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Quantifying vertex importance

▶ In network analysis many questions relate to vertex importance

Example

▶ Q1: Which actors in a social network hold the ‘reins of power’?

▶ Q2: How authoritative is a WWW page considered by peers?

▶ Q3: The ‘knock-out’ of which genes is likely to be lethal?

▶ Q4: How critical to the daily commute is a subway station?

▶ Measures of vertex centrality quantify such notions of importance

⇒ Degrees are simplest centrality measures. Let’s study others
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Closeness centrality

▶ Rationale: ‘central’ means a vertex is ‘close’ to many other vertices

▶ Def: Distance d(u, v) between vertices u and v is the length of the
shortest u − v path. Oftentimes referred to as geodesic distance

▶ Closeness centrality of vertex v is given by

cCl(v) =
1∑

u∈V d(u, v)

▶ Interpret v∗ = argmaxv cCl(v) as the most approachable node in G
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Normalization, computation and limitations

▶ To compare with other centrality measures, often normalize to [0, 1]

cCl(v) =
Nv − 1∑

u∈V d(u, v)

▶ Computation: need all pairwise shortest path distances in G

⇒ Dijkstra’s algorithm in O(N2
v logNv + NvNe) time

▶ Limitation 1: sensitivity, values tend to span a small dynamic range

⇒ Hard to discriminate between central and less central nodes

▶ Limitation 2: assumes connectivity, if not cCl(v) = 0 for all v ∈ V

⇒ Compute centrality indices in different components
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Betweenness centrality

▶ Rationale: ‘central’ node is (in the path) ‘between’ many vertex pairs

▶ Betweenness centrality of vertex v is given by

cBe(v) =
∑

s ̸=t ̸=v∈V

σ(s, t|v)
σ(s, t)

▶ σ(s, t) is the total number of s − t shortest paths
▶ σ(s, t|v) is the number of s − t shortest paths through v ∈ V

▶ Interpret v∗ = argmaxv cBe(v) as the controller of information flow
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Computational considerations

▶ Notice that a s − t shortest path goes through v if and only if

d(s, t) = d(s, v) + d(v , t)

▶ Betweenness centralities can be naively computed for all v ∈ V by:

Step 1: Use Dijkstra to tabulate d(s, t) and σ(s, t) for all s, t
Step 2: Use the tables to identify σ(s, t|v) for all v
Step 3: Sum the fractions to obtain cBe(v) for all v (O(N3

v ) time)

▶ Cubic complexity can be prohibitive for large networks

▶ O(NvNe)-time algorithm for unweighted graphs in:

U. Brandes, “A faster algorithm for betweenness centrality,” Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001
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Eigenvector centrality

▶ Rationale: ‘central’ vertex if ‘in-neighbors’ are themselves important

⇒ Compare with ‘importance-agnostic’ degree centrality

▶ Eigenvector centrality of vertex v is implicitly defined as

cEi (v) = α
∑

(u,v)∈E

cEi (u)

1

2 3

45

6

▶ No one points to 1

▶ Only 1 points to 2

▶ Only 2 points to 3, but 2
more important than 1

▶ 4 as high as 5 with less links

▶ Links to 5 have lower rank

▶ Same for 6

Network Science Analytics Centrality Measures and Link Analysis 8



Eigenvalue problem

▶ Recall the adjacency matrix A and

cEi (v) = α
∑

(u,v)∈E

cEi (u)

▶ Vector cEi = [cEi (1), . . . , cEi (Nv )]
⊤ solves the eigenvalue problem

ATcEi = α−1cEi

⇒ Typically α−1 chosen as largest eigenvalue of AT [Bonacich’87]

▶ If G is strongly connected, by Perron’s Theorem then

⇒ The largest eigenvalue of AT is positive and simple

⇒ All the entries in the dominant eigenvector cEi are positive

▶ Can compute cEi and α−1 via O(N2
v ) complexity power iterations

cEi (k + 1) =
ATcEi (k)

∥AcEi (k)∥
, k = 0, 1, . . .
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Example: Comparing centrality measures

▶ Q: Which vertices are more central? A: It depends on the context

▶ Each measure identifies a different vertex as most central

⇒ None is ‘wrong’, they target different notions of importance
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Example: Comparing centrality measures

