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Network mapping

▶ Visual imagery key to network analysis as in other quantitative sciences

Pattern of social 
linkages [Moreno’32] 

▶ Hand-drawn, annotated graphs ⇒ Computerized, automated diagrams

▶ Q: What is network mapping?
▶ The production of a network-based visualization of a complex system
▶ Analogy: Geography and the production of cartographic maps
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What is “the” network?

▶ Often not a single network graph representation of a given system

Ex: Which of these maps best depicts the USA?
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Visualization challenges

▶ Suppose a graph representation G (V ,E ) of a complex system is given

Network graph visualization

A visualization of G is a mapping ϕ : (V ,E ) 7→ R2 (or R3)

▶ Several nontrivial graph visualization challenges
▶ Lack of inherent geometry in G , just two sets V and E
▶ Plenty of degrees of freedom and flexibility in specifying ϕ
▶ Convey patterns in high-dimensional data. Summarization and scale
▶ A diverse range of information that may be communicated, or lost

▶ Arguably, graph visualization is a quite young, active area of research

⇒ Mathematics, algorithms, aesthetics, the human visual system
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Stages in network mapping

▶ Three key stages in the production of network maps

1

Fig. 3.1 Schematic illustration of the process of mapping a network.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

S1: Collection of relational data from the system of interest

S2: Construction of the network graph representation

S3: Rendering of the representation as a visual image

Network Science Analytics Mapping Networks 6



Collecting relational network data

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs
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Large network visualization via the k-core decomposition
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Measuring elements and interactions

▶ Start with measurements of system ‘elements’ and ‘interactions’

3

Fig. 1.3 Network representation of the circadian clock mechanism in Drosophila melanogaster
(fruit fly), as of June 30, 2003, from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2].

Drosophila’s circadian rhythm

▶ Choose what is meant by elements and interactions

Ex: Proteins and their affinity to bind, or genes and their regulation

▶ Decide what measurements to take for each

Ex: Protein affinity experiments, or DNA micro-array experiments

▶ Choices influence the network graphs that may be constructed
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Example: Drosophila’s circadian rhythm

▶ Related notions of system elements can yield markedly different graphs2
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Fig. 3.2 Network graph representations of protein binding (top) and gene regulation (bottom) as-
sociated with the circadian clock mechanism in Drosophila melanogaster (fruit fly), as extracted
from the composite representation in Figure 1.3. Proteins are shown as vertices in the form of green
rectangles, and their interactions, by undirected edges. Genes, coding for their respective proteins,
are shown as vertices in the form of blue ellipses. The regulation of one gene by another is depicted
by a directed edge from the latter to the former (solid indicates activation, and dotted, repression).
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Fig. 3.2 Network graph representations of protein binding (top) and gene regulation (bottom) as-
sociated with the circadian clock mechanism in Drosophila melanogaster (fruit fly), as extracted
from the composite representation in Figure 1.3. Proteins are shown as vertices in the form of green
rectangles, and their interactions, by undirected edges. Genes, coding for their respective proteins,
are shown as vertices in the form of blue ellipses. The regulation of one gene by another is depicted
by a directed edge from the latter to the former (solid indicates activation, and dotted, repression).

Protein interaction network Gene regulation network 

▶ Ex: Protein Per interacts with four other proteins; while

Gene coding for Per regulates none of the other genes directly

▶ Each one provides a partial view of the underlying biological system

⇒ Choices a fortiori affect analyses performed and conclusions drawn
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Further choices

▶ There may be different scales at which elements could be labeled

Ex: Users, routers, autonomous systems (ASs) in Internet studies?

Ex: Authors, papers, journals, disciplines in citation studies?

▶ Measures of interaction can take many forms (binary, counts, real)

Ex: Friendship networks in social network analysis
▶ Interview and ask about friendship with other actors (binary)
▶ Measure frequency of relations e.g., SMS (counts)

▶ Questions directly measure the interaction. SMS do indirectly

▶ Not only what we choose (or are capable of) to measure is important

⇒ Also is, potentially, what remains unmeasured in the system
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Enumerated, partial and sampled data

▶ Assuming full-accessibility to network data may be overly optimistic

▶ Enumerated data: Collected exhaustively from the full population

Ex: Social network studies in small groups (clubs, high-schools, . . . )

Ex: Exhaustive scientific publication databases for citation analyses

▶ Partial data: Full enumeration of only a subset of the population

Ex: Geographical sub-network or AS of an Internet Service Provider

▶ Sampled data: Selected from the population via a random scheme

⇒ Sampling is often the rule rather than the exception (More later)

Ex: Random probing of source-destination pairs in the Internet

Ex: Social network studies about illegal drug usage, or prostitution
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Constructing network graph representations

