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Descriptive analysis of network characterstics

▶ Given a network graph representation of a complex system

⇒ Structural properties of G key to system-level understanding

Example

▶ Q1: Underpinning of various types of basic social dynamics?

A: Study vertex triplets (triads) and patterns of ties among them

▶ Q2: How can we formalize the notion of ‘importance’ in a network?

A: Define measures of individual vertex (or group) centrality

▶ Q3: Can we identify communities and cohesive subgroups?

A: Formulate as a graph partitioning (clustering) problem

▶ Characterization of individual vertices/edges and network cohesion
▶ Social network analysis, math, computer science, statistical physics
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Degree

▶ Def: The degree dv of vertex v is its number of incident edges

⇒ Degree sequence arranges degrees in non-decreasing order
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▶ In figure ⇒ Vertex degrees shown in red, e.g., d1 = 2 and d5 = 3
⇒ Graph’s degree sequence is 2,2,2,3,3,4

▶ In general, the degree sequence does not uniquely specify the graph

▶ High-degree vertices are likely to be influential, central, prominent
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Degree distribution

▶ Let N(d) denote the number of vertices with degree d

⇒ Fraction of vertices with degree d is P (d) := N(d)
Nv

▶ Def: The collection {P (d)}d≥0 is the degree distribution of G
▶ Histogram formed from the degree sequence (bins of size one)

P(d) 

d 

▶ P (d) = probability that randomly chosen node has degree d

⇒ Summarizes the local connectivity in the network graph
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Joint degree distribution

▶ Q: What about patterns of association among nodes of given degrees?

▶ A: Define the two-dimensional analogue of a degree distribution
3

0 2 4 6 8 10

0
2

4
6

8
10

log2(Degree)

lo
g 2
(D
eg
re
e)

0 2 4 6 8
0

2
4

6
8

log2(Degree)

lo
g 2
(D
eg
re
e)

Fig. 4.3 Image representation of the logarithmically transformed joint degree distribution
{log2 fd,d′ }, for the router-level Internet data (left) and the protein interaction data (right). Col-
ors range from blue (low relative frequency) to red (high relative frequency), with white indicating
areas with no data. Note that both x- and y-axes are also on base-2 logarithmic scales.

Router-level Internet Protein interaction 

▶ Prob. of random edge having incident vertices with degrees (d1, d2)
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A simple random graph model

▶ Def: The Erdös-Renyi random graph model Gn,p

▶ Undirected graph with n vertices, i.e., of order Nv = n
▶ Edge (u, v) present with probability p, independent of other edges

▶ Simulation is easy: draw
(
n
2

)
i.i.d. Bernoulli(p) RVs

Example

▶ Three realizations of G10, 16
. The size Ne is a random variable
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Degree distribution of Gn,p

▶ Q: Degree distribution P (d) of the Erdös-Renyi graph Gn,p?

▶ Define I {(v , u)} = 1 if (v , u) ∈ E , and I {(v , u)} = 0 otherwise.

⇒ Fix v . For all u ̸= v , the indicator RVs are i.i.d. Bernoulli(p)

▶ Let Dv be the (random) degree of vertex v . Hence,

Dv =
∑
u ̸=v

I {(v , u)}

⇒ Dv is binomial with parameters (n − 1, p) and

P (d) = P (Dv = d) =

(
n − 1

d

)
pd(1− p)(n−1)−d

▶ In words, the probability of having exactly d edges incident to v

⇒ Same for all v ∈ V , by independence of the Gn,p model
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Behavior for large n

▶ Q: How does the degree distribution look like for a large network?

▶ Recall Dv is a sum of n − 1 i.i.d. Bernoulli(p) RVs

⇒ Central Limit Theorem: Dv ∼ N (np, np(1− p)) for large n
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▶ Makes most sense to increase n with fixed E [Dv ] = (n − 1)p = µ

⇒ Law of rare events: Dv ∼ Poisson(µ) for large n
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Law of rare events

▶ Substituting p = µ/n in the binomial PMF yields

Pn(d) =
n!

(n − d)!d!

(µ
n

)d (
1− µ

n

)n−d

=
n(n − 1) . . . (n − d + 1)

nd

µd

d!

