Centrality Measures and Link Analysis

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.hajim.rochester.edu/ece/sites/gmateos/

February 13, 2023
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Quantifying vertex importance

In network analysis many questions relate to vertex importance.

Example

- **Q1:** Which actors in a social network hold the ‘reins of power’?
- **Q2:** How authoritative is a WWW page considered by peers?
- **Q3:** The ‘knock-out’ of which genes is likely to be lethal?
- **Q4:** How critical to the daily commute is a subway station?

Measures of vertex centrality quantify such notions of importance.

⇒ Degrees are simplest centrality measures. Let's study others.
Closeness centrality

- **Rationale:** ‘central’ means a vertex is ‘close’ to many other vertices
- **Def:** Distance \(d(u, v) \) between vertices \(u \) and \(v \) is the length of the shortest \(u - v \) path. Oftentimes referred to as geodesic distance

- **Closeness centrality** of vertex \(v \) is given by

\[
c_{Cl}(v) = \frac{1}{\sum_{u \in V} d(u, v)}
\]

- Interpret \(v^* = \arg \max_v c_{Cl}(v) \) as the most approachable node in \(G \)
Normalization, computation and limitations

▶ To compare with other centrality measures, often normalize to $[0, 1]$

$$c_{CI}(v) = \frac{N_v - 1}{\sum_{u \in V} d(u, v)}$$

▶ Computation: need all pairwise shortest path distances in G
⇒ Dijkstra’s algorithm in $O(N_v^2 \log N_v + N_v N_e)$ time

▶ Limitation 1: sensitivity, values tend to span a small dynamic range
⇒ Hard to discriminate between central and less central nodes

▶ Limitation 2: assumes connectivity, if not $c_{CI}(v) = 0$ for all $v \in V$
⇒ Compute centrality indices in different components
Betweenness centrality

- **Rationale:** ‘central’ node is (in the path) ‘between’ many vertex pairs
- **Betweenness centrality** of vertex v is given by

$$c_{Be}(v) = \sum_{s \neq t \neq v \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}$$

- $\sigma(s, t)$ is the total number of $s - t$ shortest paths
- $\sigma(s, t|v)$ is the number of $s - t$ shortest paths through $v \in V$

- Interpret $v^* = \arg \max_v c_{Be}(v)$ as the **controller of information flow**
Computational considerations

- Notice that a $s - t$ shortest path goes through v if and only if

$$d(s, t) = d(s, v) + d(v, t)$$

- Betweenness centralities can be naively computed for all $v \in V$ by:

 Step 1: Use Dijkstra to tabulate $d(s, t)$ and $\sigma(s, t)$ for all s, t

 Step 2: Use the tables to identify $\sigma(s, t|v)$ for all v

 Step 3: Sum the fractions to obtain $c_{Be}(v)$ for all v ($O(N_v^3)$ time)

- Cubic complexity can be prohibitive for large networks

- $O(N_v N_e)$-time algorithm for unweighted graphs in:

Eigenvector centrality

- **Rationale:** 'central' vertex if 'in-neighbors' are themselves important
 \[\Rightarrow \text{Compare with 'importance-agnostic' degree centrality} \]

- **Eigenvector centrality** of vertex \(v \) is implicitly defined as

\[
c_{Ei}(v) = \alpha \sum_{(u,v) \in E} c_{Ei}(u)
\]

- No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- Same for 6
Eigenvalue problem

- Recall the adjacency matrix \mathbf{A} and

$$c_{Ei}(v) = \alpha \sum_{(u,v) \in E} c_{Ei}(u)$$

- Vector $\mathbf{c}_{Ei} = [c_{Ei}(1), \ldots, c_{Ei}(N_v)]^\top$ solves the eigenvalue problem

$$\mathbf{A}^T \mathbf{c}_{Ei} = \alpha^{-1} \mathbf{c}_{Ei}$$

\Rightarrow Typically α^{-1} chosen as largest eigenvalue of \mathbf{A}^T [Bonacich’87]

- If G is strongly connected, by Perron’s Theorem then

 \Rightarrow The largest eigenvalue of \mathbf{A}^T is positive and simple

 \Rightarrow All the entries in the dominant eigenvector \mathbf{c}_{Ei} are positive