▶ Q: Which vertices are more central? A: It depends on the context
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Fig. 4.4 Illustration of (b) closeness, (c) betweenness, and (d) eigenvector centrality measures on
the graph in (a). Example and figures courtesy of Ulrik Brandes.
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Fig. 4.4 Illustration of (b) closeness, (c) betweenness, and (d) eigenvector centrality measures on
the graph in (a). Example and figures courtesy of Ulrik Brandes.Closeness Betweenness Eigenvector 

▶ Small green vertices are arguably more peripheral

⇒ Less clear how the yellow, dark blue and red vertices compare
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Centrality measures robustness

▶ Robustness to noise in network data is of practical importance

▶ Approaches have been mostly empirical

⇒ Find average response in random graphs when perturbed

⇒ Not generalizable and does not provide explanations

▶ Characterize behavior in noisy real graphs

⇒ Degree and closeness are more reliable than betweenness

▶ Q: What is really going on?

⇒ Framework to study formally the stability of centrality measures

▶ S. Segarra and A. Ribeiro, “Stability and continuity of centrality
measures in weighted graphs,” IEEE Trans. Signal Process., 2015
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Definitions for weighted digraphs

▶ Weighted and directed graphs G (V ,E ,W )

⇒ Set V of Nv vertices

⇒ Set E ⊆ V × V of edges

⇒ Map W : E → R++ of weights in each edge

a b

c

5

4
2

3

▶ Path P(u, v) is an ordered sequence of nodes from u to v

▶ When weights represent dissimilarities

⇒ Path length is the sum of the dissimilarities encountered

▶ Shortest path length sG (u, v) from u to v

sG (u, v) := min
P(u,v)

ℓ−1∑
i=0

W (ui , ui+1)
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Stability of centrality measures

▶ Space of graphs G(V ,E) with (V ,E ) as vertex and edge set

▶ Define the metric d(V ,E)(G ,H) : G(V ,E) × G(V ,E) → R+

d(V ,E)(G ,H) :=
∑
e∈E

|WG (e)−WH(e)|

▶ Def: A centrality measure c(·) is stable if for any vertex v ∈ V in any
two graphs G ,H ∈ G(V ,E), then∣∣cG (v)− cH(v)

∣∣ ≤ KG d(V ,E)(G ,H)

▶ KG is a constant depending on G only
▶ Stability is related to Lipschitz continuity in G(V ,E)

▶ Independent of the definition of d(V ,E) (equivalence of norms)

▶ Node importance should be robust to small perturbations in the graph
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Degree centrality

▶ Sum of the weights of incoming arcs

cDe(v) :=
∑

u|(u,v)∈E

W (u, v)

▶ Applied to graphs where the weights in W represent similarities
▶ High cDe(v) ⇒ v similar to its large number of neighbors

Proposition 1

For any vertex v ∈ V in any two graphs G ,H ∈ G(V ,E), we have that

|cGDe(v)− cHDe(v)| ≤ d(V ,E)(G ,H)

i.e., degree centrality cDe is a stable measure

▶ Can show closeness and eigenvector centralities are also stable
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Betweenness centrality

▶ Look at the shortest paths for every two nodes distinct from v

⇒ Sum the proportion that contains node v

cBe(v) :=
∑

s ̸=v ̸=t∈V

σ(s, t|v)
σ(s, t)

▶ σ(s, t) is the total number of s − t shortest paths
▶ σ(s, t|v) is the number of those paths going through v

Proposition 2

The betweenness centrality measure cBe is not stable
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Instability of betweenness centrality

▶ Compare the value of cBe(v) in graphs G and H

G

v1 1

1 1

1

1

1

1

cGBe(v) = 9

H

v1 + ϵ 1 + ϵ

1 1

1

1

1

1

cHBe(v) = 0

⇒ Centrality value cHBe(v) = 0 remains unchanged for any ϵ > 0

▶ For small values of ϵ, graphs G and H become arbitrarily similar

9 = |cGBe(v)− cHBe(v)| ≤ KG d(V ,E)(G ,H) → 0

⇒ Inequality is not true for any constant KG
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Stable betweenness centrality

▶ Define G v =(V v ,E v ,W v ), V v=V \{v}, E v=E |V v×V v , W v=W |E v

⇒ G v obtained by deleting from G node v and edges connected to v

▶ Stable betweenness centrality cSBe(v)

cSBe(v) :=
∑

s ̸=v ̸=t∈V

sG v (s, t)− sG (s, t)

