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Local density

Local density, clustering coefficient and group centrality

Network connectivity

Assortativity mixing

Case study: Analysis of an epileptic seizure
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Network cohesion

▶ Many network analytic questions pertain to network cohesion

Example

▶ Q1: Do common friends of an actor end up being friends?

▶ Q2: What collections of proteins in a cell work closely together?

▶ Q3: Does Web page structure separate relative to content?

▶ Q4: What portion of the Internet topology constitutes a ‘backbone’?

▶ Definitions of network cohesion depend on the context

⇒ Scale from local (e.g., triads) to global (e.g., giant components)

⇒ Specified explicitly (e.g., cliques) or implicitly (e.g., clusters)
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Cohesive subgroups

▶ Cohesive subgroups defined by social network analysts as:

‘Actors connected via dense, directed, reciprocated relations’

▶ Allow sharing information, creating solidarity, collective actions

Ex: religious cults, terrorist cells, sport clubs, military platoons, . . .

▶ Desirable properties of a cohesive subgroup

⇒ Familiarity (degree);

⇒ Reachability (distance);

⇒ Robustness (connectivity); and

⇒ Density (edge density)

▶ Natural to think of cliques, i.e., complete subgraphs of G
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Local density and cliques

▶ Large cliques are rare; single missing edge destroys property

▶ Sufficient condition for the existence of a size-n clique

Ne >
N2

v

2

(n − 2)

(n − 1)
, while sparse graphs have Ne = O(Nv )

▶ Complexity of clique-related algorithms varies widely
▶ Is U ⊆ V a clique? Is it maximal? O(Nv + Ne) complexity
▶ Identifying all triangles in G? O(N3

v ) (O(N
√
2

v ) for sparse graphs)
▶ Does G have a maximal clique of size ≥ n? NP-complete
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Relaxing cliques by familiarity

▶ Cliques tend to be an overly restrictive notion of cohesiveness. Relax!

▶ Def: An induced subgraph G ′(V ′,E ′) is a k-plex if dv (G
′) ≥ |V ′| − k

for all v ∈ V ′, and G ′ is maximal

3-plex 2-plex 

1-plex 

⇒ Degrees are in the induced subgraph G ′, not in G

▶ No vertex is missing more than k − 1 of its possible |V ′| − 1 edges

⇒ A clique is a 1-plex

▶ Complex: problems involving k-plexes scale like clique counterparts
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The k-core decomposition

▶ Recall the k-core decomposition. A dual notion of cohesiveness

▶ Def: An induced subgraph G ′(V ′,E ′) is a k-core if dv (G
′) ≥ k for

all v ∈ V ′, and G ′ is maximal

▶ Hierarchy: larger “coreness” ⇒ larger degrees and centrality

▶ Algorithm: recursively prune all vertices of degree less than k

⇒ Complexity O(Nv + Ne), very efficient for sparse graphs
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Relaxing cliques by reachability

▶ Idea: specify that any two actors are no more than k hops away

▶ Def: An induced subgraph G ′(V ′,E ′) is a k-clique if d(u, v) ≤ k for
all u, v ∈ V ′

2-clique 

1-clique 

⇒ Useful if important social processes occur via intermediaries

⇒ diam(G ′) may exceed k , if distances used are in G

▶ Likewise, a k-club is a subgraph G ′ with diam(G ′) ≤ k

⇒ k-clubs are k-cliques but the converse is not true, in general
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Quantifying local density

▶ A natural measure of density of a subgraph G ′(V ′,E ′) is

den(G ′) =
|E ′|

|V ′|(|V ′| − 1)/2
∈ [0, 1]

⇒ Quantifies how close is G ′ to being a clique

▶ den(G ′) is just a rescaling of the average degree d̄(G ′)

d̄(G ′) =
1

|V ′|
∑
v∈V ′

dv =
2|E ′|
|V ′|

⇒ den(G ′) =
d̄(G ′)

|V ′| − 1

▶ Flexibility in choosing G ′ to measure local density via den(G ′)

⇒ Use v ’s egonet G ′
v , subgraph induced by v and its neighbors

⇒ Density of the overall graph G is den(G ) = 2Ne

Nv (Nv−1)
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Clustering coefficient

▶ Q: What fraction of v ’s neighbors are themselves connected?

▶ Def: The clustering coefficient cl(v) of v ∈ V is

cl(v) =
2|Ev |

dv (dv − 1)
∈ [0, 1]

⇒ |Ev | is the number of edges among v ’s neighbors

v v v 

cl(v)=0 cl(v)=1/3 cl(v)=1 

▶ An indication of the extent to which edges ‘cluster’

▶ The global (average) clustering coefficient is

cl(G ) =
1

Nv

∑
v∈V

cl(v)
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Example: MSN social network

▶ MSN social network: Nv ≈ 180M, Ne ≈ 1.3B [Leskovec et al’06]

cl(d)≈d-0.37 

d 

cl
(d
) 

cl(G)=0.1140 

▶ Average clustering coefficient cl(G ) = 0.1140 is large

▶ Compare with the Erdös-Renyi random graph model

cl(Gn,p) = Pr [Edge closes triangle] = p =
d̄

n − 1
→ 0
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Extending centrality to vertex groups

▶ Capture the importance of node subgroups [Everett et al’99]

▶ Q1: Are engineers more popular than accountants in an organization?