- Can compute \mathbf{c}_{Ei} and α^{-1} via $O(N_v^2)$ complexity power iterations

$$\mathbf{c}_{Ei}(k + 1) = \frac{\mathbf{A}^T \mathbf{c}_{Ei}(k)}{\|\mathbf{A}\mathbf{c}_{Ei}(k)\|}, \ k = 0, 1, \ldots$$
Example: Comparing centrality measures

- **Q:** Which vertices are more central? **A:** It depends on the context

- Each measure identifies a different vertex as most central
 - None is ‘wrong’, they target different notions of importance
Q: Which vertices are more central? A: It depends on the context

Small green vertices are arguably more peripheral
⇒ Less clear how the yellow, dark blue and red vertices compare
Case study

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Robustness to noise in network data is of practical importance

Approaches have been mostly empirical
 ⇒ Find average response in random graphs when perturbed
 ⇒ Not generalizable and does not provide explanations

Characterize behavior in noisy real graphs
 ⇒ Degree and closeness are more reliable than betweenness

Q: What is really going on?
 ⇒ Framework to study formally the stability of centrality measures

Definitions for weighted digraphs

- **Weighted and directed graphs** $G(V, E, W)$
 - Set V of N_v vertices
 - Set $E \subseteq V \times V$ of edges
 - Map $W : E \rightarrow \mathbb{R}_{++}$ of weights in each edge

- **Path** $P(u, v)$ is an ordered sequence of nodes from u to v

- When weights represent dissimilarities
 - **Path length** is the sum of the dissimilarities encountered

- **Shortest path length** $s_G(u, v)$ from u to v

\[
 s_G(u, v) := \min_{P(u,v)} \sum_{i=0}^{\ell-1} W(u_i, u_{i+1})
\]
Stability of centrality measures

- Space of graphs $\mathcal{G}(V,E)$ with (V,E) as vertex and edge set
- Define the metric $d_{(V,E)}(G,H) : \mathcal{G}(V,E) \times \mathcal{G}(V,E) \rightarrow \mathbb{R}_+$

$$d_{(V,E)}(G,H) := \sum_{e \in E} |W_G(e) - W_H(e)|$$

- **Def:** A centrality measure $c(\cdot)$ is **stable** if for any vertex $v \in V$ in any two graphs $G, H \in \mathcal{G}(V,E)$, then

$$|c^G(v) - c^H(v)| \leq K_G d_{(V,E)}(G,H)$$

- K_G is a constant depending on G only
- Stability is related to **Lipschitz continuity** in $\mathcal{G}(V,E)$
- Independent of the definition of $d_{(V,E)}$ (equivalence of norms)

- Node importance should be robust to small perturbations in the graph
Degree centrality

- Sum of the weights of incoming arcs

\[c_{De}(v) := \sum_{u \mid (u,v) \in E} W(u, v) \]

- Applied to graphs where the weights in \(W \) represent similarities
- High \(c_{De}(v) \) \(\Rightarrow \) \(v \) similar to its large number of neighbors

Proposition 1

For any vertex \(v \in V \) in any two graphs \(G, H \in \mathcal{G}(V,E) \), we have that

\[|c_{De}^G(v) - c_{De}^H(v)| \leq d_{(V,E)}(G, H) \]

i.e., degree centrality \(c_{De} \) is a stable measure

- Can show closeness and eigenvector centralities are also stable
Betweenness centrality

- Look at the shortest paths for every two nodes distinct from \(v \)
 - Sum the proportion that contains node \(v \)

\[
c_{Be}(v) := \sum_{s \neq v \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
\]

- \(\sigma(s, t) \) is the total number of \(s - t \) shortest paths
- \(\sigma(s, t|v) \) is the number of those paths going through \(v \)

Proposition 2

The betweenness centrality measure \(c_{Be} \) is not stable
Compare the value of $c_{Be}(v)$ in graphs G and H

\Rightarrow Centrality value $c_{Be}^H(v) = 0$ remains unchanged for any $\epsilon > 0$

For small values of ϵ, graphs G and H become arbitrarily similar

$9 = |c_{Be}^G(v) - c_{Be}^H(v)| \leq K_G \, d_{(V,E)}(G, H) \to 0$

\Rightarrow Inequality is not true for any constant K_G
Stable betweenness centrality

Define $G^v = (V^v, E^v, W^v)$, $V^v = V \setminus \{v\}$, $E^v = E|_{V^v \times V^v}$, $W^v = W|_{E^v}$

