn =

(
p̂ − zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

)
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Hypothesis testing

▶ In hypothesis testing we start with some default theory
▶ Ex: The data come from a zero-mean Gaussian distribution

▶ Q: Do the data provide sufficient evidence to reject the theory?

▶ The hypothesized theory is called null hypothesis, written as H0

⇒ Specify also an alternative hypothesis to the null, H1

▶ Formally, given i.i.d. data x = [x1, . . . , xn]
T from X1, . . . ,Xn ∼ F

(i) Form a test statistic T (x), i.e., a function of the data
(ii) Define a rejection region R of the form

R = {x : T (x) > c}

▶ If data x ∈ R we reject H0, otherwise we retain (do not reject) H0

▶ The problem is to select the test statistic T and the critical value c
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Testing if a coin is fair

Ex: Consider tossing the same coin n times and record the outcomes

▶ Model observations as X1, . . . ,Xn ∼ Ber(p). Is the coin fair?

▶ Let H0 be the hypothesis that the coin is fair, and H1 the alternative

⇒ Can write the hypotheses as

H0 : p = 1/2 versus H1 : p ̸= 1/2

▶ Consider the test statistic given by

T (X1, . . . ,Xn) =

∣∣∣∣p̂n − 1

2

∣∣∣∣ =
∣∣∣∣∣1n

n∑
i=1

Xi −
1

2

∣∣∣∣∣
▶ It seems reasonable to reject H0 if (X1, . . . ,Xn) ∈ R, where

R = {(X1, . . . ,Xn) : T (X1, . . . ,Xn) > c}

▶ Will soon see this is a Wald’s test, hence c = zα/2ŝe. More later
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Tutorial on inference about a mean

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
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Inference about a mean

▶ Consider a sample of n i.i.d. observations X1, . . . ,Xn ∼ F

▶ Q: How can we perform inference about the mean µ = E [X1]?

⇒ Practical and canonical problem in statistical inference

▶ A natural estimator of µ is the sample mean estimator

µ̂n =
1

n

n∑
i=1

Xi

⇒ Well motivated since by the strong law of large numbers

lim
n→∞

µ̂n = µ almost surely

▶ It is a simple example of a method of moments estimator (MME). . .

▶ . . . and also a maximum likelihood estimator (MLE)

Network Science Analytics Statistical Inference Review 24



Moments and sample moments

▶ In parametric inference we wish to estimate θ ∈ Θ ⊆ Rp in

F = {f (x ;θ) : θ ∈ Θ}

▶ For 1 ≤ j ≤ p, define the j-th moment of X ∼ F as

αj ≡ αj(θ) = E
[
X j
]
=

∫ ∞

−∞
x j f (x ;θ)dx

▶ Likewise, the j-th sample moment is an estimate of αj , namely

α̂j =
1

n

n∑
i=1

X j
i

⇒ The j-th moment αj(θ) depends on the unknown θ

⇒ But α̂j does not, a function of the data only
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Method of moments estimator

▶ A first method for parametric estimation is the method of moments

⇒ MMEs are not optimal, yet typically easy to compute

▶ Def: The method of moments estimator (MME) θ̂n is the solution to

α1(θ̂n) = α̂1

α2(θ̂n) = α̂2

...
...

...

αp(θ̂n) = α̂p

⇒ This is a system of p (nonlinear) equations with p unknowns

▶ Ex: Back to estimating a mean µ, p = 1 and µ = θ = α1(θ) so

µ̂MM
n = α̂1 =

1

n

n∑
i=1

Xi
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Example: Gaussian data model

Ex: Suppose now X1, . . . ,Xn ∼ N (µ, σ2), i.e., the model is F ∈ FN

▶ Q: What is the MME of the parameter vector θ = [µ, σ2]T ?

