

Centrality Measures and Link Analysis

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

February 13, 2023

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

▶ In network analysis many questions relate to vertex importance

Example

- Q1: Which actors in a social network hold the 'reins of power'?
- Q2: How authoritative is a WWW page considered by peers?
- Q3: The 'knock-out' of which genes is likely to be lethal?
- ▶ Q4: How critical to the daily commute is a subway station?
- Measures of vertex centrality quantify such notions of importance
 Degrees are simplest centrality measures. Let's study others

Closeness centrality

- Rationale: 'central' means a vertex is 'close' to many other vertices
- **Def:** Distance d(u, v) between vertices u and v is the length of the shortest u v path. Oftentimes referred to as geodesic distance
- Closeness centrality of vertex v is given by

$$c_{Cl}(v) = \frac{1}{\sum_{u \in V} d(u, v)}$$

• Interpret $v^* = \arg \max_{v} c_{Cl}(v)$ as the most approachable node in G

 \blacktriangleright To compare with other centrality measures, often normalize to [0,1]

$$c_{Cl}(v) = \frac{N_v - 1}{\sum_{u \in V} d(u, v)}$$

• Computation: need all pairwise shortest path distances in G \Rightarrow Dijkstra's algorithm in $O(N_v^2 \log N_v + N_v N_e)$ time

► Limitation 1: sensitivity, values tend to span a small dynamic range ⇒ Hard to discriminate between central and less central nodes

▶ Limitation 2: assumes connectivity, if not c_{Cl}(v) = 0 for all v ∈ V
 ⇒ Compute centrality indices in different components

- Rationale: 'central' node is (in the path) 'between' many vertex pairs
- Betweenness centrality of vertex v is given by

$$c_{Be}(v) = \sum_{s \neq t \neq v \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}$$

- $\sigma(s,t)$ is the total number of s-t shortest paths
- $\sigma(s,t|v)$ is the number of s-t shortest paths through $v \in V$

• Interpret $v^* = \arg \max_{v} c_{Be}(v)$ as the controller of information flow

RÖCHESTER

• Notice that a s - t shortest path goes through v if and only if

$$d(s,t) = d(s,v) + d(v,t)$$

Betweenness centralities can be naively computed for all v ∈ V by:
 Step 1: Use Dijkstra to tabulate d(s, t) and σ(s, t) for all s, t
 Step 2: Use the tables to identify σ(s, t|v) for all v
 Step 3: Sum the fractions to obtain c_{Be}(v) for all v (O(N_v³) time)

Cubic complexity can be prohibitive for large networks

O(N_v N_e)-time algorithm for unweighted graphs in:
 U. Brandes, "A faster algorithm for betweenness centrality," *Journal of Mathematical Sociology*, vol. 25, no. 2, pp. 163-177, 2001

Rochester

Rationale: 'central' vertex if 'in-neighbors' are themselves important
 ⇒ Compare with 'importance-agnostic' degree centrality

Eigenvector centrality of vertex *v* is implicitly defined as

$$c_{Ei}(v) = \alpha \sum_{(u,v)\in E} c_{Ei}(u)$$

- No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- Same for 6

Eigenvalue problem

Recall the adjacency matrix A and

1

$$c_{Ei}(v) = \alpha \sum_{(u,v)\in E} c_{Ei}(u)$$

► Vector $\mathbf{c}_{Ei} = [c_{Ei}(1), \dots, c_{Ei}(N_v)]^\top$ solves the eigenvalue problem $\mathbf{A}^T \mathbf{c}_{Ei} = \alpha^{-1} \mathbf{c}_{Ei}$

⇒ Typically α⁻¹ chosen as largest eigenvalue of A^T [Bonacich'87]
 > If G is strongly connected, by Perron's Theorem then
 ⇒ The largest eigenvalue of A^T is positive and simple
 ⇒ All the entries in the dominant eigenvector c_{Ei} are positive
 > Can compute c_{Ei} and α⁻¹ via O(N_v²) complexity power iterations

$$c_{Ei}(k+1) = rac{\mathbf{A}^{T} \mathbf{c}_{Ei}(k)}{\|\mathbf{A}\mathbf{c}_{Ei}(k)\|}, \ k = 0, 1, \dots$$

Q: Which vertices are more central? A: It depends on the context

Each measure identifies a different vertex as most central
 None is 'wrong', they target different notions of importance

Example: Comparing centrality measures

Q: Which vertices are more central? A: It depends on the context

- Small green vertices are arguably more peripheral
 - \Rightarrow Less clear how the yellow, dark blue and red vertices compare