$\Rightarrow G^v$ obtained by deleting from G node v and edges connected to v

Stable betweenness centrality $c_{SBe}(v)$

$$c_{SBe}(v) := \sum_{s \neq v \neq t \in V} s_{G^v}(s, t) - s_G(s, t)$$

\Rightarrow Captures impact of deleting v on the shortest paths

If v is (not) in the $s - t$ shortest path, $s_{G^v}(s, t) - s_G(s, t) > (\leq) 0$

\Rightarrow Same notion as (traditional) betweenness centrality c_{Be}

Proposition 3

For any vertex $v \in V$ in any two graphs $G, H \in G(V, E)$, then

$$|c_{SBe}^G(v) - c_{SBe}^H(v)| \leq 2N_v^2 \cdot d_{(V, E)}(G, H)$$

i.e., stable betweenness centrality c_{SBe} is a stable measure
Centrality ranking variation in random graphs

- $G_{n,p}$ graphs with $p = 10/n$ and weights $U(0.5, 1.5)$
 - Vary n from 10 to 200
 - Perturb multiplying weights with random numbers $U(0.99, 1.01)$

- Compare centrality rankings in the original and perturbed graphs

- Betweenness centrality presents larger maximum and average changes
Centrality ranking variation in random graphs

- Compute probability of observing a ranking change ≥ 5
 - Plot the histogram giving rise to the empirical probabilities

- For c_{Be} some node varies its ranking by 5 positions with high probability

- Long tail in histogram is evidence of instability
 - Minor perturbation generates change of 19 positions
Centrality ranking variation in an airport graph

- Real-world graph based on the air traffic between popular U.S. airports
 - Nodes are $N_v = 25$ popular airports
 - Edge weights are the number of yearly passengers between them

- Betweenness centrality still presents the largest variations
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
The problem of ranking websites

- Search engines rank pages by looking at the Web itself
 - Enough information **intrinsic** to the Web and its structure

- Information retrieval is a historically difficult problem
 - Keywords vs complex information needs (synonymy, polysemy)

- Beyond explosion in scale, unique issues arised with the Web
 - Diversity of authoring styles, people issuing queries
 - Dynamic and constantly changing content
 - Paradigm: from scarcity to abundance

- Finding and indexing documents that are relevant is ‘easy’

- **Q:** Which few of these should the engine recommend?
 - Key is understanding Web structure, i.e., link analysis
Voting by in-links

Ex: Suppose we issue the query ‘newspapers’

► First, use text-only information retrieval to identify relevant pages

► Idea: Links suggest implicit endorsements of other relevant pages
 ► Count in-links to assess the authority of a page on ‘newspapers’
A list-finding technique

- Query also returns pages that compile lists of relevant resources
 - These hubs voted for many highly endorsed (authoritative) pages

- Idea: Good lists have a better sense of where the good results are
 - Page's hub value is the sum of votes received by its linked pages
Repeated improvement

- Reasonable to weight more the votes of pages scoring well as lists
 ⇒ Recompute votes summing linking page values as lists

- Q: Why stop here? Use also improved votes to refine the list scores
 ⇒ Principle of repeated improvement
Hubs and authorities

- Relevant pages fall in two categories: hubs and authorities
 - **Authorities** are pages with useful, relevant content
 - Newspaper home pages
 - Course home pages
 - Auto manufacturer home pages
 - **Hubs** are ‘expert’ lists pointing to multiple authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers

- **Rules:** Authorities and hubs have a mutual reinforcement relationship
 - ⇒ A good **hub** links to multiple good **authorities**
 - ⇒ A good **authority** is linked from multiple good **hubs**
Hubs and authorities ranking algorithm

- Hyperlink-Induced Topic Search (HITS) algorithm [Kleinberg’98]
- Each page \(\nu \in V \) has a **hub** score \(h_\nu \) and **authority** score \(a_\nu \)

 \[h = [h_1, \ldots, h_N]^\top, \quad a = [a_1, \ldots, a_N]^\top \]

 Authority update rule:

 \[a_\nu(k) = \sum_{(u, \nu) \in E} h_u(k - 1), \text{ for all } \nu \in V \iff a(k) = A^\top h(k - 1) \]

 Hub update rule:

 \[h_\nu(k) = \sum_{(v, u) \in E} a_u(k), \text{ for all } \nu \in V \iff h(k) = Aa(k) \]