(1− µ/n)n

(1− µ/n)d

▶ In the limit, red term is lim
n→∞

(1− µ/n)n = e−µ

▶ Black and blue terms converge to 1. Limit is the Poisson PMF

lim
n→∞

Pn(d) = 1
µd

d!

e−µ

1
= e−µµ

d

d!

▶ Approximation usually called “law of rare events”
▶ Individual edges happen with small probability p = µ/n
▶ The aggregate (degree, number of edges), though, need not be rare
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The Gn,p model and real-world networks

▶ For large graphs, Gn,p suggests P (d) with an exponential tail

⇒ Unlikely to see degrees spanning several orders of magnitude
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▶ Concentrated distribution around the mean E [Dv ] = (n − 1)p

▶ Q: Is this in agreement with real-world networks?
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World Wide Web

▶ Degree distributions of the WWW analyzed in [Broder et al ’00]

⇒ Web a digraph, study both in- and out-degree distributions

▶ Majority of vertices naturally have small degrees

⇒ Nontrivial amount with orders of magnitude higher degrees
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Internet autonomous systems

▶ The topology of the AS-level Internet studied in [Faloutsos3 ’99]

▶ Right-skewed degree distributions also found for router-level Internet
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Seems to be a structural pattern

▶ More heavy-tailed degree distributions found in [Barabasi-Albert ’99]

P(
d)

 

d d d 
Author collaboration Web graph Power grid 

▶ These heterogeneous, diffuse degree distributions are not exponential
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Power laws
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Power-law degree distributions
1
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Fig. 4.1 Degree distributions. Left: the router-level Internet network graph described in Sec-
tion 3.5.2. Right: the network of measured interactions among proteins in S. cerevisiae (yeast),
as of January 2007. In each plot, both x- and y-axes are in base-2 logarithmic scale.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

▶ Log-log plots show roughly a linear decay, suggesting the power law

P (d) ∝ d−α ⇒ log P (d) = C − α log d

▶ Power-law exponent (negative slope) is typically α ∈ [2, 3]
▶ Normalization constant C is mostly uninteresting

▶ Power laws often best followed in the tail, i.e., for d ≥ dmin
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Power law and exponential degree distributions

THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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P(d)=d-­‐2.1	
   P(d)=d-­‐2.1	
  

Poisson	
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▶ Erdös-Renyi’s Poisson degree distribution exhibits a sharp cutoff

⇒ Power laws upper bound exponential tails for large enough d
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Scale-free networks

▶ Scale-free network: degree distribution with power-law tail
▶ Name motivated for the scale-invariance property of power laws

▶ Def: A scale-free function f (x) satisfies f (ax) = bf (x), for a, b ∈ R

Example

▶ Power-law functions f (x) = x−α are scale-free since

f (ax) = (ax)−α = a−αf (x) = bf (x), where b := a−α

▶ Exponential functions f (x) = cx are not scale-free because

f (ax) = cax = (cx)a = f a(x) ̸= bf (x), except when a = b = 1

▶ No ‘characteristic scale’ for the degrees. More soon

⇒ Functional form of the distribution is invariant to scale
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Power-law distributions are ubiquitous

▶ Power-law distributions widespread beyond networks [Clauset et al ’07]
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Normalization

▶ The power-law degree distribution P (d) = Cd−α is a PMF, hence

1 =
∞∑
d=0

P (d) =
∞∑
d=0

Cd−α ⇒ C =
1∑∞

d=0 d
−α

▶ Often a power law is only valid for the tail d ≥ dmin, hence

C =
1∑∞

d=dmin
d−α

≈ 1∫∞
dmin

x−αdx
= (α− 1)dα−1

min

⇒ Sound approximation since P (d) varies slowly for large d

▶ The normalized power-law degree distribution is

P (d) =
α− 1

dmin

(
d

dmin

)−α

, d ≥ dmin
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Power-law probability density function

▶ Often convenient to treat degrees as real valued, i.e., d ∈ R+

▶ Define a power-law PDF for the tail of the degree distribution as

p(d) =
α− 1

dmin

(
d

dmin

)−α

, d ≥ dmin

⇒ A valid PDF, already showed that
∫∞
dmin

p(x)dx = 1

⇒ Convergence of the integral requires α > 1

▶ Ex: Probability that a random node has degree exceeding 100 is

P (Dv > 100) =

∫ ∞

100

α− 1

dmin

(
x

dmin

)−α

dx =

(
100

dmin

)1−α
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Divergent moments

▶ Q: What is the m-th moment of a power-law distributed RV?

