Statistical Inference Review

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.hajim.rochester.edu/ece/sites/gmateos/

January 29, 2024
Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Probability theory is a formalism to work with uncertainty
 ▶ Given a data-generating process, what are properties of outcomes?

Statistical inference deals with the inverse problem
 ▶ Given outcomes, what can we say on the data-generating process?
Statistical inference refers to the process whereby

Given observations $\mathbf{x} = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$

We aim to extract information about the distribution F

- Ex: Infer a feature of F such as its mean
- Ex: Infer the CDF F itself, or the PDF $f = F'$

Often observations are of the form $(y_i, x_i), i = 1, \ldots, n$

Y is the response or outcome. X is the predictor or feature

Q: Relationship between the random variables (RVs) Y and X?

- Ex: Learn $\mathbb{E}[Y \mid X = x]$ as a function of x
- Ex: Foretelling a yet-to-be observed value y_* from the input $X_* = x_*$
A statistical model specifies a set F of CDFs to which F may belong

- A common parametric model is of the form $F = \{ f(x; \theta) : \theta \in \Theta \}$
 - Parameter(s) θ are unknown, take values in parameter space Θ
 - Space Θ has $\text{dim}(\Theta) < \infty$, not growing with the sample size n

- Ex: Data come from a Gaussian distribution

$$\mathcal{F}_N = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \mu \in \mathbb{R}, \sigma > 0 \right\}$$

\Rightarrow A two-parameter model: $\theta = [\mu, \sigma]^T$ and $\Theta = \mathbb{R} \times \mathbb{R}_+$

- A nonparametric model has $\text{dim}(\Theta) = \infty$, or $\text{dim}(\Theta)$ grows with n

- Ex: $\mathcal{F}_{\text{All}} = \{ \text{All CDFs } F \}$
Models and inference tasks

▷ Given independent data \(\mathbf{x} = [x_1, \ldots, x_n]^T \) from \(X_1, \ldots, X_n \sim F \)

\[\Rightarrow \text{Statistical inference often conducted in the context of a model} \]

Ex: One-dimensional parametric estimation
▷ Suppose observations are Bernoulli distributed with parameter \(p \)
▷ The task is to estimate the parameter \(p \) (i.e., the mean)

Ex: Two-dimensional parametric estimation
▷ Suppose the PDF \(f \in \mathcal{F}_N \), i.e., data are Gaussian distributed
▷ The problem is to estimate the parameters \(\mu \) and \(\sigma \)
▷ May only care about \(\mu \), and treat \(\sigma \) as a nuisance parameter

Ex: Nonparametric estimation of the CDF
▷ The goal is to estimate \(F \) assuming only \(F \in \mathcal{F}_\text{All} = \{ \text{All CDFs } F \} \)
Regression models

- Suppose observations are from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)
 - Goal is to learn the relationship between the RVs \(Y\) and \(X\)

- A typical approach is to model the regression function

 \[
 r(x) := \mathbb{E}[Y \mid X = x] = \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) \, dy
 \]

 - Equivalent to the regression model \(Y = r(X) + \epsilon, \mathbb{E}[\epsilon \mid X] = 0\)

- Ex: Parametric linear regression model

 \[
 r \in F_{Lin} = \{ r : r(x) = \beta_0 + \beta_1 x \}
 \]

- Ex: Nonparametric regression model, assuming only smoothness

 \[
 r \in F_{Sob} = \left\{ r : \int_{-\infty}^{\infty} (r''(x))^2 \, dx < \infty \right\}
 \]
Regression, prediction and classification

- Given data \((y_1, x_1), \ldots, (y_n, x_n)\) from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)
 - Ex: \(x_i\) is the blood pressure of subject \(i\), \(y_i\) how long she lived

- Model the relationship between \(Y\) and \(X\) via \(r(x) = \mathbb{E}[Y \mid X = x]\)
 - \(\Rightarrow Q:\) What are classical inference tasks in this context?

Ex: Regression or curve fitting
 - The problem is to estimate the regression function \(r \in \mathcal{F}\)

Ex: Prediction
 - The goal is to predict \(Y_*\) for a new patient based on their \(X_* = x_*\)
 - If a regression estimate \(\hat{r}\) is available, can do \(y_* := \hat{r}(x_*)\)

Ex: Classification
 - Suppose RVs \(Y_i\) are discrete, e.g. live or die encoded as \(\pm 1\)
 - The prediction problem above is termed classification
Fundamental concepts in inference

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Point estimation refers to making a single “best guess” about F.