- Initialize \(h(0) = 1/\sqrt{N_v} \), normalize \(a(k) \) and \(h(k) \) each iteration
Define the hub and authority rankings as

\[a := \lim_{k \to \infty} a(k), \quad h := \lim_{k \to \infty} h(k) \]

From the HITS update rules one finds for \(k = 0, 1, \ldots \)

\[a(k + 1) = \frac{A^T A a(k)}{\|A^T A a(k)\|}, \quad h(k + 1) = \frac{A A^T h(k)}{\|A A^T h(k)\|} \]

Power iterations converge to dominant eigenvectors of \(A^T A \) and \(A A^T \)

\[A^T A a = \alpha_a^{-1} a, \quad A A^T h = \alpha_h^{-1} h \]

⇒ Hub and authority ranks are eigenvector centrality measures
Link analysis beyond the web

Ex: link analysis of citations among US Supreme Court opinions

- Rise and fall of authority of key Fifth Amendment cases [Fowler-Jeon’08]
PageRank

- **Node rankings** to measure website relevance, social influence
- **Key idea:** in-links as votes, but ‘not all links are created equal’
 - How many links point to a node (outgoing links irrelevant)
 - How important are the links that point to a node
- **PageRank** key to Google’s original ranking algorithm [Page-Brin’98]
- **Intuition 1:** fluid that percolates through the network
 - Eventually accumulates at most relevant Web pages
- **Intuition 2:** random web surfer *(more soon)*
 - In the long-run, relevant Web pages visited more often
- PageRank and HITS success was quite different after 1998
Basic PageRank update rule

- Each page $v \in V$ has PageRank r_v, let $r = [r_1, \ldots, r_{N_v}]^T$

 \Rightarrow Define $P := (D^{\text{out}})^{-1}A$, where D^{out} is the out-degree matrix

PageRank update rule:

$$r_v(k) = \sum_{(u,v) \in E} \frac{r_u(k-1)}{d_u^{\text{out}}}, \text{ for all } v \in V \iff r(k) = P^T r(k-1)$$

- Split current PageRank evenly among outgoing links and pass it on

 \Rightarrow New PageRank is the total fluid collected in the incoming links

 \Rightarrow Initialize $r(0) = 1/N_v$. Flow conserved, no normalization needed

- **Problem:** ‘Spider traps’

 \Rightarrow Accumulate all PageRank

 \Rightarrow Only when not strongly connected
Apply the basic PageRank rule and scale the result by $s \in (0, 1)$.

Split the leftover $(1 - s)$ evenly among all nodes (evaporation-rain)

Scaled PageRank update rule:

$$r_v(k) = s \times \sum_{(u, v) \in E} \frac{r_u(k - 1)}{d_u^{\text{out}}} + \frac{1 - s}{N_v}, \text{ for all } v \in V$$

Can view as basic update $r(k) = \tilde{P}^T r(k - 1)$ with

$$\tilde{P} := sP + (1 - s) \frac{11^\top}{N_v}$$

⇒ Scaling factor s typically chosen between 0.8 and 0.9

⇒ Power iteration converges to the dominant eigenvector of \tilde{P}^T
A primer on Markov chains

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Markov chains

- Consider discrete-time index $n = 0, 1, 2, \ldots$
- Time-dependent random state X_n takes values on a countable set
 - In general denote states as $i = 0, 1, 2, \ldots$, i.e., here the state space is \mathbb{N}
 - If $X_n = i$ we say “the process is in state i at time n”
- Random process is X_N, its history up to n is $X_n = [X_n, X_{n-1}, \ldots, X_0]^T$
- **Def:** process X_N is a Markov chain (MC) if for all $n \geq 1$, $i, j, x \in \mathbb{N}^n$
 \[P \left(X_{n+1} = j \mid X_n = i, X_{n-1} = x \right) = P \left(X_{n+1} = j \mid X_n = i \right) = P_{ij} \]
- Future depends only on current state X_n (memoryless, Markov property)
 \[\Rightarrow \text{Future conditionally independent of the past, given the present} \]
Matrix representation

> Group the P_{ij} in a transition probability “matrix” \mathbf{P}

$$
\mathbf{P} = \begin{pmatrix}
P_{00} & P_{01} & P_{02} & \cdots & P_{0j} & \cdots \\
P_{10} & P_{11} & P_{12} & \cdots & P_{1j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
P_{i0} & P_{i1} & P_{i2} & \cdots & P_{ij} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\end{pmatrix}
$$