▶ The first p = 2 moments are given by

α1(θ) = E [X1] = µ, α2(θ) = E
[
X 2
1

]
= σ2 + µ2

▶ The MME θ̂n is the solution to the following system of equations

µ̂n =
1

n

n∑
i=1

Xi

σ̂2
n + µ̂2

n =
1

n

n∑
i=1

X 2
i

▶ The solution is

µ̂n =
1

n

n∑
i=1

Xi , σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)
2
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Maximum likelihood estimator

▶ Often “the” method for parametric estimation is maximum likelihood

▶ Consider i.i.d. data X1, . . . ,Xn from a PDF f (x ; θ)

▶ The likelihood function Ln(θ) : Θ → R+ is defined by

Ln(θ) :=
n∏

i=1

f (Xi ; θ)

⇒ Ln(θ) is the joint PDF of the data, treated as a function of θ

⇒ The log-likelihood function is ℓn(θ) := logLn(θ)

▶ Def: The maximum likelihood estimator (MLE) θ̂n is given by

θ̂n = argmax
θ

Ln(θ)

▶ Very useful: The maximizer of Ln(θ) coincides with that of ℓn(θ)
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Example: Bernoulli data model

▶ Suppose X1, . . . ,Xn ∼ Ber(p). MLE of µ = p?

⇒ The data PMF is f (x ; p) = px(1− p)1−x , x ∈ {0, 1}
▶ The likelihood function is (define Sn =

∑n
i=1 Xi )

Ln(p) =
n∏

i=1

f (Xi ; p) =
n∏

i=1

pXi (1− p)1−Xi = pSn(1− p)n−Sn

⇒ The log-likelihood is ℓn(p) = Sn log(p) + (n − Sn) log(1− p)

▶ The MLE p̂n is the solution to the equation

∂ℓn(p)

∂p

∣∣∣∣
p=p̂n

=
Sn
p̂n

− n − Sn
1− p̂n

= 0

▶ The solution is

µ̂ML
n = p̂n =

Sn
n

=
1

n

n∑
i=1

Xi
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Example: Gaussian data model

▶ Suppose X1, . . . ,Xn ∼ N (µ, 1). MLE of µ?

⇒ The data PDF is f (x ;µ) = 1√
2π

exp
{
− (x−µ)2

2

}
, x ∈ R

▶ The likelihood function is (up to constants independent of µ)

Ln(µ) =
n∏

i=1

f (Xi ;µ) ∝ exp
{
−

n∑
i=1

(Xi − µ)2

2

}
⇒ The log-likelihood is ℓn(µ) ∝ −∑n

i=1(Xi − µ)2

▶ The MLE µ̂n is the solution to the equation

∂ℓn(µ)

∂µ

∣∣∣∣
µ=µ̂n

= 2
n∑

i=1

(Xi − µ̂n) = 0

▶ The solution is, once more, the sample mean estimator

µ̂ML
n =

1

n

n∑
i=1

Xi
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Properties of the MLE

▶ MLEs have desirable properties under loose conditions on f (x ; θ)

P1) Consistency: θ̂n
p→ θ as the sample size n increases

P2) Equivariance: If θ̂n is the MLE of θ, then g(θ̂n) is the MLE of g(θ)

P3) Asymptotic Normality: For large n, one has θ̂n ∼ N (θ, ŝe2)

P4) Efficiency: For large n, θ̂n attains the Cramér-Rao lower bound

▶ Efficiency means no other unbiased estimator has smaller variance

▶ Ex: Can use the MLE to create a confidence interval for µ, i.e.,

Cn =
(
µ̂ML
n − zα/2ŝe, µ̂

ML
n + zα/2ŝe

)
⇒ By asymptotic Normality, P (µ ∈ Cn) ≈ 1− α for large n

⇒ For the N (µ, 1) model, µ̂ML
n ± zα/2√

n
has exact coverage
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The Wald test