Introduction to network visualization
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Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
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From measurements to a graph

▶ Basic goal is specification of G (V ,E ) from measurements

▶ The representation may include additional information
▶ Edge weights: {we}e∈E indicating the strength of association
▶ Vertex vectors: {xv}v∈V describing element attributes or labels

▶ Attribute variables may be discrete or continuous in nature

Ex: Gender, infection status, population serviced by an airport

▶ This information we seek to effectively convey in a network map
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Specification of vertices and edges

▶ Measurements may be direct declarations of edge/non-edge status

▶ Most commonly, edges dictated after processing measurements
▶ Comparison of vertex similarity metric to a threshold
▶ Frequently ad hoc, sometimes formal methods (topology inference)

▶ Q: How to address the “ball-of-yarn” phenomenon in visualizations?

▶ Effective use of scale, node aggregation and thinning of edges
▶ Rooted sub-trees or DAGs may be trimmed, hiding inner structure
▶ Split dense graph into separate subgraphs based on labels, clustering

▶ Ex: Associate genes or proteins with their biological functions
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Visualizing network graphs

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs
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Elements of graph visualization

▶ Goal: embed a combinatorial object G (V ,E ) into 2-D (3-D) space

⇒ Use symbols (e.g., circles) for vertices, smooth curves for edges

▶ Uncountably many options, inherently ill-posed

▶ Q: Does it adequately communicate the relational information in G?

⇒ Guide drawing process by adding specifications and requirements

▶ Drawing conventions: hard requirements a drawing must satisfy

Ex: Edges as straight lines, no edges intersect, downward trees, . . .

▶ Aesthetics: soft requirements, satisfied if possible

Ex: Minimize edge crossings, total area, edge bends, . . .

▶ Constraints: requirements that pertain to subgraphs H ⊂ G

Ex: Placement of a specific vertex or cluster, direction of a path, . . .
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Drawing graphs with special structure

▶ Structures that receive most attention: planar graphs and trees

▶ Two common, linear complexity methods for planar graphs
▶ Use orthogonal paths for edges (e.g., canonical in integrated circuits)
▶ Use k-sided convex polygons for each cycle of length k

▶ While also planar, structure of trees justifies additional methods

3

Fig. 3.3 Three displays of the same tree, rooted at the vertex labeled ‘R’: layered (top left), circular
(top right), and horizontal-vertical (bottom).
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Fig. 3.3 Three displays of the same tree, rooted at the vertex labeled ‘R’: layered (top left), circular
(top right), and horizontal-vertical (bottom).

▶ Often a hierarchical structure is to be communicated

Ex: Organizational charts, genealogies, information cascades, . . .
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Drawing using analogies to physical systems

▶ In the absence of structure, exploit analogies to physical systems
▶ Convey relations via “likes ↔ attraction” and “dislikes ↔ repulsion”

▶ Spring-embedder methods view vertices as masses, edges as springs
▶ Perturb and let forces converge, particle system reaches equilibrium
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Fig. 1.2 Zachary’s ‘karate club’ network. Subgroups, centered around actors 1 and 34, are indi-
cated by the coloring and shape of their nodes, using blue squares and red circles, respectively.
Links between actors within the same subgroup are colored similar to their nodes, while links
between actors of different subgroups are shown in yellow.
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Fig. 1.4 AIDS Blog Network

Spring embedder Energy placement 

▶ Energy-placement methods define energy function of vertex positions
▶ Minimize system energy to place vertices, reach most relaxed state
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Energy placement via multidimensional scaling

▶ Multidimensional scaling (MDS) commonly used for visualization

▶ Given pairwise vertex dissimilarities {δij} (e.g., geodesic distances)

⇒ Goal: Find {xi ∈ R2}Nv

i=1 so that ∥xi − xj∥2 ≈ δij

▶ Approach: MDS stress (energy function) minimization

arg min
{x1,...,xNv }

1

2

Nv∑
i=1

Nv∑
j=1

(δij − ∥xi − xj∥2)2

⇒ Nonconvex cost. Typically “solved” via gradient descent

▶ May include structural constraints e.g., vertex centralities

▶ B. Baingana and G. B. Giannakis, “Centrality-constrained graph
embedding,” in ICASSP, 2013.
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Graph layout: Science and art

▶ Graph visualization software use a handful of standard methods

Ex: Circular, radial, analogies to physical systems, . . .

▶ Many graph layout packages, some general and some area specific

Ex: Gephi, Pajek, Graphviz, LaNet-vi, . . .