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

- Robustness to noise in network data is of practical importance
- Approaches have been mostly empirical
 - \Rightarrow Find average response in random graphs when perturbed
 - \Rightarrow Not generalizable and does not provide explanations
- Characterize behavior in noisy real graphs
 - ⇒ Degree and closeness are more reliable than betweenness
- Q: What is really going on?
 - \Rightarrow Framework to study formally the stability of centrality measures
- S. Segarra and A. Ribeiro, "Stability and continuity of centrality measures in weighted graphs," *IEEE Trans. Signal Process.*, 2015

• Weighted and directed graphs G(V, E, W)

- \Rightarrow Set V of N_{v} vertices
- \Rightarrow Set $E \subseteq V \times V$ of edges
- \Rightarrow Map $W: E \rightarrow \mathbb{R}_{++}$ of weights in each edge

Path P(u, v) is an ordered sequence of nodes from u to v

When weights represent dissimilarities

 \Rightarrow Path length is the sum of the dissimilarities encountered

Shortest path length $s_G(u, v)$ from u to v

$$s_G(u, v) := \min_{P(u,v)} \sum_{i=0}^{\ell-1} W(u_i, u_{i+1})$$

Centrality Measures and Link Analysis

- ▶ Space of graphs $\mathcal{G}_{(V,E)}$ with (V,E) as vertex and edge set
- ▶ Define the metric $d_{(V,E)}(G,H) : \mathcal{G}_{(V,E)} \times \mathcal{G}_{(V,E)} \to \mathbb{R}_+$

$$d_{(V,E)}(G,H) := \sum_{e \in E} |W_G(e) - W_H(e)|$$

▶ Def: A centrality measure c(·) is stable if for any vertex v ∈ V in any two graphs G, H ∈ G(V,E), then

$$\left|c^{G}(v)-c^{H}(v)\right|\leq K_{G} d_{(V,E)}(G,H)$$

- ► *K_G* is a constant depending on *G* only
- Stability is related to Lipschitz continuity in G(V,E)
- Independent of the definition of $d_{(V,E)}$ (equivalence of norms)
- Node importance should be robust to small perturbations in the graph

Sum of the weights of incoming arcs

$$c_{De}(v) := \sum_{u \mid (u,v) \in E} W(u,v)$$

- ▶ Applied to graphs where the weights in *W* represent similarities
- High $c_{De}(v) \Rightarrow v$ similar to its large number of neighbors

Proposition 1

For any vertex $v \in V$ in any two graphs $G, H \in \mathcal{G}_{(V,E)}$, we have that

$$|c_{De}^{G}(v) - c_{De}^{H}(v)| \leq d_{(V,E)}(G,H)$$

- i.e., degree centrality c_{De} is a stable measure
 - Can show closeness and eigenvector centralities are also stable

► Look at the shortest paths for every two nodes distinct from v ⇒ Sum the proportion that contains node v

$$c_{Be}(v) := \sum_{s \neq v \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}$$

- $\sigma(s, t)$ is the total number of s t shortest paths
- $\sigma(s, t|v)$ is the number of those paths going through v

Proposition 2

The betweenness centrality measure c_{Be} is not stable

Compare the value of c_{Be}(v) in graphs G and H

 \Rightarrow Centrality value $c_{Be}^{H}(v) = 0$ remains unchanged for any $\epsilon > 0$

For small values of ϵ , graphs G and H become arbitrarily similar

$$9 = |c_{Be}^{\mathsf{G}}(v) - c_{Be}^{\mathsf{H}}(v)| \leq K_{\mathsf{G}} d_{(V,E)}(\mathsf{G},\mathsf{H}) \rightarrow 0$$

 \Rightarrow Inequality is not true for any constant K_G

► Define $G^{v} = (V^{v}, E^{v}, W^{v}), V^{v} = V \setminus \{v\}, E^{v} = E|_{V^{v} \times V^{v}}, W^{v} = W|_{E^{v}}$

 \Rightarrow $G^{\, v}$ obtained by deleting from G node v and edges connected to v

• Stable betweenness centrality $c_{SBe}(v)$

$$c_{SBe}(v) := \sum_{s \neq v \neq t \in V} s_{G^v}(s,t) - s_G(s,t)$$

 \Rightarrow Captures impact of deleting v on the shortest paths

▶ If v is (not) in the s - t shortest path, $s_{G^v}(s, t) - s_G(s, t) > (=)0$ ⇒ Same notion as (traditional) betweenness centrality c_{Be} Proposition 3