▶ From the definition of moment and the power-law PDF one has

E [Dm
v ] =

∫ ∞

dmin

xmp(x)dx =
α− 1

d1−α
min

[
xm+1−α

m + 1− α

]∞
dmin

⇒ Convergence of the integral requires m + 1 < α

▶ For real-world networks, typically α ∈ (2, 3) so

E [Dv ] =

(
α− 1

α− 2

)
dmin < ∞ and E [Dm

v ] = ∞, m ≥ 2

▶ In particular, the second moment and variance are infinite

⇒ Consistent with variability and heterogeneity of degrees
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Revisiting the scale-free property

▶ A measure of scale of a RV is its standard deviation σ

P(d) 

d	
  

P(d)=d-­‐2.1	
  

Poisson	
  

μ	
  

Large random network Gn,p

▶ Randomly chosen node has degree d = µ±√
µ. The scale is µ

Scale-free network
▶ Randomly chosen node has degree d = µ±∞. There is no scale
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Visualizing and fitting power laws

Degree distributions

Power-law degree distributions

Visualizing and fitting power laws

Popularity and preferential attachment
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Visualizing power-law degree distributions

▶ A simple histogram may be problematic for visualizing P (d)

⇒ Use log-log scale to warp probabilities and widespread degrees

P(d) 

d	
   d	
  

P(d) 

▶ Large statistical fluctuations (‘noise’) in the tail for large d

⇒ With bins of size one, high-degree counts are small

⇒ Makes sense to increase the bin size
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Logarithmic binning

▶ Uniformly widening bins sacrifices resolution for small degrees

⇒ Use bins of different sizes in different parts of the histogram

P(d) 

d	
  
▶ Logarithmic binning is widely used. The n-th bin is

an−1 ≤ d < an, n = 1, 2, . . .

Ex: Common choice is a = 2, n-th bin has width 2n − 2n−1 = 2n−1

▶ Normalize by the bin width. Wider bins will accrue higher counts
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Complementary cumulative distribution function

▶ Def: The complementary cumulative distribution function (CCDF) is

F̄ (d) = P (Dv ≥ d)

⇒ Function F̄ (d) is the fraction of vertices with degree at least d

▶ For a power-law PDF, the CCDF also obeys a power law since

P (Dv ≥ d) =

∫ ∞

d

α− 1

dmin

(
x

dmin

)−α

dx =

(
d

dmin

)−(α−1)

▶ If the PDF has exponent α, then CCDF F̄ (d) has exponent α− 1
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Computing the CCDF

Step 1: List the degrees dv in descending order

Step 2: Assign ranks rv (from 1 to Nv ) to vertices in that order

Step 3: The CCDF is the plot of rv/Nv versus degree dv
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▶ If degrees are repeated, CCDF is the largest value of rv/Nv

▶ If d not observed, F̄ (d) = value for next (larger) observed degree

Network Science Analytics Degrees, Power Laws and Popularity 28



Visualizing power laws with the CCDF

▶ Plot the CCDF in a log-log scale and look for a straight-line behavior

d	
  

F(d) 

▶ Mitigates noise using cumulative frequencies (cf. raw frequencies)

▶ No binning needed ⇒ Avoids information loss as bins widen
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Fitting power-law distributions

▶ Basic, yet nontrivial task is to estimate the exponent α from data

▶ A power law implies the linear model log P (d) = C − α log d + ϵ

⇒ Natural to form the linear least-squares (LS) estimator

{α̂, Ĉ} = argmin
α,C

∑
i

(log P (di )− C + α log di )
2

▶ Simple, very popular, but not advisable for at least three reasons:

1) Extremely noisy high-degree data, where the counts are the lowest
2) Estimates are biased. The log transform distorts unevenly the errors
3) If the power law is only valid in the tail, need to hand pick dmin
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Linear regression inference on the CCDF

▶ A solution to the noise problem is to use the CCDF F̄ (d)

⇒ Cumulative frequencies smoothen the noise

▶ Recall the CCDF follows a power law with exponent α− 1

⇒ Can use a linear regression-based approach to find α̂, but . . .