⇒ Not really a matrix if number of states is infinite

> Row-wise sums should be equal to one, i.e., $\sum_{j=0}^{\infty} P_{ij} = 1$ for all i
A graph representation or state transition diagram is also used. Useful when number of states is infinite, skip arrows if $P_{ij} = 0$. Again, sum of per-state outgoing arrow weights should be one.
Example: Bipolar mood

- I can be happy \((X_n = 0) \) or sad \((X_n = 1) \)
 - My mood tomorrow is only affected by my mood today
- Model as Markov chain with transition probabilities

\[
P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}
\]

- Inertia \(\Rightarrow \) happy or sad today, likely to stay happy or sad tomorrow
- But when sad, a little less likely so \(P_{00} > P_{11} \)
Example: Random (drunkard’s) walk

- Step to the right w.p. p, to the left w.p. $1 - p$
 \[\Rightarrow \text{Not that drunk to stay on the same place} \]

- States are $0, \pm 1, \pm 2, \ldots$ (state space is \mathbb{Z}), infinite number of states

- Transition probabilities are
 \[P_{i,i+1} = p, \quad P_{i,i-1} = 1 - p \]

- $P_{ij} = 0$ for all other transitions
Q: What can be said about multiple transitions?

- Probabilities of X_{m+n} given X_m ⇒ n-step transition probabilities

$$P^n_{ij} = P(X_{m+n} = j \mid X_m = i)$$

⇒ Define the matrix $P^{(n)}$ with elements P^n_{ij}

Theorem

The matrix of n-step transition probabilities $P^{(n)}$ is given by the n-th power of the transition probability matrix P, i.e.,

$$P^{(n)} = P^n$$

Henceforth we write P^n
Unconditional probabilities

- All probabilities so far are conditional, i.e., $P^n_{ij} = P(X_n = j \mid X_0 = i)$
 - ⇒ May want unconditional probabilities $p_j(n) = P(X_n = j)$
- Requires specification of initial conditions $p_i(0) = P(X_0 = i)$
- Using law of total probability and definitions of P^n_{ij} and $p_j(n)$

$$p_j(n) = P(X_n = j) = \sum_{i=0}^{\infty} P(X_n = j \mid X_0 = i) P(X_0 = i)$$

$$= \sum_{i=0}^{\infty} P^n_{ij} p_i(0)$$

- In matrix form (define vector $\mathbf{p}(n) = [p_1(n), p_2(n), \ldots]^T$)

$$\mathbf{p}(n) = (P^n)^T \mathbf{p}(0)$$
MCs have one-step memory. Eventually they forget initial state

Q: What can we say about probabilities for large n?

$$\pi_j := \lim_{n \to \infty} P(X_n = j \mid X_0 = i) = \lim_{n \to \infty} P_{ij}^n$$

⇒ Assumed that limit is independent of initial state $X_0 = i$

We’ve seen that this problem is related to the matrix power P^n

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}, \quad P^2 = \begin{pmatrix} 0.7 & 0.3 \\ 0.45 & 0.55 \end{pmatrix}, \quad P^7 = \begin{pmatrix} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{pmatrix}, \quad P^{30} = \begin{pmatrix} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{pmatrix}$$

Matrix product converges ⇒ probs. independent of time (large n)

All rows are equal ⇒ probs. independent of initial condition
Theorem

For an ergodic (i.e. irreducible, aperiodic, and positive recurrent) MC, \(\lim_{n \to \infty} P^n_{ij} \) exists and is independent of the initial state \(i \), i.e.,

\[
\pi_j = \lim_{n \to \infty} P^n_{ij}
\]

Furthermore, steady-state probabilities \(\pi_j \geq 0 \) are the unique nonnegative solution of the system of linear equations

\[
\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad \sum_{j=0}^{\infty} \pi_j = 1
\]

- Limit probs. independent of initial condition exist for ergodic MC
 \(\Rightarrow \) Simple algebraic equations can be solved to find \(\pi_j \)
Define vector steady-state distribution \(\pi := [\pi_0, \pi_1, \ldots, \pi_J]^T \)

Limit distribution is unique solution of

\[
\pi = P^T \pi, \quad \pi^T 1 = 1
\]

Eigenvector \(\pi \) associated with eigenvalue 1 of \(P^T \)