Ex: Estimate the parameter β in a linear regression model

$$F_{Lin} = \left\{ r : r(x) = \beta^T x \right\}$$

Def: Given data $x = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$, a point estimator $\hat{\theta}$ of a parameter θ is some function

$$\hat{\theta} = g(X_1, \ldots, X_n)$$

⇒ The estimator $\hat{\theta}$ is computed from the data, hence it is a RV
⇒ The distribution of $\hat{\theta}$ is called sampling distribution

The estimate is the specific value for the given data sample x
⇒ May write $\hat{\theta}_n$ to make explicit reference to the sample size
Bias, standard error and mean squared error

- **Def:** The bias of an estimator $\hat{\theta}$ is given by $\text{bias}(\hat{\theta}) := \mathbb{E} \left[\hat{\theta} \right] - \theta$

- **Def:** The standard error is the standard deviation of $\hat{\theta}$

 $$se = se(\hat{\theta}) := \sqrt{\text{var} \left[\hat{\theta} \right]}$$

 ⇒ Often, se depends on the unknown F. Can form an estimate \hat{se}

- **Def:** The mean squared error (MSE) is a measure of quality of $\hat{\theta}$

 $$\text{MSE} = \mathbb{E} \left[(\hat{\theta} - \theta)^2 \right]$$

- Expected values are with respect to the data distribution

 $$f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
The bias-variance decomposition of the MSE

Theorem

The MSE \(\text{MSE} = \mathbb{E} \left[(\hat{\theta} - \theta)^2 \right] \) can be written as

\[
\text{MSE} = \text{bias}^2(\hat{\theta}) + \text{var} \left[\hat{\theta} \right]
\]

Proof.

- Let \(\bar{\theta} = \mathbb{E} \left[\hat{\theta} \right] \). Then

\[
\mathbb{E} \left[(\hat{\theta} - \theta)^2 \right] = \mathbb{E} \left[(\hat{\theta} - \bar{\theta} + \bar{\theta} - \theta)^2 \right] \\
= \mathbb{E} \left[(\hat{\theta} - \bar{\theta})^2 \right] + 2(\bar{\theta} - \theta) \mathbb{E} \left[\hat{\theta} - \bar{\theta} \right] + (\bar{\theta} - \theta)^2 \\
= \text{var} \left[\hat{\theta} \right] + \text{bias}^2(\hat{\theta})
\]

- The last equality follows since \(\mathbb{E} \left[\hat{\theta} - \bar{\theta} \right] = \mathbb{E} \left[\hat{\theta} \right] - \bar{\theta} = 0 \)

\(\square \)
Desirable properties of point estimators

- **Q:** Desiderata for an estimator \(\hat{\theta} \) of the parameter \(\theta \)?

- **Def:** An estimator is **unbiased** if \(\text{bias}(\hat{\theta}) = 0 \), i.e., if \(\mathbb{E}[\hat{\theta}] = \theta \)

 \[\Rightarrow \text{An unbiased estimator is “on target” on average} \]

- **Def:** An estimator is **consistent** if \(\hat{\theta}_n \xrightarrow{p} \theta \), i.e., for any \(\epsilon > 0 \)

 \[
 \lim_{n \to \infty} P\left(|\hat{\theta}_n - \theta| < \epsilon \right) = 1
 \]

 \[\Rightarrow \text{A consistent estimator converges to} \ \theta \text{ as we collect more data} \]

- **Def:** An unbiased estimator is **asymptotically Normal** if

 \[
 \lim_{n \to \infty} P\left(\frac{\hat{\theta}_n - \theta}{\text{se}} \leq x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du
 \]

 \[\Rightarrow \text{Equivalently, for large enough sample size then} \ \hat{\theta}_n \sim \mathcal{N}(\theta, \text{se}^2) \]
Ex: Consider tossing the same coin \(n \) times and record the outcomes

- Model observations as \(X_1, \ldots, X_n \sim \text{Ber}(p) \). Estimate of \(p \)?

- A natural choice is the **sample mean estimator**

\[
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

- Recall that for \(X \sim \text{Ber}(p) \), then \(\mathbb{E}[X] = p \) and \(\text{var}[X] = p(1-p) \)

- The estimator \(\hat{p} \) is unbiased since

\[
\mathbb{E}[\hat{p}] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = p
\]

\(\Rightarrow \) Also used that the expected value is a linear operator
The standard error is

\[
se = \sqrt{\text{var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right]} = \sqrt{\frac{1}{n^2} \sum_{i=1}^{n} \text{var} [X_i]} = \sqrt{\frac{\text{var} X_i}{n}} = \sqrt{\frac{p(1-p)}{n}}
\]

⇒ Unknown \(p \). Estimated standard error is \(\hat{se} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)