▶ Consider the following hypothesis test regarding the mean µ

H0 : µ = µ0 versus H1 : µ ̸= µ0

▶ Let µ̂n be the sample mean, with estimated standard error ŝe

▶ Def: Given α ∈ (0, 1), the Wald test rejects H0 when

T (X1, . . . ,Xn) :=

∣∣∣∣ µ̂n − µ0

ŝe

∣∣∣∣ > zα/2

▶ If H0 is true, µ̂n−µ0

ŝe ∼ N (0, 1) by the Central Limit Theorem

⇒ Probability of incorrectly rejecting H0 is no more than α

▶ The value of α is called the significance level of the test
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The p-value

▶ Reporting “reject H0” or “retain H0” is not too informative

⇒ Could ask, for each α, whether the test rejects at that level

▶ Let Tobs := T (x) be the test statistic value for the observed sample

p/2p/2

Tobs−Tobs

▶ The probability p := PH0(|T (X)| ≥ Tobs) is called the p-value

⇒ Smallest level at which we would reject H0

▶ A small p-value (< 0.05) indicates reduced evidence supporting H0
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Bayesian inference

▶ Methods discussed so far are termed frequentist, where:

F1: Probability refers to limiting relative frequencies
F2: Parameters are fixed, unknown constants
F3: Statistical procedures offer guarantees on long-run performance

▶ Alternatively, Bayesian inference is based on these postulates:

B1: Probability describes degree of belief, not limiting frequency
B2: We can make probability statements about parameters
B3: A probability distribution for θ is produced to make inferences

▶ Controversial? Inherently embraces a subjective notion of probability
▶ Bayesian methods do not offer long-run performance guarantees
▶ Very useful to combine prior beliefs with data in a principled way
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The Bayesian method

▶ Bayesian inference is usually carried out in the following way

Step 1: Choose a probability density f (θ) called the prior distribution
▶ The prior expresses our beliefs about θ, before seeing any data

Step 2: Choose a statistical model f (x
∣∣ θ) (compare with f (x ; θ))

▶ Reflects our beliefs about the data-generating process, i.e., X given θ

Step 3: Given data X = [X1, . . . ,Xn]
T , we update our beliefs and

calculate the posterior distribution f (θ|X) using Bayes’ rule

f (θ|X) ∝
n∏

i=1

f (Xi

∣∣ θ)f (θ) = Ln(θ)f (θ)

⇒ Point estimates, confidence intervals obtained from f (θ|X)
▶ Ex: A maximum a posteriori (MAP) estimator θ̂n = argmaxθ f (θ|X)
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Example: Gaussian data model and prior

▶ Consider X1, . . . ,Xn ∼ N (µ, σ2). Suppose σ2 is known

⇒ To estimate θ we adopt the prior θ ∼ N (a, b2)

▶ Using Bayes’ rule, can show the posterior is also Gaussian where

θ̂MAP
n = E

[
θ
∣∣X] = w

n

n∑
i=1

Xi + (1− w)a, with w =
se−2

se−2 + b−2

⇒ Weighted average of the sample mean θ̂ML
n and the prior mean a

⇒ Here, se = σ/
√
n is the standard error for the sample mean

▶ Asymptotics: Note that w → 1 as the sample size n → ∞
⇒ For large n the posterior is approximately N (θ̂ML

n , se2)

⇒ Same holds if n is fixed but b → ∞, i.e., prior is uninformative
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Tutorial on linear regression inference
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Tutorial on linear regression inference
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Linear regression

▶ Suppose observations are from (Y1,X1), . . . , (Yn,Xn) ∼ FYX

⇒ Goal is to learn the relationship between the RVs Y and X

▶ A workhorse approach is to model the regression function

r(x) = E
[
Y
∣∣X = x

]
=

∫ ∞

−∞
yfY |X (y |x)dy

▶ The simple linear regression model specifies that given Xi = xi

yi = β0 + β1xi + ϵi , i = 1, . . . , n

▶ The yi ’s are modeled as noisy samples of the line r(x) = β0 + β1x
▶ Errors ϵi are i.i.d., with E [ϵi |Xi = xi ] = 0 and var [ϵi |Xi = xi ] = σ2