⇒ I have listed a few under resources in the class website

▶ Best ones allow for user interaction to manipulate further

⇒ Graph drawing involves not only science but also some art

▶ Few computer-generated drawings cannot be improved “by hand”
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Mapping “Science”

▶ The human enterprise of Science and Technology, i.e., “Science”

▶ Understand patterns and associations in its growth and development

⇒ Goal of the field known as scientometrics

⇒ Interests government agencies, industry, sciences themselves

Ex: Network representation and visualization of “Science”?

▶ K. W. Boyack, R. Klavans, and K. Börner, “Mapping the backbone
of science,” Scientometrics, vol. 64, no. 3, pp. 351-371, 2005.

▶ Go over measurement, network graph construction and visualization
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Measurement

▶ System: Science as summarized through the archival literature

▶ Elements: authors, articles, journals, communities

▶ Interactions: inter-citation frequencies among journals over time

Cij = Number of times journal i cites j in e.g., one year

▶ Q: Partial sampling impact?

⇒ Conference proceedings in Computer Science

▶ Data from the Institute of Scientific Information (ISI) databases
▶ 1.058M articles from 7,349 journals for the year 2000
▶ 23.08M total citations, 16.24M among the database journals
▶ Computed matrix of inter-citations Cij very sparse (98.6% zeros)
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Network graph construction

▶ G (V ,E ) can be defined directly from the inter-citation matrix

⇒ Vertices correspond to the 7,121 citing or cited journals

⇒ Edge (i , j) joins journals i and j if Cij + Cji > 0

▶ Validation: found journal clusters not matching human expectation

▶ Use the Jaccard inter-citation frequency measure to define edges

JACij = JACji =
Cij + Cji∑

k ̸=j Cik +
∑

k ̸=i Cjk

▶ Trim weaker edges such that degrees are upper-bounded by 15
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Preliminary visualization

▶ Software package used:
VxOrd (Sandia Labs)

▶ Spring-embedder algorithm
▶ Linear complexity O(Nv )
▶ Edge-cutting criteria

▶ Journals tend to cluster
▶ Densely inter-connected
▶ Few ties among clusters

▶ Manually assigned labels
▶ Clusters ⇒ ISI categories

▶ No edges for readability

5

Fig. 3.5 Preliminary map of Science, resulting from a combination of automated drawing software
and human interpretation and annotation. All edges have been removed, to improve readability.
Figure courtesy of Kevin Boyack.
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Further post-processing

▶ Goal is to obtain a map at the level of scientific disciplines

1) Each discipline cluster replaced with a single vertex

▶ Vertex size ∝ number of journals in the cluster

▶ Vertex color ∝ relative frequency of self-citation within discipline
▶ Darker vertices suggest more independent disciplines

2) Placed arcs joining pairs of vertices (disciplines)

▶ Draw arc (i , j) if 7.5% or more of all citations from i were to j
▶ Darker edges represent higher percentages

▶ VxOrd places highly-connected vertices closer to the center
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The backbone of Science
6

Fig. 3.6 Map of the ‘backbone’ of Science. Figure courtesy of Kevin Boyack.
▶ Backbone of Science: final map at the level of scientific disciplines
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Large-scale network visualization
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Large-scale network visualization

▶ Many interesting networks are large and complex

⇒ Difficult to visualize

⇒ Computationally intensive

⇒ Structure hindered

▶ Ex: The blogosphere with > 1M nodes

▶ Idea: Use the k-core decomposition for hierarchical visualization
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The k-core decomposition

▶ Consider a given graph G (V ,E )

▶ Def: An induced subgraph G ′(V ′,E ′) of G is a k-core if dv (G
′) ≥ k

for all v ∈ V ′, and G ′ is maximal

▶ Degrees are in the induced subgraph G ′, not in G

▶ Hierarchy: larger “coreness” ⇒ larger degrees and centrality

▶ Algorithm: recursively prune all vertices of degree less than k

⇒ Complexity O(Nv + Ne), very efficient for sparse graphs

Network Science Analytics Mapping Networks 30



Example: k-core decompositions

▶ Ex: Trees are 1-cores, cycles are 2-cores, Kn is a (n − 1)-core

▶ Ex: A graph with multiple cores

⇒ A k-core is always included within the (k − 1)-core

⇒ While some vertices have dv (G ) = 4, the 4-core is empty
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Preliminary definitions

▶ Vertex i has coreness ci = c if i ∈ c-core, but i /∈ (c + 1)-core

▶ A shell Cc comprises all vertices with coreness c

⇒ The maximum value of c such that Cc ̸= ∅ is cmax

⇒ The k-core is a disjoint union of shells

k-core =
⋃

k≤c≤cmax

Cc

▶ Each connected set of vertices having coreness c is a cluster Qc

⇒ The maximum number of clusters in a shell Cc is qcmax

⇒ Each shell is a disjoint union of clusters

Cc =
⋃

1≤m≤qc
max

Qc
m
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Example

▶ Blue vertices have coreness c = 1, green have c = 2, red have c = 3

⇒ Here cmax = 3 and shells {Cc}3c=1 are shown in the right

C1 

C2 

C3 

▶ All three k-cores are connected, while shells C1 and C2 are not

⇒ Shell C1 has q1max = 4 clusters, q2max = 2 and q3max = 1
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Visualization using the k-core decomposition