Since \(\hat{p}_n \) is unbiased, then \(\text{MSE} = \mathbb{E} \left[(\hat{p}_n - p)^2 \right] = \frac{p(1-p)}{n} \to 0 \)

⇒ Thus \(\hat{p} \) converges in the mean square sense, hence also \(\hat{p}_n \overset{p}{\to} p \)
⇒ Establishes \(\hat{p} \) is a consistent estimator of the parameter \(p \)

⇒ Also, \(\hat{p} \) is asymptotically Normal by the Central Limit Theorem
Confidence intervals

- Set estimates specify regions of Θ where θ is likely to lie on

- **Def:** Given i.i.d. data $X_1, \ldots, X_n \sim F$, a $1 - \alpha$ confidence interval of a parameter θ is an interval $C_n = (a, b)$, where $a = a(X_1, \ldots, X_n)$ and $b = b(X_1, \ldots, X_n)$ are functions of the data such that

$$P(\theta \in C_n) \geq 1 - \alpha, \text{ for all } \theta \in \Theta$$

\Rightarrow In words, $C_n = (a, b)$ traps θ with probability $1 - \alpha$

\Rightarrow The interval C_n is computed from the data, hence it is random

- We call $1 - \alpha$ the **coverage** of the confidence interval

- **Ex:** It is common to report 95% confidence intervals, i.e., $\alpha = 0.05$
Aside on the standard Normal distribution

Let X be a standard Normal RV, i.e., $X \sim N(0, 1)$ with CDF $\Phi(x)$

$$\Phi(x) = P(X \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

Define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$, i.e., the value such that

$$P(X > z_{\alpha/2}) = \frac{\alpha}{2} \text{ and } P(-z_{\alpha/2} < X < z_{\alpha/2}) = 1 - \alpha$$
Normal-based confidence intervals

- Nice point estimators $\hat{\theta}_n$ are Normal as $n \to \infty$, i.e., $\hat{\theta}_n \sim N(\theta, \hat{\text{se}}^2)$
 \[\Rightarrow \text{Useful property in constructing confidence intervals for } \theta \]

Theorem

Suppose that $\hat{\theta}_n \sim N(\theta, \hat{\text{se}}^2)$ as $n \to \infty$. Let Φ be the CDF of a standard Normal and define $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$. Consider the interval

\[C_n = (\hat{\theta}_n - z_{\alpha/2} \hat{\text{se}}, \hat{\theta}_n + z_{\alpha/2} \hat{\text{se}}). \]

Then $P(\theta \in C_n) \to 1 - \alpha$, as $n \to \infty$

- These intervals only have approximately (large n) correct coverage
Proof.

Consider the normalized (centered and scaled) RV

\[X_n = \frac{\hat{\theta}_n - \theta}{\hat{se}} \]

By assumption \(X_n \to X \sim \mathcal{N}(0, 1) \) as \(n \to \infty \). Hence,

\[
P(\theta \in C_n) = P\left(\hat{\theta}_n - z_{\alpha/2} \hat{se} < \theta < \hat{\theta}_n + z_{\alpha/2} \hat{se}\right)
= P\left(-z_{\alpha/2} < \frac{\hat{\theta}_n - \theta}{\hat{se}} < z_{\alpha/2}\right)
\to P\left(-z_{\alpha/2} < X < z_{\alpha/2}\right) = 1 - \alpha
\]

The last equality follows by definition of \(z_{\alpha/2} \)
Ex: Given observations $X_1, \ldots, X_n \sim \text{Ber}(p)$. Estimate of p?

- We studied properties of the sample mean estimator

$$
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

- By the Central Limit Theorem, it follows that

$$
\hat{p} \sim \mathcal{N} \left(p, \frac{\hat{p}(1 - \hat{p})}{n} \right) \text{ as } n \to \infty
$$

- Therefore, an approximate $1 - \alpha$ confidence interval for p is

$$
C_n = \left(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)
$$
Hypothesis testing

- In hypothesis testing we start with some default theory
 - Ex: The data come from a zero-mean Gaussian distribution
- Q: Do the data provide sufficient evidence to reject the theory?
- The hypothesized theory is called null hypothesis, written as H_0
 - Specify also an alternative hypothesis to the null, H_1
- Formally, given i.i.d. data $\mathbf{x} = [x_1, \ldots, x_n]^T$ from $X_1, \ldots, X_n \sim F$
 1. Form a test statistic $T(\mathbf{x})$, i.e., a function of the data
 2. Define a rejection region \mathcal{R} of the form
 \[\mathcal{R} = \{ \mathbf{x} : T(\mathbf{x}) > c \} \]
- If data $\mathbf{x} \in \mathcal{R}$ we reject H_0, otherwise we retain (do not reject) H_0
- The problem is to select the test statistic T and the critical value c
Testing if a coin is fair