▶ Q2: How do we select board members with most business influence?

▶ Group centrality measures to generalize vertex centrality

▶ Ex: Consider subgraph G ′(V ′,E ′) induced by node subset V ′

▶ Let UV ′ ⊂ V \ V ′ with edges to members of V ′

▶ Group degree centrality of node subset V ′

dV ′ = |UV ′ |

⇒ Number of non-group nodes connected to G ′
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Group centrality measures

▶ Def: Distance from v ∈ V to a group of nodes V ′ ⊂ V is

d∗(v ,V
′) = min

u∈V ′
d(u, v)

▶ Group closeness centrality of node subset V ′

cCl(V
′) =

1∑
u∈V\V ′ d∗(u,V ′)

▶ Group betweenness centrality of node subset V ′

cBe(V
′) =

∑
s ̸=t∈V\V ′

σ(s, t|V ′)

σ(s, t)

▶ σ(s, t) is the total number of s − t shortest paths (s, t ∈ V \ V ′)
▶ σ(s, t|V ′) is the number of s − t shortest paths through v ∈ V ′
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Connectivity

Local density, clustering coefficient and group centrality

Network connectivity

Assortativity mixing

Case study: Analysis of an epileptic seizure
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Network connectivity and robustness

▶ Connectivity relevant when taking a larger, global perspective
▶ Q: Does a given graph G separate into different subgraphs?
▶ If it does not, a ‘less robust’ network is closer to splitting

▶ Def: Graph is connected if ∃ walks joining each vertex pair

1

2 3

45

6

7

⇒ If bridge edges are removed, the graph becomes disconnected
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Connected components

▶ A component is a maximally-connected subgraph

1

2 3

45

6

7

▶ In figure ⇒ Components are {1, 2, 5, 7}, {3, 6} and {4}
⇒ Subgraph {3, 4, 6} not connected, {1, 2, 5} not maximal

▶ Disconnected graphs have 2 or more components

⇒ Number of components = Multiplicity of eigenvalue 0 for L

⇒ Largest component often called giant component

▶ Check for connectivity, identify components with DFS, BFS: O(Nv )
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Giant connected components

▶ Large real-world networks typically exhibit one giant component

▶ Ex: romantic relationships in a US high school [Bearman et al’04]

63 14 9 
2 2 

▶ Q: Why do we expect to find a single giant component?

▶ A: Well, it only takes one edge to merge two giant components
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Average path length and small world

▶ Giant components tend to exhibit the small world property

▶ Small refers to the average path length

ℓ̄ =

(
Nv

2

)−1 ∑
u ̸=v∈V

d(u, v) = O(logNv )

Ex: facilitates spread of gossip, diseases, search for WWW content
▶ Not too surprising that the property holds. Informal argument:

Friends 

Friends of friends 

Friends 

Friends of friends 

▶ If dv = d , after h∗ hops have dh∗ ≈ Nv ⇒ ℓ̄ ≈ h∗ = O(logNv )
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Connectivity of directed graphs

▶ Connectivity is more subtle with directed graphs. Two notions

▶ Def: Digraph is strongly connected if for every pair u, v ∈ V , u is
reachable from v (via a directed walk) and vice versa

▶ Def: Digraph is weakly connected if connected after disregarding arc
directions, i.e., the underlying undirected graph is connected

1

2 3

45

6

▶ Above graph is weakly connected but not strongly connected

⇒ Strong connectivity obviously implies weak connectivity
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Bowtie structure of directed graphs

▶ First described for the Web graph in [Broder et al’00]
5

Tendrils

Strongly
Connected
Component

In−Component Out−Component

Tubes
Fig. 4.5 ‘Bowtie’ structure of a directed network graph. Adapted from Broder et al. [67].