▶ With the linear model, regression amounts to parametric inference

r̂(x) ⇔ [β̂0, β̂1]
T
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Multiple linear regression

▶ More generally, suppose we observe data (y1, x1), . . . , (yn, xn)

⇒ Each input xi = [xi1, . . . , xip]
T is a p × 1 feature vector

▶ The multiple linear regression model specifies

yi =

p∑
j=1

xijβj + ϵi = βTxi + ϵi , i = 1, . . . , n

▶ Typically xi1 = 1 for all i , providing an intercept term
▶ Errors ϵi are i.i.d., with E [ϵi |Xi = xi ] = 0 and var [ϵi |Xi = xi ] = σ2

▶ Can be compactly represented as y = Xβ + ϵ, defining

y =

 y1
...
yn

 , X =

 x11 . . . x1p
...

. . .
...

xn1 . . . xnp

 , β =

 β1

...
βp

 , ϵ =

 ϵ1
...
ϵn



Network Science Analytics Statistical Inference Review 39



Least-squares estimator

▶ A sound estimate β̂ minimizes the residual sum of squares (RSS)

RSS(β) =
n∑

i=1

(yi − βTxi )
2 = ∥y − Xβ∥2

⇒ Residuals are the distances from yi to hyperplane r(x) = βTx

▶ Def: The least-squares estimator (LSE) β̂n is the solution to

β̂n = argmin
β

RSS(β)

▶ Carrying out the optimization yields the LSE β̂n = (XTX)−1XTy

⇒ Only defined if XTX invertible ⇔ X has full column rank p
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Geometry of the LSE

▶ In least squares we seek the vector ŷ = Xβ̂ ∈ span(X) closest to y

span(X)

0

y y � ŷ

ŷ = X�̂

X�

▶ Solution: Orthogonal projection of y onto span(X), i.e., (let X = UΣVT )

ŷ = PX(y) = X(XTX)−1XTy = UUTy

▶ The residual y − ŷ lies in the orthogonal complement (span(X))⊥

⇒ This way RSS(β̂) = ∥y − ŷ∥2 is minimum
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Properties of the LSE

▶ LSE β̂n = (XTX)−1XTy is a linear combination of the random y

P1) Unbiasedness: E
[
β̂n

∣∣X] = β with var
[
β̂n

∣∣X] = σ2(XTX)−1

P2) Consistency: β̂n
p→ β as the sample size n increases

P3) Asymptotic Normality: For large n, one has β̂n ∼ N (β, σ2(XTX)−1)

P4) If errors ϵ ∼ N (0, σ2I), then β̂n ∼ N (β, σ2(XTX)−1) exactly; and

Efficiency: No other unbiased estimator of β has smaller variance

▶ Ex: Can use the LSE to create confidence intervals for each βj , i.e.,

Cn =
(
β̂j − zα/2ŝe(β̂j), β̂j + zα/2ŝe(β̂j)

)
⇒ By asymptotic (or exact) Normality, P (βj ∈ Cn) ≈ 1− α

⇒ Note that ŝe(β̂j) = σ̂
√

[(XTX)−1]jj , where σ̂2 = RSS(β̂)
n−p
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Hypothesis testing and prediction

Ex: Consider the hypothesis test regarding the parameter βj

H0 : βj = β
(0)
j versus H1 : βj ̸= β

(0)
j

▶ By asymptotic (or exact) Normality of the LSE, an α-level test is

Reject H0 if Tj :=

∣∣∣∣∣ β̂j − β
(0)
j

ŝe(β̂j)

∣∣∣∣∣ > zα/2

Ex: Can predict an unobserved value Y∗ = y∗ from a given x∗ via

y∗ = xT∗ β̂

▶ May define a notion of standard error for y∗, and predictive intervals

⇒ Should account for the variability in estimating β and in ϵ∗
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The LSE as a MLE