Ex: Consider tossing the same coin n times and record the outcomes

- Model observations as $X_1, \ldots, X_n \sim \text{Ber}(p)$. Is the coin fair?
- Let H_0 be the hypothesis that the coin is fair, and H_1 the alternative

 ⇒ Can write the hypotheses as

 $$H_0 : p = 1/2 \quad \text{versus} \quad H_1 : p \neq 1/2$$

- Consider the test statistic given by

 $$T(X_1, \ldots, X_n) = \left| \hat{p}_n - \frac{1}{2} \right| = \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{2} \right|$$

 ⇒ It seems reasonable to reject H_0 if $(X_1, \ldots, X_n) \in \mathcal{R}$, where

 $$\mathcal{R} = \{(X_1, \ldots, X_n) : T(X_1, \ldots, X_n) > c\}$$

 ⇒ Will soon see this is a Wald’s test, hence $c = z_{\alpha/2}\hat{\text{se}}$. More later
Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Inference about a mean

- Consider a sample of \(n \) i.i.d. observations \(X_1, \ldots, X_n \sim F \)

- Q: How can we perform inference about the mean \(\mu = \mathbb{E}[X_1] \)?

 ⇒ Practical and canonical problem in statistical inference

- A natural estimator of \(\mu \) is the sample mean estimator

\[
\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

 ⇒ Well motivated since by the strong law of large numbers

\[
\lim_{n \to \infty} \hat{\mu}_n = \mu \quad \text{almost surely}
\]

- It is a simple example of a method of moments estimator (MME)...

- ...and also a maximum likelihood estimator (MLE)
Moments and sample moments

- In parametric inference we wish to estimate $\theta \in \Theta \subseteq \mathbb{R}^p$ in

$$\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$$

- For $1 \leq j \leq p$, define the j-th moment of $X \sim F$ as

$$\alpha_j \equiv \alpha_j(\theta) = \mathbb{E}[X^j] = \int_{-\infty}^{\infty} x^j f(x; \theta) \, dx$$

- Likewise, the j-th sample moment is an estimate of α_j, namely

$$\hat{\alpha}_j = \frac{1}{n} \sum_{i=1}^{n} X_i^j$$

\Rightarrow The j-th moment $\alpha_j(\theta)$ depends on the unknown θ

\Rightarrow But $\hat{\alpha}_j$ does not, a function of the data only
A first method for parametric estimation is the method of moments
⇒ MMEs are not optimal, yet typically easy to compute

Def: The method of moments estimator (MME) $\hat{\theta}_n$ is the solution to

$$
\alpha_1(\hat{\theta}_n) = \hat{\alpha}_1 \\
\alpha_2(\hat{\theta}_n) = \hat{\alpha}_2 \\
\vdots = \vdots \\
\alpha_p(\hat{\theta}_n) = \hat{\alpha}_p
$$

⇒ This is a system of p (nonlinear) equations with p unknowns

Ex: Back to estimating a mean μ, $p = 1$ and $\mu = \theta = \alpha_1(\theta)$ so

$$
\hat{\mu}^{MM}_n = \hat{\alpha}_1 = \frac{1}{n} \sum_{i=1}^{n} X_i
$$
Example: Gaussian data model

Ex: Suppose now \(X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2) \), i.e., the model is \(F \in \mathcal{F}_N \)

- **Q:** What is the MME of the parameter vector \(\theta = [\mu, \sigma^2]^T \)?

- The first \(p = 2 \) moments are given by

\[
\alpha_1(\theta) = \mathbb{E}[X_1] = \mu, \quad \alpha_2(\theta) = \mathbb{E}[X_1^2] = \sigma^2 + \mu^2
\]

- The MME \(\hat{\theta}_n \) is the solution to the following system of equations

\[
\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \\
\hat{\sigma}^2_n + \hat{\mu}_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\]

- The solution is

\[
\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}_n)^2
\]
Maximum likelihood estimator

- Often “the” method for parametric estimation is maximum likelihood.

- Consider i.i.d. data X_1, \ldots, X_n from a PDF $f(x; \theta)$.

- The likelihood function $\mathcal{L}_n(\theta) : \Theta \rightarrow \mathbb{R}_+$ is defined by

$$\mathcal{L}_n(\theta) := \prod_{i=1}^{n} f(X_i; \theta)$$

$\Rightarrow \mathcal{L}_n(\theta)$ is the joint PDF of the data, treated as a function of θ.