⇒ Captures impact of deleting v on the shortest paths

▶ If v is (not) in the s − t shortest path, sG v (s, t)− sG (s, t) > (=)0

⇒ Same notion as (traditional) betweenness centrality cBe

Proposition 3

For any vertex v ∈ V in any two graphs G ,H ∈ G(V ,E), then

|cGSBe(v)− cHSBe(v)| ≤ 2N2
v d(V ,E)(G ,H)

i.e., stable betweenness centrality cSBe is a stable measure
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Centrality ranking variation in random graphs

▶ Gn,p graphs with p = 10/n and weights U(0.5, 1.5)
⇒ Vary n from 10 to 200

⇒ Perturb multiplying weights with random numbers U(0.99, 1.01)
▶ Compare centrality rankings in the original and perturbed graphs
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▶ Betweenness centrality presents larger maximum and average changes
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Centrality ranking variation in random graphs

▶ Compute probability of observing a ranking change ≥ 5

⇒ Plot the histogram giving rise to the empirical probabilities
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▶ For cBe some node varies its ranking by 5 positions with high probability

▶ Long tail in histogram is evidence of instability

⇒ Minor perturbation generates change of 19 positions
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Centrality ranking variation in an airport graph

▶ Real-world graph based on the air traffic between popular U.S. airports

⇒ Nodes are Nv = 25 popular airports

⇒ Edge weights are the number of yearly passengers between them
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▶ Betweenness centrality still presents the largest variations
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The problem of ranking websites

▶ Search engines rank pages by looking at the Web itself

⇒ Enough information intrinsic to the Web and its structure

▶ Information retrieval is a historically difficult problem

⇒ Keywords vs complex information needs (synonymy, polysemy)

▶ Beyond explosion in scale, unique issues arised with the Web
▶ Diversity of authoring styles, people issuing queries
▶ Dynamic and constantly changing content
▶ Paradigm: from scarcity to abundance

▶ Finding and indexing documents that are relevant is ‘easy’

▶ Q: Which few of these should the engine recommend?

⇒ Key is understanding Web structure, i.e., link analysis
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Voting by in-links

Ex: Suppose we issue the query ‘newspapers’

▶ First, use text-only information retrieval to identify relevant pages

▶ Idea: Links suggest implicit endorsements of other relevant pages
▶ Count in-links to assess the authority of a page on ‘newspapers’
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A list-finding technique

▶ Query also returns pages that compile lists of relevant resources
▶ These hubs voted for many highly endorsed (authoritative) pages

▶ Idea: Good lists have a better sense of where the good results are
▶ Page’s hub value is the sum of votes received by its linked pages
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Repeated improvement

▶ Reasonable to weight more the votes of pages scoring well as lists

⇒ Recompute votes summing linking page values as lists

▶ Q: Why stop here? Use also improved votes to refine the list scores

⇒ Principle of repeated improvement
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Hubs and authorities

▶ Relevant pages fall in two categories: hubs and authorities

▶ Authorities are pages with useful, relevant content
▶ Newspaper home pages
▶ Course home pages
▶ Auto manufacturer home pages

▶ Hubs are ‘expert’ lists pointing to multiple authorities
▶ List of newspapers
▶ Course bulletin
▶ List of US auto manufacturers

▶ Rules: Authorities and hubs have a mutual reinforcement relationship

⇒ A good hub links to multiple good authorities

⇒ A good authority is linked from multiple good hubs
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Hubs and authorities ranking algorithm

▶ Hyperlink-Induced Topic Search (HITS) algorithm [Kleinberg’98]

▶ Each page v ∈ V has a hub score hv and authority score av

⇒ Network-wide vectors h = [h1, . . . , hNv ]
⊤, a = [a1, . . . , aNv ]

⊤

Authority update rule:

av (k) =
∑

(u,v)∈E

hu(k − 1), for all v ∈ V ⇔ a(k) = A⊤h(k − 1)

Hub update rule:

hv (k) =
∑

(v ,u)∈E

au(k), for all v ∈ V ⇔ h(k) = Aa(k)

▶ Initialize h(0) = 1/
√
Nv , normalize a(k) and h(k) each iteration
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Limiting values