For any vertex $v \in V$ in any two graphs $G, H \in \mathcal{G}_{(V,E)}$, then

$$|c_{SBe}^{G}(v) - c_{SBe}^{H}(v)| \le 2N_{v}^{2} d_{(V,E)}(G,H)$$

i.e., stable betweenness centrality c_{SBe} is a stable measure

- $G_{n,p}$ graphs with p = 10/n and weights $\mathcal{U}(0.5, 1.5)$
 - \Rightarrow Vary *n* from 10 to 200
 - \Rightarrow Perturb multiplying weights with random numbers $\mathcal{U}(0.99, 1.01)$
- Compare centrality rankings in the original and perturbed graphs

Betweenness centrality presents larger maximum and average changes

- Compute probability of observing a ranking change ≥ 5
 - \Rightarrow Plot the histogram giving rise to the empirical probabilities

- For c_{Be} some node varies its ranking by 5 positions with high probability
- Long tail in histogram is evidence of instability
 - \Rightarrow Minor perturbation generates change of 19 positions

Real-world graph based on the air traffic between popular U.S. airports

 \Rightarrow Nodes are $N_v = 25$ popular airports

 \Rightarrow Edge weights are the number of yearly passengers between them

Betweenness centrality still presents the largest variations

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

- Search engines rank pages by looking at the Web itself
 - \Rightarrow Enough information intrinsic to the Web and its structure
- Information retrieval is a historically difficult problem

 \Rightarrow Keywords vs complex information needs (synonymy, polysemy)

- Beyond explosion in scale, unique issues arised with the Web
 - Diversity of authoring styles, people issuing queries
 - Dynamic and constantly changing content
 - Paradigm: from scarcity to abundance
- Finding and indexing documents that are relevant is 'easy'
- Q: Which few of these should the engine recommend?

 \Rightarrow Key is understanding Web structure, i.e., link analysis

Voting by in-links

- Ex: Suppose we issue the query 'newspapers'
 - First, use text-only information retrieval to identify relevant pages

Idea: Links suggest implicit endorsements of other relevant pages

Count in-links to assess the authority of a page on 'newspapers'

A list-finding technique

- Query also returns pages that compile lists of relevant resources
 - These hubs voted for many highly endorsed (authoritative) pages

Idea: Good lists have a better sense of where the good results are

Page's hub value is the sum of votes received by its linked pages

Repeated improvement

- Reasonable to weight more the votes of pages scoring well as lists
 - \Rightarrow Recompute votes summing linking page values as lists

Q: Why stop here? Use also improved votes to refine the list scores
 ⇒ Principle of repeated improvement

- Relevant pages fall in two categories: hubs and authorities
- Authorities are pages with useful, relevant content
 - Newspaper home pages
 - Course home pages
 - Auto manufacturer home pages
- Hubs are 'expert' lists pointing to multiple authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers
- ▶ Rules: Authorities and hubs have a mutual reinforcement relationship
 - \Rightarrow A good hub links to multiple good authorities
 - \Rightarrow A good authority is linked from multiple good hubs

- Hyperlink-Induced Topic Search (HITS) algorithm [Kleinberg'98]
- Each page $v \in V$ has a hub score h_v and authority score a_v

 \Rightarrow Network-wide vectors $\mathbf{h} = [h_1, \dots, h_{N_v}]^\top$, $\mathbf{a} = [a_1, \dots, a_{N_v}]^\top$

Authority update rule:

$$a_v(k) = \sum_{(u,v)\in E} h_u(k-1), \text{ for all } v \in V \Leftrightarrow \mathbf{a}(k) = \mathbf{A}^\top \mathbf{h}(k-1)$$

Hub update rule:

$$h_v(k) = \sum_{(v,u)\in E} a_u(k), ext{ for all } v \in V \Leftrightarrow \mathbf{h}(k) = \mathbf{Aa}(k)$$

▶ Initialize $\mathbf{h}(0) = \mathbf{1}/\sqrt{N_v}$, normalize $\mathbf{a}(k)$ and $\mathbf{h}(k)$ each iteration

Define the hub and authority rankings as

$$\mathbf{a} := \lim_{k \to \infty} \mathbf{a}(k), \quad \mathbf{h} := \lim_{k \to \infty} \mathbf{h}(k)$$

From the HITS update rules one finds for k = 0, 1, ...