\Rightarrow The log-likelihood function is $\ell_n(\theta) := \log \mathcal{L}_n(\theta)$.

- Def: The maximum likelihood estimator (MLE) $\hat{\theta}_n$ is given by

$$\hat{\theta}_n = \arg \max_{\theta} \mathcal{L}_n(\theta)$$

- Very useful: The maximizer of $\mathcal{L}_n(\theta)$ coincides with that of $\ell_n(\theta)$.

Example: Bernoulli data model

- Suppose $X_1, \ldots, X_n \sim \text{Ber}(p)$. MLE of $\mu = p$?
 - The data PMF is $f(x; p) = p^x(1 - p)^{1-x}$, $x \in \{0, 1\}$
- The likelihood function is (define $S_n = \sum_{i=1}^{n} X_i$)

 $$
 \mathcal{L}_n(p) = \prod_{i=1}^{n} f(X_i; p) = \prod_{i=1}^{n} p^{X_i}(1 - p)^{1-X_i} = p^{S_n}(1 - p)^{n-S_n}
 $$

 - The log-likelihood is $\ell_n(p) = S_n \log(p) + (n - S_n) \log(1 - p)$
- The MLE \hat{p}_n is the solution to the equation

 $$
 \frac{\partial \ell_n(p)}{\partial p} \bigg|_{p=\hat{p}_n} = \frac{S_n}{\hat{p}_n} - \frac{n - S_n}{1 - \hat{p}_n} = 0
 $$

 - The solution is

 $$
 \hat{\mu}_n^{ML} = \hat{p}_n = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i
 $$
Example: Gaussian data model

▶ Suppose \(X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)\). MLE of \(\mu\)?

⇒ The data PDF is
\[
f(x; \mu) = \frac{1}{\sqrt{2\pi}} \exp \left\{ - \frac{(x-\mu)^2}{2} \right\}, \ x \in \mathbb{R}
\]

▶ The likelihood function is (up to constants independent of \(\mu\))

\[
\mathcal{L}_n(\mu) = \prod_{i=1}^{n} f(X_i; \mu) \propto \exp \left\{ - \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{2} \right\}
\]

⇒ The log-likelihood is
\[
\ell_n(\mu) \propto - \sum_{i=1}^{n} (X_i - \mu)^2
\]

▶ The MLE \(\hat{\mu}_n\) is the solution to the equation

\[
\frac{\partial \ell_n(\mu)}{\partial \mu} \bigg|_{\mu=\hat{\mu}_n} = 2 \sum_{i=1}^{n} (X_i - \hat{\mu}_n) = 0
\]

▶ The solution is, once more, the sample mean estimator

\[
\hat{\mu}_n^{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]
MLEs have desirable properties under loose conditions on \(f(x; \theta) \)

P1) **Consistency:** \(\hat{\theta}_n \xrightarrow{P} \theta \) as the sample size \(n \) increases

P2) **Equivariance:** If \(\hat{\theta}_n \) is the MLE of \(\theta \), then \(g(\hat{\theta}_n) \) is the MLE of \(g(\theta) \)

P3) **Asymptotic Normality:** For large \(n \), one has \(\hat{\theta}_n \sim \mathcal{N}(\theta, \hat{\text{se}}^2) \)

P4) **Efficiency:** For large \(n \), \(\hat{\theta}_n \) attains the Cramér-Rao lower bound

- Efficiency means no other unbiased estimator has smaller variance

- **Ex:** Can use the MLE to create a confidence interval for \(\mu \), i.e.,

\[
C_n = (\hat{\mu}_n^{ML} - z_{\alpha/2} \hat{\text{se}}, \hat{\mu}_n^{ML} + z_{\alpha/2} \hat{\text{se}})
\]

\(\Rightarrow \) By asymptotic Normality, \(P(\mu \in C_n) \approx 1 - \alpha \) for large \(n \)

\(\Rightarrow \) For the \(\mathcal{N}(\mu, 1) \) model, \(\hat{\mu}_n^{ML} \pm \frac{z_{\alpha/2}}{\sqrt{n}} \) has exact coverage
The Wald test

- Consider the following hypothesis test regarding the mean μ

$$H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu \neq \mu_0$$

- Let $\hat{\mu}_n$ be the sample mean, with estimated standard error $\hat{\text{se}}$

- **Def:** Given $\alpha \in (0, 1)$, the Wald test rejects H_0 when

$$T(X_1, \ldots, X_n) := \left| \frac{\hat{\mu}_n - \mu_0}{\hat{\text{se}}} \right| > z_{\alpha/2}$$