▶ Define the hub and authority rankings as

a := lim
k→∞

a(k), h := lim
k→∞

h(k)

▶ From the HITS update rules one finds for k = 0, 1, . . .

a(k + 1) =
A⊤Aa(k)

∥A⊤Aa(k)∥
, h(k + 1) =

AA⊤h(k)

∥AA⊤h(k)∥

▶ Power iterations converge to dominant eigenvectors of A⊤A and AA⊤

A⊤Aa = α−1
a a, AA⊤h = α−1

h h

⇒ Hub and authority ranks are eigenvector centrality measures
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Link analysis beyond the web

Ex: link analysis of citations among US Supreme Court opinions

▶ Rise and fall of authority of key Fifth Amendment cases [Fowler-Jeon’08]
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PageRank

▶ Node rankings to measure website relevance, social influence

▶ Key idea: in-links as votes, but ‘not all links are created equal’

⇒ How many links point to a node (outgoing links irrelevant)

⇒ How important are the links that point to a node

▶ PageRank key to Google’s original ranking algorithm [Page-Brin’98]

▶ Inuition 1: fluid that percolates through the network

⇒ Eventually accumulates at most relevant Web pages

▶ Inuition 2: random web surfer (more soon)

⇒ In the long-run, relevant Web pages visited more often

▶ PageRank and HITS success was quite different after 1998
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Basic PageRank update rule

▶ Each page v ∈ V has PageRank rv , let r = [r1, . . . , rNv ]
⊤

⇒ Define P := (Dout)−1A, where Dout is the out-degree matrix

PageRank update rule:

rv (k) =
∑

(u,v)∈E

ru(k − 1)

dout
u

, for all v ∈ V ⇔ r(k) = PT r(k − 1)

▶ Split current PageRank evenly among outgoing links and pass it on

⇒ New PageRank is the total fluid collected in the incoming links

⇒ Initialize r(0) = 1/Nv . Flow conserved, no normalization needed

▶ Problem: ‘Spider traps’
▶ Accumulate all PageRank
▶ Only when not strongly connected
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Scaled PageRank update rule

▶ Apply the basic PageRank rule and scale the result by s ∈ (0, 1)

Split the leftover (1− s) evenly among all nodes (evaporation-rain)

Scaled PageRank update rule:

rv (k) = s ×
∑

(u,v)∈E

ru(k − 1)

dout
u

+
1− s

Nv
, for all v ∈ V

▶ Can view as basic update r(k) = P̄T r(k − 1) with

P̄ := sP+ (1− s)
11⊤

Nv

⇒ Scaling factor s typically chosen between 0.8 and 0.9

⇒ Power iteration converges to the dominant eigenvector of P̄T
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Markov chains

▶ Consider discrete-time index n = 0, 1, 2, . . .

▶ Time-dependent random state Xn takes values on a countable set
▶ In general denote states as i = 0, 1, 2, . . ., i.e., here the state space is N
▶ If Xn = i we say “the process is in state i at time n”

▶ Random process is XN, its history up to n is Xn = [Xn,Xn−1, . . . ,X0]
T

▶ Def: process XN is a Markov chain (MC) if for all n ≥ 1, i , j , x ∈ Nn

P
(
Xn+1 = j

∣∣Xn = i ,Xn−1 = x
)
= P

(
Xn+1 = j

∣∣Xn = i
)
= Pij

▶ Future depends only on current state Xn (memoryless, Markov property)

⇒ Future conditionally independent of the past, given the present
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Matrix representation

▶ Group the Pij in a transition probability “matrix” P

P =


P00 P01 P02 . . . P0j . . .
P10 P11 P12 . . . P1j . . .
...

...
...

...
...

...
Pi0 Pi1 Pi2 . . . Pij . . .
...

...
...

...
...

. . .


⇒ Not really a matrix if number of states is infinite

▶ Row-wise sums should be equal to one, i.e.,
∑∞

j=0 Pij = 1 for all i
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Graph representation

▶ A graph representation or state transition diagram is also used

i i+1i−1 . . .. . .