$$\mathbf{a}(k+1) = \frac{\mathbf{A}^{\top} \mathbf{A} \mathbf{a}(k)}{\|\mathbf{A}^{\top} \mathbf{A} \mathbf{a}(k)\|}, \quad \mathbf{h}(k+1) = \frac{\mathbf{A} \mathbf{A}^{\top} \mathbf{h}(k)}{\|\mathbf{A} \mathbf{A}^{\top} \mathbf{h}(k)\|}$$

Power iterations converge to dominant eigenvectors of A^TA and AA^T

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{a} = \alpha_{\mathbf{a}}^{-1}\mathbf{a}, \quad \mathbf{A}\mathbf{A}^{\top}\mathbf{h} = \alpha_{\mathbf{h}}^{-1}\mathbf{h}$$

 \Rightarrow Hub and authority ranks are eigenvector centrality measures

Ex: link analysis of citations among US Supreme Court opinions

Rise and fall of authority of key Fifth Amendment cases [Fowler-Jeon'08]

- ▶ Node rankings to measure website relevance, social influence
- **Key idea:** in-links as votes, but 'not all links are created equal'
 - \Rightarrow How many links point to a node (outgoing links irrelevant)
 - \Rightarrow How important are the links that point to a node
- PageRank key to Google's original ranking algorithm [Page-Brin'98]
- Inuition 1: fluid that percolates through the network
 - \Rightarrow Eventually accumulates at most relevant Web pages
- Inuition 2: random web surfer (more soon)
 - \Rightarrow In the long-run, relevant Web pages visited more often
- PageRank and HITS success was quite different after 1998

► Each page $v \in V$ has PageRank r_v , let $\mathbf{r} = [r_1, \dots, r_{N_v}]^\top$ ⇒ Define $\mathbf{P} := (\mathbf{D}^{out})^{-1} \mathbf{A}$, where \mathbf{D}^{out} is the out-degree matrix

PageRank update rule:

$$r_{v}(k) = \sum_{(u,v)\in E} \frac{r_{u}(k-1)}{d_{u}^{out}}, \text{ for all } v \in V \Leftrightarrow \mathbf{r}(k) = \mathbf{P}^{T}\mathbf{r}(k-1)$$

Split current PageRank evenly among outgoing links and pass it on

- \Rightarrow New PageRank is the total fluid collected in the incoming links
- \Rightarrow Initialize $\mathbf{r}(0) = \mathbf{1}/N_{v}$. Flow conserved, no normalization needed
- Problem: 'Spider traps'
 - Accumulate all PageRank
 - Only when not strongly connected

▶ Apply the basic PageRank rule and scale the result by $s \in (0, 1)$ Split the leftover (1 - s) evenly among all nodes (evaporation-rain)

Scaled PageRank update rule:

$$r_v(k) = s imes \sum_{(u,v) \in E} rac{r_u(k-1)}{d_u^{out}} + rac{1-s}{N_v}, ext{ for all } v \in V$$

• Can view as basic update $\mathbf{r}(k) = \mathbf{\bar{P}}^{T}\mathbf{r}(k-1)$ with

$$ar{\mathsf{P}} := s\mathsf{P} + (1-s)rac{\mathbf{1}\mathbf{1}^{ op}}{N_v}$$

 \Rightarrow Scaling factor *s* typically chosen between 0.8 and 0.9

 \Rightarrow Power iteration converges to the dominant eigenvector of $\bar{\mathbf{P}}^{T}$

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

- Consider discrete-time index n = 0, 1, 2, ...
- Time-dependent random state X_n takes values on a countable set
 - ▶ In general denote states as i = 0, 1, 2, ..., i.e., here the state space is N ▶ If $X_n = i$ we say "the process is in state *i* at time *n*"
- ▶ Random process is $X_{\mathbb{N}}$, its history up to *n* is $\mathbf{X}_n = [X_n, X_{n-1}, \dots, X_0]^T$
- ▶ **Def:** process $X_{\mathbb{N}}$ is a Markov chain (MC) if for all $n \ge 1, i, j, \mathbf{x} \in \mathbb{N}^n$

$$P(X_{n+1} = j | X_n = i, \mathbf{X}_{n-1} = \mathbf{x}) = P(X_{n+1} = j | X_n = i) = P_{ij}$$

► Future depends only on current state X_n (memoryless, Markov property) ⇒ Future conditionally independent of the past, given the present

► Group the *P_{ij}* in a transition probability "matrix" **P**

$$\mathbf{P} = \begin{pmatrix} P_{00} & P_{01} & P_{02} & \dots & P_{0j} & \dots \\ P_{10} & P_{11} & P_{12} & \dots & P_{1j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & P_{i2} & \dots & P_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 \Rightarrow Not really a matrix if number of states is infinite