▶ Suppose that conditioned on Xi = xi , the errors ϵi are i.i.d. Normal

⇒ The conditional PDF is f (ϵi
∣∣ xi ) = 1√

2πσ2
exp

{
− ϵ2i

2σ2

}
▶ Assume σ2 is known. The (conditional) likelihood function is

Ln(β) =
n∏

i=1

f (yi
∣∣ xi ;β) ∝ exp

{
−

n∑
i=1

(yi − βTxi )2

2σ2

}
⇒ The log-likelihood is ℓn(β) ∝ −RSS(β)

▶ The MLE β̂
ML

n maximizes the log-likelihood function, thus

β̂
ML

n = argmax
β

ℓn(β) = argmin
β

RSS(β) = β̂
LS

n

▶ Take-home: Under a linear-Gaussian model the LSE is also a MLE
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MAP with Gaussian data model and prior

▶ Consider again Gaussian errors, i.e., f (ϵi
∣∣ xi ) = 1√

2πσ2
exp

{
− ϵ2i

2σ2

}
⇒ Gaussian prior to model the parameters: β ∼ N (0, τ 2I)

⇒ Variances σ2 and τ 2 assumed known. Define λ := (στ )
2

▶ Bayesian approach: posterior Fβ|Y,X is Gaussian, with log-density

log f (β
∣∣Y,X) ∝ −

n∑
i=1

(yi − βTxi )
2 − λ

p∑
j=1

β2
j

▶ MAP estimator β̂
MAP

n := argmaxβ f (β
∣∣Y,X) is thus the solution to

β̂
MAP

n = argmin
β

RSS(β) + λ∥β∥22

▶ Carrying out the optimization yields β̂
MAP

n = (XTX+ λI)−1XTy

⇒ Recover the LSE as λ → 0 ⇔ Uninformative prior when τ 2 → ∞
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Ridge regression

▶ Non-Bayesian, ℓ2-norm penalized LSE also known as ridge regression

β̂
ridge

= argmin
β

RSS(β) + λ∥β∥22

▶ For λ > 0, the ridge estimator β̂
ridge

= (XTX+ λI)−1XTy

▶ Differs from the LSE β̂
LS

:= argminβ RSS(β)

▶ Is biased, and bias(β̂
ridge

) increases with λ
▶ Is well defined even when X is not of full rank

▶ In exchange for bias, potential to reduce variance below var
[
β̂
LS
]

▶ Ex: Large var
[
β̂

LS
]
when X nearly rank-deficient, unstable (XTX)−1

▶ From bias-variance MSE decomposition, fruitful tradeoff may yield

MSE(β̂
ridge

) < MSE(β̂
LS
)

⇒ Tradeoff depends on λ, chosen subjectively or via cross validation
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Complexity-penalized LSE

▶ Ridge an instance from the general class of complexity-penalized LSE

β̂
J
= argmin

β
RSS(β) + λJ(β)

▶ Function J(·) penalizes (i.e., constrains) the parameters in β
▶ Constrained parameter space Θ effects ‘less complex’ models
▶ Tuning λ balances goodness-of-fit and model complexity

▶ Ex: ℓ1-norm penalized LSE for sparsity, i.e., variable selection
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Glossary

▶ Statistical inference

▶ Outcome or response

▶ Predictor, feature or regressor

▶ (Non) parametric model

▶ Nuisance parameter

▶ Regression function

▶ Prediction

▶ Classification

▶ Point and set estimation

▶ Estimator and estimate

▶ Standard error

▶ Consistent estimator

▶ Confidence interval

▶ Hypothesis test

▶ Null hypothesis

▶ Test statistic and critical value

▶ Method of moments estimator

▶ Maximum likelihood estimator

▶ Likelihood function

▶ Significance level and p − value

▶ Prior and posterior distribution

▶ Multiple linear regression

▶ Least-squares estimator
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