Pi,i

Pi,i+1

Pi,i−1

Pi+1,i+1

Pi+1,i

Pi+1,i+2

Pi−1,i−1

Pi−1,i

Pi−1,i−2 Pi+2,i+1

Pi−2,i−1

▶ Useful when number of states is infinite, skip arrows if Pij = 0

▶ Again, sum of per-state outgoing arrow weights should be one
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Example: Bipolar mood

▶ I can be happy (Xn = 0) or sad (Xn = 1)

⇒ My mood tomorrow is only affected by my mood today

▶ Model as Markov chain with transition probabilities

P =

(
0.8 0.2
0.3 0.7

)
H S

0.8

0.2

0.7

0.3

▶ Inertia ⇒ happy or sad today, likely to stay happy or sad tomorrow

▶ But when sad, a little less likely so (P00 > P11)
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Example: Random (drunkard’s) walk

▶ Step to the right w.p. p, to the left w.p. 1− p

⇒ Not that drunk to stay on the same place

i i+1i−1 . . .. . .

p

1− p 1− p

pp

1− p 1− p

p

▶ States are 0,±1,±2, . . . (state space is Z), infinite number of states

▶ Transition probabilities are

Pi,i+1 = p, Pi,i−1 = 1− p

▶ Pij = 0 for all other transitions
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Multiple-step transition probabilities

▶ Q: What can be said about multiple transitions?

▶ Probabilities of Xm+n given Xm ⇒ n-step transition probabilities

Pn
ij = P

(
Xm+n = j

∣∣Xm = i
)

⇒ Define the matrix P(n) with elements Pn
ij

Theorem
The matrix of n-step transition probabilities P(n) is given by the n-th
power of the transition probability matrix P, i.e.,

P(n) = Pn

Henceforth we write Pn
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Unconditional probabilities

▶ All probabilities so far are conditional, i.e., Pn
ij = P

(
Xn = j

∣∣X0 = i
)

⇒ May want unconditional probabilities pj(n) = P (Xn = j)

▶ Requires specification of initial conditions pi (0) = P (X0 = i)

▶ Using law of total probability and definitions of Pn
ij and pj(n)

pj(n) = P (Xn = j) =
∞∑
i=0

P
(
Xn = j

∣∣X0 = i
)
P (X0 = i)

=
∞∑
i=0

Pn
ijpi (0)

▶ In matrix form (define vector p(n) = [p1(n), p2(n), . . .]
T )

p(n) = (Pn)T p(0)
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Limiting distributions

▶ MCs have one-step memory. Eventually they forget initial state

▶ Q: What can we say about probabilities for large n?

πj := lim
n→∞

P
(
Xn = j

∣∣X0 = i
)
= lim

n→∞
Pn
ij

⇒ Assumed that limit is independent of initial state X0 = i

▶ We’ve seen that this problem is related to the matrix power Pn

P =

(
0.8 0.2
0.3 0.7

)
, P7 =

(
0.6031 0.3969
0.5953 0.4047

)
P2 =

(
0.7 0.3
0.45 0.55

)
, P30 =

(
0.6000 0.4000
0.6000 0.4000

)

▶ Matrix product converges ⇒ probs. independent of time (large n)

▶ All rows are equal ⇒ probs. independent of initial condition
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Limit distribution of ergodic Markov chains

Theorem
For an ergodic (i.e. irreducible, aperiodic, and positive recurrent) MC,
limn→∞ Pn

ij exists and is independent of the initial state i , i.e.,

πj = lim
n→∞

Pn
ij

Furthermore, steady-state probabilities πj ≥ 0 are the unique nonnegative
solution of the system of linear equations

πj =
∞∑
i=0

πiPij ,

∞∑
j=0

πj = 1

▶ Limit probs. independent of initial condition exist for ergodic MC

⇒ Simple algebraic equations can be solved to find πj
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Markov chains meet eigenvalue problems

▶ Define vector steady-state distribution π := [π0, π1, . . . , πJ ]
T

▶ Limit distribution is unique solution of

π = PTπ, πT1 = 1

▶ Eigenvector π associated with eigenvalue 1 of PT

▶ Eigenvectors are defined up to a scaling factor
▶ Normalize to sum 1

▶ All other eigenvalues of PT have modulus smaller than 1

▶ Computing π as eigenvector is computationally efficient
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Ergodicity