• Row-wise sums should be equal to one, i.e., $\sum_{i=0}^{\infty} P_{ii} = 1$ for all *i*

A graph representation or state transition diagram is also used

• Useful when number of states is infinite, skip arrows if $P_{ij} = 0$

Again, sum of per-state outgoing arrow weights should be one

• I can be happy
$$(X_n = 0)$$
 or sad $(X_n = 1)$

 \Rightarrow My mood tomorrow is only affected by my mood today

Model as Markov chain with transition probabilities

▶ Inertia ⇒ happy or sad today, likely to stay happy or sad tomorrow ▶ But when sad, a little less likely so $(P_{00} > P_{11})$

Example: Random (drunkard's) walk

Step to the right w.p. p, to the left w.p. 1 - p

 \Rightarrow Not that drunk to stay on the same place

States are $0, \pm 1, \pm 2, \ldots$ (state space is \mathbb{Z}), infinite number of states

Transition probabilities are

$$P_{i,i+1} = p,$$
 $P_{i,i-1} = 1 - p$

•
$$P_{ii} = 0$$
 for all other transitions

- Q: What can be said about multiple transitions?
- ▶ Probabilities of X_{m+n} given $X_m \Rightarrow n$ -step transition probabilities

$$P_{ij}^{n} = \mathsf{P}\left(X_{m+n} = j \mid X_m = i\right)$$

 \Rightarrow Define the matrix $\mathbf{P}^{(n)}$ with elements P_{ij}^{n}

Theorem

The matrix of n-step transition probabilities $\mathbf{P}^{(n)}$ is given by the n-th power of the transition probability matrix \mathbf{P} , i.e.,

$$\mathbf{P}^{(n)}=\mathbf{P}^n$$

Henceforth we write \mathbf{P}^n

Unconditional probabilities

- ► All probabilities so far are conditional, i.e., $P_{ij}^n = P(X_n = j | X_0 = i)$ ⇒ May want unconditional probabilities $p_j(n) = P(X_n = j)$
- Requires specification of initial conditions $p_i(0) = P(X_0 = i)$

• Using law of total probability and definitions of P_{ij}^n and $p_j(n)$

$$p_{j}(n) = P(X_{n} = j) = \sum_{i=0}^{\infty} P(X_{n} = j | X_{0} = i) P(X_{0} = i)$$
$$= \sum_{i=0}^{\infty} P_{ij}^{n} p_{i}(0)$$

▶ In matrix form (define vector $\mathbf{p}(n) = [p_1(n), p_2(n), ...]^T)$

 $\mathbf{p}(n) = \left(\mathbf{P}^n\right)^T \mathbf{p}(0)$

Limiting distributions

- MCs have one-step memory. Eventually they forget initial state
- Q: What can we say about probabilities for large n?

$$\pi_j := \lim_{n \to \infty} \mathsf{P}\left(X_n = j \mid X_0 = i\right) = \lim_{n \to \infty} P_{ij}^n$$

 \Rightarrow Assumed that limit is independent of initial state $X_0 = i$

▶ We've seen that this problem is related to the matrix power **P**ⁿ

$$\mathbf{P} = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}, \qquad \mathbf{P}^7 = \begin{pmatrix} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{pmatrix}$$
$$\mathbf{P}^2 = \begin{pmatrix} 0.7 & 0.3 \\ 0.45 & 0.55 \end{pmatrix}, \qquad \mathbf{P}^{30} = \begin{pmatrix} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{pmatrix}$$

▶ Matrix product converges ⇒ probs. independent of time (large *n*)

▶ All rows are equal \Rightarrow probs. independent of initial condition

ROCHESTER

Theorem

For an ergodic (i.e. irreducible, aperiodic, and positive recurrent) MC, $\lim_{n\to\infty} P_{ij}^n$ exists and is independent of the initial state *i*, i.e.,

 $\pi_j = \lim_{n \to \infty} P_{ij}^n$

Furthermore, steady-state probabilities $\pi_j \ge 0$ are the unique nonnegative solution of the system of linear equations

$$\pi_j = \sum_{i=0}^\infty \pi_i P_{ij}, \qquad \sum_{j=0}^\infty \pi_j = 1$$

• Limit probs. independent of initial condition exist for ergodic MC \Rightarrow Simple algebraic equations can be solved to find π_j