- If H_0 is true, $\frac{\hat{\mu}_n - \mu_0}{\hat{\text{se}}} \sim N(0, 1)$ by the Central Limit Theorem
 \Rightarrow Probability of incorrectly rejecting H_0 is no more than α

- The value of α is called the significance level of the test
The \(p \)-value

- Reporting “reject \(H_0 \)” or “retain \(H_0 \)” is not too informative

 \[\Rightarrow \text{Could ask, for each } \alpha, \text{ whether the test rejects at that level} \]

- Let \(T_{\text{obs}} \) := \(T(x) \) be the test statistic value for the observed sample

\[\begin{align*}
 T_{\text{obs}} - T_{\text{obs}} &= \frac{p}{2} \\
 T_{\text{obs}} &= \frac{p}{2}
\end{align*} \]

- The probability \(p := P_{H_0}(|T(X)| \geq T_{\text{obs}}) \) is called the \(p \)-value

 \[\Rightarrow \text{Smallest level at which we would reject } H_0 \]

- A small \(p \)-value (\(< 0.05\)) indicates reduced evidence supporting \(H_0 \)
Methods discussed so far are termed frequentist, where:

- **F1:** Probability refers to limiting relative frequencies
- **F2:** Parameters are fixed, unknown constants
- **F3:** Statistical procedures offer guarantees on long-run performance

Alternatively, **Bayesian inference** is based on these postulates:

- **B1:** Probability describes degree of belief, not limiting frequency
- **B2:** We can make probability statements about parameters
- **B3:** A probability distribution for θ is produced to make inferences

Controversial? Inherently embraces a subjective notion of probability

- Bayesian methods do not offer long-run performance guarantees
- Very useful to combine **prior beliefs** with **data** in a principled way
Bayesian inference is usually carried out in the following way:

Step 1: Choose a probability density \(f(\theta) \) called the prior distribution
- The prior expresses our beliefs about \(\theta \), before seeing any data.

Step 2: Choose a statistical model \(f(x \mid \theta) \) (compare with \(f(x; \theta) \))
- Reflects our beliefs about the data-generating process, i.e., \(X \) given \(\theta \).

Step 3: Given data \(X = [X_1, \ldots, X_n]^T \), we update our beliefs and calculate the posterior distribution \(f(\theta \mid X) \) using Bayes’ rule

\[
f(\theta \mid X) \propto \prod_{i=1}^{n} f(X_i \mid \theta)f(\theta) = \mathcal{L}_n(\theta)f(\theta)
\]

⇒ Point estimates, confidence intervals obtained from \(f(\theta \mid X) \)
- **Ex:** A maximum a posteriori (MAP) estimator \(\hat{\theta}_n = \arg \max_{\theta} f(\theta \mid X) \)
Example: Gaussian data model and prior

- Consider \(X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2) \). Suppose \(\sigma^2 \) is known
 - To estimate \(\theta \) we adopt the prior \(\theta \sim \mathcal{N}(a, b^2) \)
- Using Bayes’ rule, can show the posterior is also Gaussian where

\[
\hat{\theta}_n^{MAP} = \mathbb{E}[\theta | X] = \frac{w}{n} \sum_{i=1}^{n} X_i + (1 - w)a, \quad \text{with } w = \frac{se^{-2}}{se^{-2} + b^{-2}}
\]

- Weighted average of the sample mean \(\hat{\theta}_n^{ML} \) and the prior mean \(a \)
- Here, \(se = \sigma / \sqrt{n} \) is the standard error for the sample mean

- **Asymptotics:** Note that \(w \to 1 \) as the sample size \(n \to \infty \)
 - For large \(n \) the posterior is approximately \(\mathcal{N}(\hat{\theta}_n^{ML}, se^2) \)
 - Same holds if \(n \) is fixed but \(b \to \infty \), i.e., prior is uninformative
Tutorial on linear regression inference

Statistical inference and models

Point estimates, confidence intervals and hypothesis tests

Tutorial on inference about a mean

Tutorial on linear regression inference
Suppose observations are from \((Y_1, X_1), \ldots, (Y_n, X_n) \sim F_{YX}\)

\[r(x) = \mathbb{E}[Y \mid X = x] = \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) dy \]

The simple linear regression model specifies that given \(X_i = x_i\)

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \ldots, n \]

With the linear model, regression amounts to parametric inference

\[\hat{r}(x) \Leftrightarrow [\hat{\beta}_0, \hat{\beta}_1]^T \]
More generally, suppose we observe data \((y_1, x_1), \ldots, (y_n, x_n)\)

\[
\Rightarrow \text{Each input } x_i = [x_{i1}, \ldots, x_{ip}]^T \text{ is a } p \times 1 \text{ feature vector}
\]