- Eigenvectors are defined up to a scaling factor
- Normalize to sum 1

All other eigenvalues of \(P^T \) have modulus smaller than 1

Computing \(\pi \) as eigenvector is computationally efficient
Ergodicity

- **Def:** Fraction of time \(T_{i}^{(n)} \) spent in \(i \)-th state by time \(n \) is

\[
T_{i}^{(n)} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \{ X_{m} = i \}
\]

- Compute expected value of \(T_{i}^{(n)} \)

\[
\mathbb{E} \left[T_{i}^{(n)} \right] = \frac{1}{n} \sum_{m=1}^{n} \mathbb{E} \left[\mathbb{I} \{ X_{m} = i \} \right] = \frac{1}{n} \sum_{m=1}^{n} P \left(X_{m} = i \right)
\]

- As \(n \to \infty \), probabilities \(P \left(X_{m} = i \right) \to \pi_{i} \) (ergodic MC). Then

\[
\lim_{n \to \infty} \mathbb{E} \left[T_{i}^{(n)} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P \left(X_{m} = i \right) = \pi_{i}
\]

- For ergodic MCs same is true without expected value \Rightarrow Ergodicity

\[
\lim_{n \to \infty} T_{i}^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \{ X_{m} = i \} = \pi_{i}, \quad \text{a.s.}
\]
Consider an ergodic Markov chain with transition probability matrix

\[P := \begin{pmatrix} 0 & 0.3 & 0.7 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{pmatrix} \]

Visits to states, \(nT_i^{(n)} \)

Ergodic averages, \(T_i^{(n)} \)

Ergodic averages slowly converge to \(\pi = [0.09, 0.29, 0.61]^T \)
PageRank: Random walk formulation

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Preliminary definitions

- Graph $G = (V, E)$ ⇒ vertices $V = \{1, 2, \ldots, J\}$ and edges E

- Outgoing neighborhood of i is the set of nodes j to which i points
 \[n(i) := \{j : (i, j) \in E\} \]

- Incoming neighborhood of i is the set of nodes that point to i:
 \[n^{-1}(i) := \{j : (j, i) \in E\} \]

- Strongly connected G ⇒ directed path joining any pair of nodes
Definition of rank

- Agent A chooses node i, e.g., web page, at random for initial visit
- Next visit randomly chosen between links in the neighborhood $n(i)$
 - All neighbors chosen with equal probability
- If reach a dead end because node i has no neighbors
 - Chose next visit at random equiprobably among all nodes
- Redefine graph $G = (V, E)$ adding edges from dead ends to all nodes
 - Restrict attention to connected (modified) graphs

- Rank of node i is the average number of visits of agent A to i
Formally, let A_n be the node visited at time n.

Define transition probability P_{ij} from node i into node j as

$$P_{ij} := P \left(A_{n+1} = j \mid A_n = i \right)$$

Next visit equiprobable among i’s $N_i := |n(i)|$ neighbors,

$$P_{ij} = \frac{1}{|n(i)|} = \frac{1}{N_i}, \quad \text{for all } j \in n(i)$$

Still have a graph

But also a MC

Red (not blue) circles
Formal definition of rank

▶ **Def:** Rank r_i of i-th node is the time average of number of visits

$$r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\{A_m = i\}$$

⇒ Define vector of ranks $\mathbf{r} := [r_1, r_2, \ldots, r_J]^T$

▶ Rank r_i can be approximated by average r_{ni} at time n

$$r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\{A_m = i\}$$

⇒ Since $\lim_{n \to \infty} r_{ni} = r_i$, it holds $r_{ni} \approx r_i$ for n sufficiently large

⇒ Define vector of approximate ranks $\mathbf{r}_n := [r_{n1}, r_{n2}, \ldots, r_{nJ}]^T$

▶ If modified graph is connected, rank independent of initial visit
Ranking algorithm

Output: Vector $r(i)$ with ranking of node i

Input:
- Scalar n indicating maximum number of iterations
- Vector $N(i)$ containing number of neighbors of i
- Matrix $N(i,j)$ containing indices j of neighbors of i

$m = 1; r=zeros(J,1); \% Initialize time and ranks
A_0 = random(’unid’,J); \% Draw first visit uniformly at random

while $m < n$ do

 jump = random(’unid’, $N(A_{m-1})$); \% Neighbor uniformly at random
 $A_m = N(A_{m-1}, \text{jump})$; \% Jump to selected neighbor
 $r(A_m) = r(A_m) + 1$; \% Update ranking for A_m
 $m = m + 1$;

end

$r = r/n; \% Normalize by number of iterations n
Social graph example

- Asked probability students about homework collaboration
- Created (crude) graph of the social network of students in the class
 ⇒ Used ranking algorithm to understand connectedness
 ✈ Ex: I want to know how well students are coping with the class
 ⇒ Best to ask people with higher connectivity ranking
- 2009 data from “UPenn’s ECE440”
Convergence metrics