- Define vector steady-state distribution $\boldsymbol{\pi} := [\pi_0, \pi_1, \dots, \pi_J]^T$
- Limit distribution is unique solution of

$$\boldsymbol{\pi} = \mathbf{P}^T \boldsymbol{\pi}, \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

- Eigenvector π associated with eigenvalue 1 of \mathbf{P}^{T}
 - Eigenvectors are defined up to a scaling factor
 - Normalize to sum 1
- ▶ All other eigenvalues of \mathbf{P}^{T} have modulus smaller than 1
- Computing π as eigenvector is computationally efficient

Ergodicity

Def: Fraction of time $T_i^{(n)}$ spent in *i*-th state by time *n* is

$$T_i^{(n)} := \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i\right\}$$

• Compute expected value of $T_i^{(n)}$

$$\mathbb{E}\left[T_{i}^{(n)}\right] = \frac{1}{n}\sum_{m=1}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{m}=i\right\}\right] = \frac{1}{n}\sum_{m=1}^{n}\mathsf{P}\left(X_{m}=i\right)$$

► As $n \to \infty$, probabilities $P(X_m = i) \to \pi_i \text{ (ergodic MC)}$. Then $\lim_{n \to \infty} \mathbb{E} \left[T_i^{(n)} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n P(X_m = i) = \pi_i$

• For ergodic MCs same is true without expected value \Rightarrow Ergodicity

$$\lim_{n \to \infty} T_i^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ X_m = i \} = \pi_i, \quad \text{a.s}$$

Consider an ergodic Markov chain with transition probability matrix

• Ergodic averages slowly converge to $\pi = [0.09, 0.29, 0.61]^T$

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

Preliminary definitions

• Graph $G = (V, E) \Rightarrow$ vertices $V = \{1, 2, \dots, J\}$ and edges E

Outgoing neighborhood of i is the set of nodes j to which i points

$$n(i) := \{j : (i,j) \in E\}$$

Incoming neighborhood of i is the set of nodes that point to i:

$$n^{-1}(i) := \{j : (j, i) \in E\}$$

• Strongly connected $G \Rightarrow$ directed path joining any pair of nodes

Definition of rank

- ▶ Agent A chooses node *i*, e.g., web page, at random for initial visit
- Next visit randomly chosen between links in the neighborhood n(i)
 All neighbors chosen with equal probability
- If reach a dead end because node *i* has no neighbors
 ⇒ Chose next visit at random equiprobably among all nodes
- ▶ Redefine graph G = (V, E) adding edges from dead ends to all nodes
 - \Rightarrow Restrict attention to connected (modified) graphs

Rank of node i is the average number of visits of agent A to i

Equiprobable random walk

- Formally, let A_n be the node visited at time n
- Define transition probability P_{ij} from node i into node j

$$P_{ij} := \mathsf{P}\left(A_{n+1} = j \mid A_n = i\right)$$

• Next visit equiprobable among *i*'s $N_i := |n(i)|$ neighbors

$$P_{ij} = rac{1}{|n(i)|} = rac{1}{N_i}, \qquad ext{for all } j \in n(i)$$

- Still have a graph
- But also a MC
- Red (not blue) circles

Formal definition of rank

Def: Rank r_i of *i*-th node is the time average of number of visits

$$r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ A_m = i \}$$

 \Rightarrow Define vector of ranks $\mathbf{r} := [r_1, r_2, \dots, r_J]^T$

Rank r_i can be approximated by average r_{ni} at time n

$$r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\left\{A_m = i\right\}$$

 $\Rightarrow \text{Since } \lim_{n \to \infty} r_{ni} = r_i \text{ , it holds } r_{ni} \approx r_i \text{ for } n \text{ sufficiently large}$ $\Rightarrow \text{ Define vector of approximate ranks } \mathbf{r}_n := [r_{n1}, r_{n2}, \dots, r_{nJ}]^T$

If modified graph is connected, rank independent of initial visit

Output : Vector $\mathbf{r}(i)$ with ranking of node i

- Input : Scalar *n* indicating maximum number of iterations
- Input : Vector N(i) containing number of neighbors of i
- Input : Matrix N(i, j) containing indices j of neighbors of i

m = 1; **r**=zeros(J,1); % Initialize time and ranks

 $A_0 = \text{random}(\text{'unid'}, J)$; % Draw first visit uniformly at random while m < n do

jump = random('unid', $N(A_{m-1})$); % Neighbor uniformly at random

 $A_m = \mathbf{N}(A_{m-1}, \text{jump}); \%$ Jump to selected neighbor $\mathbf{r}(A_m) = \mathbf{r}(A_m) + 1; \%$ Update ranking for A_m m = m + 1;