The multiple linear regression model specifies

\[
y_i = \sum_{j=1}^{p} x_{ij} \beta_j + \epsilon_i = \beta^T x_i + \epsilon_i, \quad i = 1, \ldots, n
\]

- Typically \(x_{i1} = 1\) for all \(i\), providing an intercept term
- Errors \(\epsilon_i\) are i.i.d., with \(\mathbb{E} [\epsilon_i | X_i = x_i] = 0\) and \(\text{var} [\epsilon_i | X_i = x_i] = \sigma^2\)

Can be compactly represented as \(y = X\beta + \epsilon\), defining

\[
y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}
\]
Least-squares estimator

- A sound estimate $\hat{\beta}$ minimizes the residual sum of squares (RSS)

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 = \|y - X\beta\|^2$$

\Rightarrow Residuals are the distances from y_i to hyperplane $r(x) = \beta^T x$

- **Def:** The least-squares estimator (LSE) $\hat{\beta}_n$ is the solution to

$$\hat{\beta}_n = \arg \min_{\beta} RSS(\beta)$$

- Carrying out the optimization yields the LSE $\hat{\beta}_n = (X^T X)^{-1} X^T y$

\Rightarrow Only defined if $X^T X$ invertible \Leftrightarrow X has full column rank p
Geometry of the LSE

- In least squares we seek the vector $\hat{y} = X\hat{\beta} \in \text{span}(X)$ closest to y.

- Solution: Orthogonal projection of y onto $\text{span}(X)$, i.e., (let $X = U\Sigma V^T$)

 $$\hat{y} = P_{X}(y) = X(X^TX)^{-1}X^Ty = UU^Ty$$

- The residual $y - \hat{y}$ lies in the orthogonal complement $(\text{span}(X))^\perp$
 $$\Rightarrow \text{This way } \text{RSS}(\hat{\beta}) = \|y - \hat{y}\|^2 \text{ is minimum}$$
Properties of the LSE

- LSE $\hat{\beta}_n = (X^TX)^{-1}X^Ty$ is a linear combination of the random y

P1) Unbiasedness: $E[\hat{\beta}_n | X] = \beta$ with $\text{var}[\hat{\beta}_n | X] = \sigma^2(X^TX)^{-1}$

P2) Consistency: $\hat{\beta}_n \xrightarrow{p} \beta$ as the sample size n increases

P3) Asymptotic Normality: For large n, one has $\hat{\beta}_n \sim \mathcal{N}(\beta, \sigma^2(X^TX)^{-1})$

P4) If errors $\epsilon \sim \mathcal{N}(0, \sigma^2I)$, then $\hat{\beta}_n \sim \mathcal{N}(\beta, \sigma^2(X^TX)^{-1})$ exactly; and

Efficiency: No other unbiased estimator of β has smaller variance

- **Ex:** Can use the LSE to create confidence intervals for each β_j, i.e.,

$$C_n = \left(\hat{\beta}_j - z_{\alpha/2}\hat{s}\epsilon(\hat{\beta}_j), \hat{\beta}_j + z_{\alpha/2}\hat{s}\epsilon(\hat{\beta}_j) \right)$$

⇒ By asymptotic (or exact) Normality, $P(\beta_j \in C_n) \approx 1 - \alpha$

⇒ Note that $\hat{s}\epsilon(\hat{\beta}_j) = \hat{\sigma}\sqrt{[(X^TX)^{-1}]_{jj}}$, where $\hat{\sigma}^2 = \frac{RSS(\hat{\beta})}{n-p}$
Ex: Consider the hypothesis test regarding the parameter β_j

$$H_0 : \beta_j = \beta_j^{(0)} \quad \text{versus} \quad H_1 : \beta_j \neq \beta_j^{(0)}$$

By asymptotic (or exact) Normality of the LSE, an α-level test is

$$\text{Reject } H_0 \quad \text{if} \quad T_j := \left| \frac{\hat{\beta}_j - \beta_j^{(0)}}{\text{se}(\hat{\beta}_j)} \right| > z_{\alpha/2}$$

Ex: Can predict an unobserved value $Y_* = y_*$ from a given x_* via

$$y_* = x_*^T \hat{\beta}$$

May define a notion of standard error for y_*, and predictive intervals

\Rightarrow Should account for the variability in estimating β and in ϵ_*
The LSE as a MLE