P(d) 

d	
   d	
  

P(d) 

d	
  

F(d) 

▶ Successive points in the CCDF plot are not mutually independent

⇒ (Ordinary) LS is not optimal for correlated errors

Network Science Analytics Degrees, Power Laws and Popularity 31



Maximum-likelihood estimator

▶ Suppose {di}Nv

i=1 are independent and follow a power law. MLE of α?

⇒ The data PDF is f (d ;α) = α−1
dmin

(
d

dmin

)−α

, d ≥ dmin

▶ The log-likelihood function is (up to constants independent of α)

ℓNv (α) =
Nv∑
i=1

log f (di ;α) ∝ Nv log (α− 1)− α

Nv∑
i=1

log

(
di
dmin

)
▶ The MLE α̂ (a.k.a. Hill estimator) solves the equation

∂ℓNv (α)

∂α

∣∣∣∣
α=α̂

=
Nv

α̂− 1
−

Nv∑
i=1

log

(
di
dmin

)
= 0

▶ The solution is

α̂ = 1 +

[
1

Nv

Nv∑
i=1

log

(
di
dmin

)]−1
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Hill plot of ML estimates

▶ Q: How can we go around hand-picking the value of dmin?

1) Rank-order degrees to obtain the sequence d(1) ≤ . . . ≤ d(Nv )

2) For each k ∈ {1, . . . ,Nv − 1} let dmin = d(Nv−k). The MLEs are

α̂(k) = 1 +

[
1

k

k−1∑
i=0

log

(
d(Nv−i)

d(Nv−k)

)]−1

3) Draw and examine the Hill plot of α̂(k) versus k

▶ If a power law is credible, the Hill plot should ‘settle down’

⇒ Identify stable α̂ for a wide range of (intermediate) k values

▶ Q: Why focus on values on the intermediate range?
▶ Small k: Inaccurate estimation due to limited data
▶ Large k: Bias if power law is only valid in the tail
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Example: Internet and protein interaction data
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Fig. 4.2 Hill plots of maximum likelihood estimates α̂k, as a function of k (i.e., the number of
order statistics used), for the Internet (left) and protein interaction (right) datasets.
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Fig. 4.1 Degree distributions. Left: the router-level Internet network graph described in Sec-
tion 3.5.2. Right: the network of measured interactions among proteins in S. cerevisiae (yeast),
as of January 2007. In each plot, both x- and y-axes are in base-2 logarithmic scale.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Power law 
is credible 

Power law is 
inappropriate 

▶ Sharp decay in α̂ suggests a simple power-law model is inappropriate
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Example: Flickr data

▶ Flickr social network: Nv ≈ 0.6M, Ne ≈ 3.5M [Leskovec et al ’08]
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▶ Good fit to a power law with exponential cutoff F̄ (d) ∝ d−αe−βd
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Popularity and preferential attachment

Degree distributions

Power-law degree distributions

Visualizing and fitting power laws

Popularity and preferential attachment
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Popularity as a network phenomenon

▶ Popularity is a phenomenon characterized by extreme imbalances
▶ How can we quantify these imbalances? Why do they arise?

▶ Basic models of network behavior can be very insightful

⇒ Result of coupled decisions, correlated behavior in a population
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Preferential attachment model

▶ Simple model for the creation of e.g., links among Web pages

▶ Vertices are created one at a time, denoted 1, . . . ,Nv

▶ When node j is created, it makes a single arc to i , 1 ≤ i < j

▶ Creation of (j , i) governed by a probabilistic rule:
▶ With probability p, j links to i chosen uniformly at random
▶ With probability 1− p, j links to i with probability ∝ d in

i

▶ The resulting graph is directed, each vertex has dout
v = 1

▶ Preferential attachment model leads to “rich-gets-richer” dynamics

⇒ Arcs formed preferentially to (currently) most popular nodes

⇒ Prob. that i increases its popularity ∝ i ’s current popularity
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Preferential attachment yields power laws