end

 $\mathbf{r} = \mathbf{r}/n$; % Normalize by number of iterations *n*

- Asked probability students about homework collaboration
- Created (crude) graph of the social network of students in the class
 ⇒ Used ranking algorithm to understand connectedness
 - $\mathsf{Ex:}\ \mathsf{I}\ \mathsf{want}\ \mathsf{to}\ \mathsf{know}\ \mathsf{how}\ \mathsf{well}\ \mathsf{students}\ \mathsf{are}\ \mathsf{coping}\ \mathsf{with}\ \mathsf{the}\ \mathsf{class}$
 - \Rightarrow Best to ask people with higher connectivity ranking
- 2009 data from "UPenn's ECE440"

Ranked class graph

Convergence metrics

- Recall r is vector of ranks and r_n of rank iterates
- ▶ By definition $\lim_{n\to\infty} \mathbf{r}_n = \mathbf{r}$. How fast \mathbf{r}_n converges to \mathbf{r} (\mathbf{r} given)?
- Can measure by ℓ_2 distance between **r** and **r**_n

$$\zeta_n := \|\mathbf{r} - \mathbf{r}_n\|_2 = \left(\sum_{i=1}^J (r_{ni} - r_i)^2\right)^{1/2}$$

- ▶ If interest is only on highest ranked nodes, e.g., a web search
 ⇒ Denote r⁽ⁱ⁾ as the index of the *i*-th highest ranked node
 ⇒ Let r⁽ⁱ⁾_n be the index of the *i*-th highest ranked node at time n
- First element wrongly ranked at time *n*

$$\xi_n := \arg\min_i \{r^{(i)} \neq r_n^{(i)}\}$$

Evaluation of convergence metrics

Distance

- Distance close to 10^{-2} in $\approx 5 \times 10^3$ iterations
- Bad: Two highest ranks in $\approx 4 \times 10^3$ iterations
- Awful: Six best ranks in $\approx 8 \times 10^3$ iterations

(Very) slow convergence

Cannot confidently claim convergence until 10⁵ iterations

 \Rightarrow Beyond particular case, slow convergence inherent to algorithm

 \Rightarrow Leverage properties of MCs to obtain a faster algorithm

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure

Limit probabilities

► Recall definition of rank
$$\Rightarrow r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{A_m = i\}$$

Rank is time average of number of state visits in a MC
 Can be as well obtained from limiting probabilities

• Recall transition probabilities
$$\Rightarrow P_{ij} = \frac{1}{N_i}$$
, for all $j \in n(i)$

• Stationary distribution $\boldsymbol{\pi} = [\pi_1, \pi_1, \dots, \pi_J]^T$ solution of

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i$$

 \Rightarrow Plus normalization equation $\sum_{i=1}^J \pi_i = 1$

• As per ergodicity of MC (strongly connected G) \Rightarrow **r** = π

As always, can define matrix P with elements P_{ij}

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^J P_{ji} \pi_j \quad \text{for all } i$$

Right hand side is just definition of a matrix product leading to

$$\boldsymbol{\pi} = \mathbf{P}^T \boldsymbol{\pi}, \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

 \Rightarrow Also added normalization equation

Idea: solve system of linear equations or eigenvalue problem on P^T
 ⇒ Requires matrix P available at a central location
 ⇒ Computationally costly (sparse matrix P with 10¹⁸ entries)

• Let $p_i(n)$ denote probability of agent A visiting node i at time n

$$p_i(n) := \mathsf{P}(A_n = i)$$

• Probabilities at time n + 1 and n can be related

$$P(A_{n+1} = i) = \sum_{j \in n^{-1}(i)} P(A_{n+1} = i | A_n = j) P(A_n = j)$$

Which is, of course, probability propagation in a MC

1

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n)$$

• By definition limit probabilities are (let $\mathbf{p}(n) = [p_1(n), \dots, p_J(n)]^T$)

$$\lim_{n\to\infty}\mathbf{p}(n)=\boldsymbol{\pi}=\mathbf{r}$$

 \Rightarrow Compute ranks from limit of propagated probabilities

Network Science Analytics

Can also write probability propagation in matrix form

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) = \sum_{j=1}^J P_{ji} p_j(n)$$
 for all *i*