- Recall \(r \) is vector of ranks and \(r_n \) of rank iterates
- By definition \(\lim_{n \to \infty} r_n = r \). How fast \(r_n \) converges to \(r \) (\(r \) given)?
- Can measure by \(\ell_2 \) distance between \(r \) and \(r_n \)

\[
\zeta_n := \| r - r_n \|_2 = \left(\sum_{i=1}^{J} (r_{ni} - r_i)^2 \right)^{1/2}
\]

- If interest is only on highest ranked nodes, e.g., a web search
 \(\Rightarrow \) Denote \(r^{(i)} \) as the index of the \(i \)-th highest ranked node
 \(\Rightarrow \) Let \(r_n^{(i)} \) be the index of the \(i \)-th highest ranked node at time \(n \)
- First element wrongly ranked at time \(n \)

\[
\xi_n := \arg \min_i \{ r^{(i)} \neq r_n^{(i)} \}
\]
Evaluation of convergence metrics

Distance

- Distance close to 10^{-2} in $\approx 5 \times 10^3$ iterations
- Bad: Two highest ranks in $\approx 4 \times 10^3$ iterations
- Awful: Six best ranks in $\approx 8 \times 10^3$ iterations
- (Very) slow convergence
When does this algorithm converge?

- Cannot confidently claim convergence until 10^5 iterations
 - Beyond particular case, slow convergence inherent to algorithm

- Example has 40 nodes, want to use in network with 10^9 nodes!
 - Leverage properties of MCs to obtain a faster algorithm
Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
Limit probabilities

- Recall definition of rank \(r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} I\{A_m = i\} \)
- Rank is time average of number of state visits in a MC
 \(\Rightarrow \) Can be as well obtained from limiting probabilities
- Recall transition probabilities \(P_{ij} = \frac{1}{N_i} \), for all \(j \in n(i) \)
- Stationary distribution \(\pi = [\pi_1, \pi_1, \ldots, \pi_J]^T \) solution of
 \[
 \pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i
 \]
 \(\Rightarrow \) Plus normalization equation \(\sum_{i=1}^{J} \pi_i = 1 \)
- As per ergodicity of MC (strongly connected \(G \)) \(\Rightarrow r = \pi \)
As always, can define matrix P with elements P_{ij}

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^{J} P_{ji} \pi_j \quad \text{for all } i$$

Right hand side is just definition of a matrix product leading to

$$\pi = P^T \pi, \quad \pi^T 1 = 1$$

⇒ Also added normalization equation

Idea: solve system of linear equations or eigenvalue problem on P^T

⇒ Requires matrix P available at a central location

⇒ Computationally costly (sparse matrix P with 10^{18} entries)
What are limit probabilities?

- Let \(p_i(n) \) denote probability of agent \(A \) visiting node \(i \) at time \(n \)
 \[
p_i(n) := P(A_n = i)
 \]

- Probabilities at time \(n + 1 \) and \(n \) can be related
 \[
P(A_{n+1} = i) = \sum_{j \in n^{-1}(i)} P(A_{n+1} = i \mid A_n = j) P(A_n = j)
 \]

- Which is, of course, probability propagation in a MC
 \[
p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n)
 \]

- By definition limit probabilities are (let \(\mathbf{p}(n) = [p_1(n), \ldots, p_J(n)]^T \))
 \[
 \lim_{n \to \infty} \mathbf{p}(n) = \pi = \mathbf{r}
 \]

\(\Rightarrow \) Compute ranks from limit of propagated probabilities
Can also write probability propagation in matrix form

\[p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) = \sum_{j=1}^{J} P_{ji} p_j(n) \quad \text{for all } i \]

Right hand side is just definition of a matrix product leading to

\[p(n + 1) = P^T p(n) \]

Idea: can approximate rank by large \(n \) probability distribution

\[r = \lim_{n \to \infty} p(n) \approx p(n) \text{ for } n \text{ sufficiently large} \]
Ranking algorithm