▶ Def: Fraction of time T
(n)
i spent in i-th state by time n is

T
(n)
i :=

1

n

n∑
m=1

I {Xm = i}

▶ Compute expected value of T
(n)
i

E
[
T

(n)
i

]
=

1

n

n∑
m=1

E [I {Xm = i}] = 1

n

n∑
m=1

P (Xm = i)

▶ As n → ∞, probabilities P (Xm = i) → πi (ergodic MC). Then

lim
n→∞

E
[
T

(n)
i

]
= lim

n→∞

1

n

n∑
m=1

P (Xm = i) = πi

▶ For ergodic MCs same is true without expected value ⇒ Ergodicity

lim
n→∞

T
(n)
i = lim

n→∞

1

n

n∑
m=1

I {Xm = i} = πi , a.s.
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Example: Ergodic Markov chain

▶ Consider an ergodic Markov chain with transition probability matrix

P :=

 0 0.3 0.7
0.1 0.5 0.4
0.1 0.2 0.7


Visits to states, nT

(n)
i Ergodic averages, T

(n)
i
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▶ Ergodic averages slowly converge to π = [0.09, 0.29, 0.61]T
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PageRank: Random walk formulation

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
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Preliminary definitions

▶ Graph G = (V ,E ) ⇒ vertices V = {1, 2, . . . , J} and edges E

1

2 3

45

6

▶ Outgoing neighborhood of i is the set of nodes j to which i points

n(i) := {j : (i , j) ∈ E}

▶ Incoming neighborhood of i is the set of nodes that point to i :

n−1(i) := {j : (j , i) ∈ E}

▶ Strongly connected G ⇒ directed path joining any pair of nodes
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Definition of rank

▶ Agent A chooses node i , e.g., web page, at random for initial visit

▶ Next visit randomly chosen between links in the neighborhood n(i)

⇒ All neighbors chosen with equal probability

▶ If reach a dead end because node i has no neighbors

⇒ Chose next visit at random equiprobably among all nodes

▶ Redefine graph G = (V ,E ) adding edges from dead ends to all nodes

⇒ Restrict attention to connected (modified) graphs

1

2 3

45

6

▶ Rank of node i is the average number of visits of agent A to i
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Equiprobable random walk

▶ Formally, let An be the node visited at time n

▶ Define transition probability Pij from node i into node j

Pij := P
(
An+1 = j

∣∣An = i
)

▶ Next visit equiprobable among i ’s Ni := |n(i)| neighbors

Pij =
1

|n(i)|
=

1

Ni
, for all j ∈ n(i)

1

2 3

45

6

to 1

to 2

to 3

to 4

to 5
1/2

1/2

1/2

1/2 1/2

1/2

1/2

1/2

1

1/5

1/5

1/5

1/5

1/5

▶ Still have a graph

▶ But also a MC

▶ Red (not blue) circles
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Formal definition of rank

▶ Def: Rank ri of i-th node is the time average of number of visits

ri := lim
n→∞

1

n

n∑
m=1

I {Am = i}

⇒ Define vector of ranks r := [r1, r2, . . . , rJ ]
T

▶ Rank ri can be approximated by average rni at time n

rni :=
1

n

n∑
m=1

I {Am = i}

⇒ Since lim
n→∞

rni = ri , it holds rni ≈ ri for n sufficiently large

⇒ Define vector of approximate ranks rn := [rn1, rn2, . . . , rnJ ]
T

▶ If modified graph is connected, rank independent of initial visit

Network Science Analytics Centrality Measures and Link Analysis 52



Ranking algorithm

Output : Vector r(i) with ranking of node i
Input : Scalar n indicating maximum number of iterations
Input : Vector N(i) containing number of neighbors of i
Input : Matrix N(i , j) containing indices j of neighbors of i

m = 1; r=zeros(J,1); % Initialize time and ranks
A0 = random(’unid’,J); % Draw first visit uniformly at random
while m < n do

jump = random(’unid’,N(Am−1)); % Neighbor uniformly at
random
Am = N(Am−1, jump); % Jump to selected neighbor
r(Am) = r(Am) + 1; % Update ranking for Am

m = m + 1;
end
r = r/n; % Normalize by number of iterations n
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Social graph example

▶ Asked probability students about homework collaboration

▶ Created (crude) graph of the social network of students in the class

⇒ Used ranking algorithm to understand connectedness

Ex: I want to know how well students are coping with the class

⇒ Best to ask people with higher connectivity ranking

▶ 2009 data from “UPenn’s ECE440”
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Ranked class graph
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Convergence metrics

▶ Recall r is vector of ranks and rn of rank iterates

▶ By definition lim
n→∞

rn = r . How fast rn converges to r (r given)?