Right hand side is just definition of a matrix product leading to

$$\mathbf{p}(n+1) = \mathbf{P}^T \mathbf{p}(n)$$

► Idea: can approximate rank by large *n* probability distribution $\Rightarrow \mathbf{r} = \lim_{n \to \infty} \mathbf{p}(n) \approx \mathbf{p}(n) \text{ for } n \text{ sufficiently large}$

Algorithm is just a recursive matrix product, a power iteration

Output : Vector $\mathbf{r}(i)$ with ranking of node i

- Input : Scalar *n* indicating maximum number of iterations
- Input : Matrix P containing transition probabilities

```
m = 1; % Initialize time
```

r=(1/J)ones(J,1); % Initial distribution uniform across all nodes

while $m < n \operatorname{do}$

```
| \mathbf{r} = \mathbf{P}^T \mathbf{r}; \ \% \text{ Probability propagation} 
m = m + 1; 
end
```


- Q: Why does the random walk converge so slow?
- ► A: Need to register a large number of agent visits to every state Ex: 40 nodes, say 100 visits to each ⇒ 4 × 10³ iters.
- Smart idea: Unleash a large number of agents K

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \frac{1}{K} \sum_{k=1}^K \mathbb{I}\left\{A_{km} = i\right\}$$

- Visits are now spread over time and space
 - \Rightarrow Converges "K times faster"
 - \Rightarrow But haven't changed computational cost

• Q: What happens if we unleash infinite number of agents K?

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^K \mathbb{I} \{A_{km} = i\}$$

Using law of large numbers and expected value of indicator function

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{E} \left[\mathbb{I} \left\{ A_m = i \right\} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathsf{P} \left(A_m = i \right)$$

• Graph walk is an ergodic MC, then $\lim_{m \to \infty} P(A_m = i)$ exists, and

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n p_i(m) = \lim_{n \to \infty} p_i(n)$$

 \Rightarrow Probability propagation \approx Unleashing infinitely many agents

Distance to rank

 \blacktriangleright Distance is 10^{-2} in ≈ 30 iters., 10^{-4} in ≈ 140 iters.

 \Rightarrow Convergence two orders of magnitude faster than random walk

- Not bad: All nodes correctly ranked in 120 iterations
- Good: Ten best ranks in 70 iterations
- Great: Four best ranks in 20 iterations

Nodes want to compute their rank r_i

- \Rightarrow Can communicate with neighbors only (incoming + outgoing)
- \Rightarrow Access to neighborhood information only

Recall probability update

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j}p_j(n)$$

 \Rightarrow Uses local information only

- ▶ Distributed algorithm. Nodes keep local rank estimates $r_i(n)$
 - ▶ Receive rank (probability) estimates $r_j(n)$ from neighbors $j \in n^{-1}(i)$
 - Update local rank estimate $r_i(n+1) = \sum_{j \in n^{-1}(i)} r_j(n) / N_j$
 - Communicate rank estimate $r_i(n+1)$ to outgoing neighbors $j \in n(i)$

Only need to know the number of neighbors of my neighbors

Can communicate with neighbors only (incoming + outgoing)

- \Rightarrow But cannot access neighborhood information
- \Rightarrow Pass agent ('hot potato') around
- Local rank estimates $r_i(n)$ and counter with number of visits V_i
- Algorithm run by node i at time n

if Agent received from neighbor then $V_i = V_i + 1$ Choose random neighbor Send agent to chosen neighbor end $n = n + 1; r_i(n) = V_i/n;$

Speed up convergence by generating many agents to pass around

Random walk (RW) implementation

- \Rightarrow Most secure. No information shared with other nodes
- \Rightarrow Implementation can be distributed
- \Rightarrow Convergence exceedingly slow

System of linear equations

- \Rightarrow Least security. Graph in central server
- \Rightarrow Distributed implementation not clear
- \Rightarrow Convergence not an issue
- \Rightarrow But computationally costly to obtain approximate solutions
- Probability propagation
 - \Rightarrow Somewhat secure. Information shared with neighbors only
 - \Rightarrow Implementation can be distributed
 - \Rightarrow Convergence rate acceptable (orders of magnitude faster than RW)

- Centrality measure
- Closeness centrality
- Dijkstra's algorithm
- Betweenness centrality
- Information controller
- Eigenvector centrality
- Perron's Theorem
- Power method
- Information retrieval
- Link analysis
- Repeated improvement

- Hubs and authorities
- HITS algorithm
- PageRank
- Spider traps
- Scaled PageRank updates
- Ergodic Markov chain
- Limiting probabilities
- Random walk on a graph
- Long-run fraction of state visits
- Probability propagation
- Distributed algorithm