Algorithm is just a recursive matrix product, a power iteration

Output : Vector \(r(i) \) with ranking of node \(i \)
Input : Scalar \(n \) indicating maximum number of iterations
Input : Matrix \(P \) containing transition probabilities

\[
m = 1; \quad \text{% Initialize time}
\]
\[
r = (1/J) \text{ones}(J,1); \quad \text{% Initial distribution uniform across all nodes}
\]

\[
\text{while } m < n \text{ do}
\]
\[
\quad r = P^T r; \quad \text{% Probability propagation}
\]
\[
\quad m = m + 1;
\]
end
Interpretation of probability propagation

Q: Why does the random walk converge so slow?
A: Need to register a large number of agent visits to every state
Ex: 40 nodes, say 100 visits to each \(\Rightarrow 4 \times 10^3 \) iters.

Smart idea: Unleash a large number of agents \(K \)

\[
R_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \{ A_{km} = i \}
\]

Visits are now spread over time and space
\(\Rightarrow \) Converges “\(K \) times faster”
\(\Rightarrow \) But haven’t changed computational cost
Q: What happens if we unleash infinite number of agents K?

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{1}\{A_{km} = i\}$$

Using law of large numbers and expected value of indicator function

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{E}[\mathbb{1}\{A_m = i\}] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{P}(A_m = i)$$

Graph walk is an ergodic MC, then $\lim_{m \to \infty} \mathbb{P}(A_m = i)$ exists, and

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} p_i(m) = \lim_{n \to \infty} p_i(n)$$

⇒ Probability propagation \approx Unleashing infinitely many agents
Distance to rank

- Initialize with uniform probability distribution $\Rightarrow p(0) = (1/J)\mathbf{1}$
- Plot distance between $p(n)$ and r

Distance is 10^{-2} in ≈ 30 iters., 10^{-4} in ≈ 140 iters.

\Rightarrow Convergence two orders of magnitude faster than random walk
Number of nodes correctly ranked

- Rank of highest ranked node that is wrongly ranked by time n

- **Not bad**: All nodes correctly ranked in 120 iterations
- **Good**: Ten best ranks in 70 iterations
- **Great**: Four best ranks in 20 iterations
Distributed algorithm to compute ranks

- Nodes want to compute their rank r_i
 - Can communicate with neighbors only (incoming + outgoing)
 - Access to neighborhood information only

- Recall probability update

 \[p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j}p_j(n) \]

 - Uses local information only

- Distributed algorithm. Nodes keep local rank estimates $r_i(n)$
 - Receive rank (probability) estimates $r_j(n)$ from neighbors $j \in n^{-1}(i)$
 - Update local rank estimate $r_i(n+1) = \sum_{j \in n^{-1}(i)} r_j(n)/N_j$
 - Communicate rank estimate $r_i(n+1)$ to outgoing neighbors $j \in n(i)$

- Only need to know the number of neighbors of my neighbors
Distributed implementation of random walk

- Can communicate with neighbors only (incoming + outgoing)
 - But cannot access neighborhood information
 - Pass agent (‘hot potato’) around
- Local rank estimates $r_i(n)$ and counter with number of visits V_i
- Algorithm run by node i at time n

```plaintext
if Agent received from neighbor then
    $V_i = V_i + 1$
    Choose random neighbor
    Send agent to chosen neighbor
end

$n = n + 1; \quad r_i(n) = V_i / n;$
```

- Speed up convergence by generating many agents to pass around
Comparison of different algorithms

- **Random walk (RW) implementation**
 - Most secure. No information shared with other nodes
 - Implementation can be distributed
 - Convergence exceedingly slow

- **System of linear equations**
 - Least security. Graph in central server
 - Distributed implementation not clear
 - Convergence not an issue
 - But computationally costly to obtain approximate solutions

- **Probability propagation**
 - Somewhat secure. Information shared with neighbors only
 - Implementation can be distributed
 - Convergence rate acceptable (orders of magnitude faster than RW)
Glossary

- Centrality measure
- Closeness centrality
- Dijkstra’s algorithm
- Betweenness centrality
- Information controller
- Eigenvector centrality
- Perron’s Theorem
- Power method
- Information retrieval
- Link analysis
- Repeated improvement

- Hubs and authorities
- HITS algorithm
- PageRank
- Spider traps
- Scaled PageRank updates
- Ergodic Markov chain
- Limiting probabilities
- Random walk on a graph
- Long-run fraction of state visits
- Probability propagation
- Distributed algorithm