▶ Can measure by ℓ2 distance between r and rn

ζn := ∥r − rn∥2 =
( J∑

i=1

(rni − ri )
2

)1/2

▶ If interest is only on highest ranked nodes, e.g., a web search

⇒ Denote r (i) as the index of the i-th highest ranked node

⇒ Let r
(i)
n be the index of the i-th highest ranked node at time n

▶ First element wrongly ranked at time n

ξn := argmin
i
{r (i) ̸= r (i)n }
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Evaluation of convergence metrics

Distance
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▶ Distance close to 10−2 in
≈ 5× 103 iterations

▶ Bad: Two highest ranks
in ≈ 4× 103 iterations

▶ Awful: Six best ranks in
≈ 8× 103 iterations

▶ (Very) slow convergence

Network Science Analytics Centrality Measures and Link Analysis 57



When does this algorithm converge?

▶ Cannot confidently claim convergence until 105 iterations

⇒ Beyond particular case, slow convergence inherent to algorithm
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▶ Example has 40 nodes, want to use in network with 109 nodes!

⇒ Leverage properties of MCs to obtain a faster algorithm
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PageRank: Fast algorithms

Centrality measures

Case study: Stability of centrality measures in weighted graphs

Centrality, link analysis and web search

A primer on Markov chains

PageRank as a random walk

PageRank algorithm leveraging Markov chain structure
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Limit probabilities

▶ Recall definition of rank ⇒ ri := lim
n→∞

1

n

n∑
m=1

I {Am = i}

▶ Rank is time average of number of state visits in a MC

⇒ Can be as well obtained from limiting probabilities

▶ Recall transition probabilities ⇒ Pij =
1

Ni
, for all j ∈ n(i)

▶ Stationary distribution π = [π1, π1, . . . , πJ ]
T solution of

πi =
∑

j∈n−1(i)

Pj iπj =
∑

j∈n−1(i)

πj

Nj
for all i

⇒ Plus normalization equation
∑J

i=1 πi = 1

▶ As per ergodicity of MC (strongly connected G ) ⇒ r = π
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Matrix notation, eigenvalue problem

▶ As always, can define matrix P with elements Pij

πi =
∑

j∈n−1(i)

Pjiπj =
J∑

j=1

Pjiπj for all i

▶ Right hand side is just definition of a matrix product leading to

π = PTπ, πT1 = 1

⇒ Also added normalization equation

▶ Idea: solve system of linear equations or eigenvalue problem on PT

⇒ Requires matrix P available at a central location

⇒ Computationally costly (sparse matrix P with 1018 entries)
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What are limit probabilities?

▶ Let pi (n) denote probability of agent A visiting node i at time n

pi (n) := P (An = i)

▶ Probabilities at time n + 1 and n can be related

P (An+1 = i) =
∑

j∈n−1(i)

P
(
An+1 = i

∣∣An = j
)
P (An = j)

▶ Which is, of course, probability propagation in a MC

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n)

▶ By definition limit probabilities are (let p(n) = [p1(n), . . . , pJ(n)]
T )

lim
n→∞

p(n) = π = r

⇒ Compute ranks from limit of propagated probabilities
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Probability propagation

▶ Can also write probability propagation in matrix form

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n) =
J∑

j=1

Pjipj(n) for all i

▶ Right hand side is just definition of a matrix product leading to

p(n + 1) = PTp(n)

▶ Idea: can approximate rank by large n probability distribution

⇒ r = lim
n→∞

p(n) ≈ p(n) for n sufficiently large
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Ranking algorithm

▶ Algorithm is just a recursive matrix product, a power iteration

Output : Vector r(i) with ranking of node i
Input : Scalar n indicating maximum number of iterations
Input : Matrix P containing transition probabilities

m = 1; % Initialize time
r=(1/J)ones(J,1); % Initial distribution uniform across all
nodes
while m < n do

r = PT r; % Probability propagation
m = m + 1;

end
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Interpretation of probability propagation

▶ Q: Why does the random walk converge so slow?