▶ Given G (V ,E ) determine the polar coords. ρi∠φi of each i ∈ V

▶ Key features of the visualization algorithm. For vertex i :
▶ Radius ρi depends on ci , and coreness of neighbors Vcj≥ci (i)
▶ Angle φi depends on cluster number qi within shell Cci
▶ Color depends on coreness ci (e.g., 1 is violet, cmax is red)
▶ Diameter is ∝ log di
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Algorithm

▶ The k-core decomposition of G (V ,E ) is an input to the algorithm

⇒ Each vertex i ∈ V has attributes [ci , qi ]
T , such that i ∈ Qci

qi

▶ Radius ρi of vertex i is given by

ρi = (1− ϵ)(cmax − ci ) +
ϵ

|Vcj≥ci (i)|
∑

j∈Vcj≥ci
(i)

(cmax − cj)

⇒ Parameter ϵ ∈ (0, 1) controls potential ring overlap

▶ Angle φi is random, with Normal distribution

φi ∼ N

π
|Qci

qi |
|Cci |

+
∑

1≤m<qi

2π
|Qci

m |
|Cci |

, π
|Qci

qi |
|Cci |


⇒ Angular sector [0, 2π] is partitioned among the qcimax clusters
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Fragmented k-cores

▶ In general, one may obtain disconnected (fragmented) k-cores

▶ The general algorithm can reveal such structure. For details, see:

▶ J. I. Alvarez-Hamelin et al, “Large scale networks fingerprinting and
visualization using the k-core decomposition,” in NeurIPS, 2005
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Mapping the Internet

▶ A single, comprehensive map of the Internet is lacking. Reasons:
▶ Dynamic and self-organized nature
▶ Proprietary and security constraints among service providers
▶ Sheer size

▶ What is “the” Internet?
▶ The physical infrastructure
▶ Logical paths of information flow over that infrastructure
▶ The content underlying that information
▶ Usage patterns of those disseminating, consuming that content
▶ Traffic created by such usage

Ex: Hierarchical visualization of the Internet’s logical structure?

▶ Go over measurement, network graph construction and visualization
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Measurement

▶ System: logical Internet, paths over which packets are routed

▶ Elements: used routers, aggregations e.g., autonomous systems (AS)

▶ Interactions: router connections, effective connections between ASs

⇒ Large-scale measurement via probing, e.g., traceroute

Source 

Destination 

▶ Data by the Cooperative Assoc. for Internet Data Analysis (CAIDA)
▶ Use the Skitter topology project. 20 worldwide measurement centers
▶ Sends 800k traceroute-like probes to suitably spread destinations
▶ Measurements taken from April 21 to May 3, 2003
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Network graph construction

▶ G (V ,E ) can be inferred from sequences of traceroute probes
▶ Use paths from a source to construct trees (or DAGs)
▶ Merge collections of trees from multiple sources to form G

▶ Vertices correspond to the 192,244 discovered routers

▶ The 609,066 edges join routers along the discovered paths

▶ Caveat on a few practical difficulties
▶ Asymmetric routing: Studies realistically produce directed paths
▶ Time sensitivity: Merge paths that changed (disappeared) over time
▶ Multiple interfaces: Router may be discovered via multiple “aliases”
▶ Security policies: Firewalls “hide” the topology behind them
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The router-level Internet
8

Fig. 3.8 Visualization of a k-core decomposition of the CAIDA router-level Internet data. Figure
courtesy of Ignacio Alvarez-Hamelin.

▶ Hierarchical structure of the Internet using k-core decomposition
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The AS-level Internet

▶ Data from the University of Oregon Route Views Project
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Glossary

▶ Network mapping

▶ Graph summarization

▶ Elements and interactions

▶ Scale

▶ Measurements of relation

▶ Enumerated and sampled data

▶ Vertex similarity

▶ “Ball-of-yarn” phenomenon

▶ Graph embedding

▶ Drawing conventions

▶ Aesthetics

▶ Spring-embedder methods

▶ Energy-placement methods

▶ Scientometrics

▶ Jaccard inter-citation frequency

▶ k-core decomposition

▶ Vertex coreness

▶ k-shell and k-core

▶ Physical and logical Internet

▶ traceroute probing
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