Theorem
The preferential attachment model gives rise to a power-law in-degree
distribution with exponent α = 1 + 1

1−p , i.e.,

P
(
d in = d

)
∝ d−(1+ 1

1−p )

▶ Key: “j links to i with probability ∝ d in
i ” equivalent to copying, i.e.,

“j chooses k uniformly at random, and links to i if (k, i) ∈ E”

▶ Reflect: Copy other’s decision vs. independent decisions in Gn,p

▶ As p → 0 ⇒ Copying more frequent ⇒ Smaller α → 2
▶ Intuitive: more likely to see extremely popular pages (heavier tail)
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Continuous approximation

▶ In-degree d in
i (t) of node i at time t ≥ i is a RV. Two facts

F1) Initial condition: d in
i (i) = 0 since node i just created at time t = i

F2) Dynamics of d in
i (t): Probability that new node t + 1 > i links to i is

P ((t + 1, i) ∈ E) = p × 1

t
+ (1− p)× d in

i (t)

t

▶ Will study a deterministic, continuous approximation to the model
▶ Continuous time t ∈ [0,Nv ]
▶ Continuous degrees x in

i (t) : [i ,Nv ] 7→ R+ are deterministic

▶ Require in-degrees to satisfy the following growth equation

dx ini (t)

dt
=

p

t
+

(1− p)x ini (t)

t
, x ini (i) = 0
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Solving the differential equation

▶ Solve the first-order differential equation for x ini (t) (let q = 1− p)

dx ini
dt

=
p + qx ini

t

▶ Divide both sides by p + qx ini (t) and integrate over t∫
1

p + qx ini

dx ini
dt

dt =

∫
1

t
dt

▶ Solving the integrals, we obtain (c is a constant)

ln (p + qx ini ) = q ln (t) + c
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Solving the differential equation (cont.)

▶ Exponentiating and letting K = ec we find

ln (p + qx ini (t)) = q ln (t) + c ⇒ x ini (t) =
1

q
(Ktq − p)

▶ To determine the unknown constant K , use the initial condition

0 = x ini (i) =
1

q
(Kiq − p) ⇒ K =

p

iq

▶ Hence, the deterministic approximation of d in
i (t) evolves as

x ini (t) =
1

q

( p

iq
× tq − p

)
=

p

q

[( t
i

)q

− 1

]
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Obtaining the degree distribution

▶ Q: At time t, what fraction F̄ (d) of all nodes have in-degree ≥ d?

Approximation: What fraction of all functions x ini (t) ≥ d by time t?

x ini (t) =
p

q

[( t
i

)q

− 1

]
≥ d

▶ Can be rewritten in terms of i as

i ≤ t

[(
q

p

)
d + 1

]−1/q

▶ By time t there are exactly t nodes in the graph, so the fraction is

F̄ (d) =

[(
q

p

)
d + 1

]−1/q

= 1− F (d)
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Identifying the power law

▶ The degree distribution is given by the PDF p(d)

▶ Recall that the PDF, CDF and CCDF are related, namely

p(x) =
dF (x)

dx
= −dF̄ (x)

dx

▶ Differentiating F̄ (d) =
[(

q
p

)
d + 1

]−1/q

yields

p(d) =
1

p

[(
q

p

)
d + 1

]−(1+ 1
q )

▶ Showed p(d) ∝ d−(1+1/q), a power law with exponent α = 1 + 1
1−p

⇒ Disclaimer: Relied on heuristic arguments

⇒ Rigorous, probabilistic analysis possible
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Glossary

▶ Degree distribution

▶ Erdös-Renyi model

▶ Binomial distribution

▶ Law of rare events

▶ Right-skewed distribution

▶ Logarithmic scale

▶ Power law

▶ Exponential and heavy tails

▶ Scale-free network

▶ Characteristic scale

▶ Logarithmic binning

▶ Cumulative frequencies

▶ Hill estimator and plot

▶ Exponential cutoff

▶ Coupled decisions

▶ Preferential attachment model

▶ Rich-gets-richer phenomena

▶ Growth equation
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