▶ A: Need to register a large number of agent visits to every state

Ex: 40 nodes, say 100 visits to each ⇒ 4× 103 iters.

▶ Smart idea: Unleash a large number of agents K

ri = lim
n→∞

1

n

n∑
m=1

1

K

K∑
k=1

I {Akm = i}

▶ Visits are now spread over time and space

⇒ Converges “K times faster”

⇒ But haven’t changed computational cost
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Interpretation of prob. propagation (continued)

▶ Q: What happens if we unleash infinite number of agents K?

ri = lim
n→∞

1

n

n∑
m=1

lim
K→∞

1

K

K∑
k=1

I {Akm = i}

▶ Using law of large numbers and expected value of indicator function

ri = lim
n→∞

1

n

n∑
m=1

E [I {Am = i}] = lim
n→∞

1

n

n∑
m=1

P (Am = i)

▶ Graph walk is an ergodic MC, then lim
m→∞

P (Am = i) exists, and

ri = lim
n→∞

1

n

n∑
m=1

pi (m) = lim
n→∞

pi (n)

⇒ Probability propagation ≈ Unleashing infinitely many agents
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Distance to rank

▶ Initialize with uniform probability distribution ⇒ p(0) = (1/J)1

⇒ Plot distance between p(n) and r
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▶ Distance is 10−2 in ≈ 30 iters., 10−4 in ≈ 140 iters.

⇒ Convergence two orders of magnitude faster than random walk
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Number of nodes correctly ranked

▶ Rank of highest ranked node that is wrongly ranked by time n
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▶ Not bad: All nodes correctly ranked in 120 iterations

▶ Good: Ten best ranks in 70 iterations

▶ Great: Four best ranks in 20 iterations
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Distributed algorithm to compute ranks

▶ Nodes want to compute their rank ri

⇒ Can communicate with neighbors only (incoming + outgoing)

⇒ Access to neighborhood information only

▶ Recall probability update

pi (n + 1) =
∑

j∈n−1(i)

Pjipj(n) =
∑

j∈n−1(i)

1

Nj
pj(n)

⇒ Uses local information only

▶ Distributed algorithm. Nodes keep local rank estimates ri (n)
▶ Receive rank (probability) estimates rj(n) from neighbors j ∈ n−1(i)
▶ Update local rank estimate ri (n + 1) =

∑
j∈n−1(i) rj(n)/Nj

▶ Communicate rank estimate ri (n + 1) to outgoing neighbors j ∈ n(i)

▶ Only need to know the number of neighbors of my neighbors
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Distributed implementation of random walk

▶ Can communicate with neighbors only (incoming + outgoing)

⇒ But cannot access neighborhood information

⇒ Pass agent (‘hot potato’) around

▶ Local rank estimates ri (n) and counter with number of visits Vi

▶ Algorithm run by node i at time n

if Agent received from neighbor then
Vi = Vi + 1
Choose random neighbor
Send agent to chosen neighbor

end
n = n + 1; ri (n) = Vi/n;

▶ Speed up convergence by generating many agents to pass around
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Comparison of different algorithms

▶ Random walk (RW) implementation

⇒ Most secure. No information shared with other nodes

⇒ Implementation can be distributed

⇒ Convergence exceedingly slow

▶ System of linear equations

⇒ Least security. Graph in central server

⇒ Distributed implementation not clear

⇒ Convergence not an issue

⇒ But computationally costly to obtain approximate solutions

▶ Probability propagation

⇒ Somewhat secure. Information shared with neighbors only

⇒ Implementation can be distributed

⇒ Convergence rate acceptable (orders of magnitude faster than RW)
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Glossary

▶ Centrality measure

▶ Closeness centrality

▶ Dijkstra’s algorithm

▶ Betweenness centrality

▶ Information controller

▶ Eigenvector centrality

▶ Perron’s Theorem

▶ Power method

▶ Information retrieval

▶ Link analysis

▶ Repeated improvement

▶ Hubs and authorities

▶ HITS algorithm

▶ PageRank

▶ Spider traps

▶ Scaled PageRank updates

▶ Ergodic Markov chain

▶ Limiting probabilities

▶ Random walk on a graph

▶ Long-run fraction of state visits

▶ Probability propagation

▶ Distributed algorithm
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