- Suppose that conditioned on $X_i = x_i$, the errors ϵ_i are i.i.d. Normal
 \[f(\epsilon_i \mid x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{\epsilon_i^2}{2\sigma^2} \right\} \]
- Assume σ^2 is known. The (conditional) likelihood function is
 \[L_n(\beta) = \prod_{i=1}^{n} f(y_i \mid x_i; \beta) \propto \exp \left\{ -\sum_{i=1}^{n} \frac{(y_i - \beta^T x_i)^2}{2\sigma^2} \right\} \]
 \[\Rightarrow \text{The log-likelihood is } \ell_n(\beta) \propto -\text{RSS}(\beta) \]
- The MLE $\hat{\beta}_n^{ML}$ maximizes the log-likelihood function, thus
 \[\hat{\beta}_n^{ML} = \arg \max_{\beta} \ell_n(\beta) = \arg \min_{\beta} \text{RSS}(\beta) = \hat{\beta}_n^{LS} \]
- **Take-home:** Under a linear-Gaussian model the LSE is also a MLE
Consider again Gaussian errors, i.e.,

\[f(\epsilon_i | x_i) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left\{ - \frac{\epsilon_i^2}{2\sigma^2} \right\} \]

\[\Rightarrow \text{Gaussian prior to model the parameters: } \beta \sim \mathcal{N}(0, \tau^2 I) \]

\[\Rightarrow \text{Variances } \sigma^2 \text{ and } \tau^2 \text{ assumed known. Define } \lambda := (\frac{\sigma}{\tau})^2 \]

\[\Rightarrow \text{Bayesian approach: posterior } F_{\beta | Y, X} \text{ is Gaussian, with log-density} \]

\[
\log f(\beta | Y, X) \propto - \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 - \lambda \sum_{j=1}^{p} \beta_j^2
\]

\[\Rightarrow \text{MAP estimator } \hat{\beta}_{n, \text{MAP}} := \arg \max_{\beta} f(\beta | Y, X) \text{ is thus the solution to} \]

\[
\hat{\beta}_{n, \text{MAP}} = \arg \min_{\beta} \text{RSS}(\beta) + \lambda \|\beta\|_2^2
\]

\[\Rightarrow \text{Carrying out the optimization yields } \hat{\beta}_{n, \text{MAP}} = (X^T X + \lambda I)^{-1} X^T y \]

\[\Rightarrow \text{Recover the LSE as } \lambda \to 0 \iff \text{Uninformative prior when } \tau^2 \to \infty \]
Ridge regression

- Non-Bayesian, ℓ_2-norm penalized LSE also known as ridge regression
 \[
 \hat{\beta}^{\text{ridge}} = \arg \min_{\beta} \text{RSS}(\beta) + \lambda \|\beta\|_2^2
 \]

- For $\lambda > 0$, the ridge estimator $\hat{\beta}^{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$
 - Differs from the LSE $\hat{\beta}^{\text{LS}} := \arg \min_{\beta} \text{RSS}(\beta)$
 - Is biased, and $\text{bias}(\hat{\beta}^{\text{ridge}})$ increases with λ
 - Is well defined even when X is not of full rank

- In exchange for bias, potential to reduce variance below $\text{var} [\hat{\beta}^{\text{LS}}]$
 - Ex: Large $\text{var} [\hat{\beta}^{\text{LS}}]$ when X nearly rank-deficient, unstable $(X^T X)^{-1}$

- From bias-variance MSE decomposition, fruitful tradeoff may yield
 \[
 \text{MSE}(\hat{\beta}^{\text{ridge}}) < \text{MSE}(\hat{\beta}^{\text{LS}})
 \]
 \[\Rightarrow\] Tradeoff depends on λ, chosen subjectively or via cross validation
Complexity-penalized LSE

- Ridge an instance from the general class of complexity-penalized LSE

\[\hat{\beta}^J = \arg \min_{\beta} \text{RSS}(\beta) + \lambda J(\beta) \]

- Function \(J(\cdot) \) penalizes (i.e., constrains) the parameters in \(\beta \)
- Constrained parameter space \(\Theta \) effects 'less complex' models
- Tuning \(\lambda \) balances goodness-of-fit and model complexity

- Ex: \(\ell_1 \)-norm penalized LSE for sparsity, i.e., variable selection
Glossary

- Statistical inference
- Outcome or response
- Predictor, feature or regressor
- (Non) parametric model
- Nuisance parameter
- Regression function
- Prediction
- Classification
- Point and set estimation
- Estimator and estimate
- Standard error
- Consistent estimator
- Confidence interval
- Hypothesis test
- Null hypothesis
- Test statistic and critical value
- Method of moments estimator
- Maximum likelihood estimator
- Likelihood function
- Significance level and p-value
- Prior and posterior distribution
- Multiple linear regression
- Least-squares estimator