▶ Core element is the strongly-connected component (SCC)
▶ In-component (IC): vertices reaching SCC, but not vice-versa
▶ Out-component (OC): vertices reached by SCC, but not vice-versa
▶ Tubes: vertices in between the IC and OC, not in SCC
▶ Tendrils: vertices that cannot be reached by, or reach the SCC

▶ In general, the digraph may be disconnected with a giant SCC
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Example: AIDS blog network

4

Fig. 1.4 AIDS Blog Network

6

Fig. 4.6 AIDS blog network, from Chapter 1, with nodes colored according to their membership
in the ‘bowtie’ decomposition: strongly connected component (yellow), in-component (blue), out-
component (red), and tendrils (pink).▶ Network of citations among 146 blogs related to AIDS

⇒ Small SCC with 4 vertices and IC with 2 vertices

⇒ OC dominates with 112 vertices, and few tendrils (28 vertices)

▶ For the WWW, Broder et al. found |SCC| ≈ |IC| ≈ |OC| ≈ 56M
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Assortativity mixing

Local density, clustering coefficient and group centrality

Network connectivity

Assortativity mixing

Case study: Analysis of an epileptic seizure
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Assortative mixing

▶ People have a stronger tendency to associate with equals

⇒ Tendency is called homophily or assortative mixing

▶ Ex: high-school students by race, bloggers by political party, . . .

⇒ Can have disassortative mixing e.g., romantic relationships
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Quantifying assortative mixing

▶ Suppose that vertex characteristics are categorical, e.g., male/female

▶ Let fij be the fraction of edges joining vertices of categories Ci , Cj

⇒ fi+ =
∑

j fij (f+i ) is the i-th marginal row (column) sum

▶ Define the assortativity coefficient [Newman’03]

ra =

∑
i fii −

∑
i fi+f+i

1−
∑

i fi+f+i

⇒ fi+f+i is the expected fraction of edges joining nodes in Ci

⇒ Random edges preserving degree distribution yields ra = 0

▶ Perfectly assortative mixing yields rmax
a = 1, while the minimum is

rmin
a = −

∑
i fi+f+i

1−
∑

i fi+f+i
> −1
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Example: Abilene network

▶ Abilene network for US universities and research labs
▶ ‘Core’ nodes, as well as e.g., ‘Connector’ nodes and ‘Exchange points’

1

Fig. 1.1 Depiction of the Abilene network in the Internet. Different nodes represent various forms
of network ‘entities’, while different colors of links indicate various levels of communication band-
width. Note that some node names appear more than once, corresponding to the phenomena of
‘multi-homing’, wherein a given network connects to another at more than one location. Figure
courtesy of Sucharita Gopal.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

▶ Hierarchical structure, suggestive of disassortative mixing
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Disassortative mixing in Abilene

▶ Tabulated counts of inter-category edges in Abilene

Core Exchange Peer Conn. Part. Conn./Part.

Core 14 6 5 17 0 16
Exchange 6 1 46 2 0 0

Peer 5 46 0 0 0 1
Conn. 17 2 0 0 203 0
Part. 0 0 0 203 0 34

Conn./Part. 16 0 1 34 34 0

▶ Fractions fij obtained by scaling table entries by the total of 675

▶ Assortativity coefficient ra = −0.3162, close to rmin
a = −0.3461

⇒ Strongly supports our suspicion of disassortative mixing
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Case study

Local density, clustering coefficient and group centrality

Network connectivity

Assortativity mixing

Case study: Analysis of an epileptic seizure
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Network analysis and epilepsy

▶ Epilepsy is the world’s most common serious brain disorder

⇒ Seizures, i.e., recurrent abnormal neuronal activity

▶ Ex: Network-oriented analysis of epileptic seizure data in humans

▶ M. A. Kramer et al, “Emergent network topology at seizure onset in
humans,” Epilepsy Res., vol. 79, pp. 173-186, 2008

▶ Leverage few summaries of network characteristics we learnt so far
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Measurement

▶ Electrode grid (8x8) implanted in the cortical surface of the brain

⇒ Also implanted two strips of 6 electrodes (deeper, not shown)

▶ Electrocorticogram (ECoG) data; voltages indicative of brain activity10

Fig. 4.10 Left: Three-dimensional reconstruction of the brain of an epilepsy patient, with ECoG
implant grid super-imposed. Right: Example of an ECoG time series at one electrode, both for
one seizure (bottom) and after smoothing (i.e., bandpass filtering) and averaging over eight such
seizures (top). Preictal (blue) and ictal (red) periods are indicated between pairs of parallel lines.

▶ Two 10 sec. intervals of interest for comparison:

⇒ Preictal period: prior to the epileptic seizure

⇒ Ictal period: immediately after start of seizure

▶ Top time-series is smoothed, averaged over 8 seizure signals
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Network graph construction

▶ Network → represent couplings among brain regions

⇒ Graphs for the preictal and ictal periods, for 8 seizures

▶ Vertices: correspond to the 76 electrodes (cortical brain regions)

▶ Edges: threshold correlations between pairwise 10 sec. time series11

Fig. 4.11 Network representations of cortical-level coupling between brain regions about each
electrode, during preictal (left) and ictal (right) periods.

Preictal Ictal 

▶ Brain is in two very different states before and during seizure

⇒ Thinning of edges, coupling reduction at seizure onset

⇒ Closest to the strips, where seizure was suspected to emanate
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Summaries of network characteristics

▶ Evaluated degree, closeness, betweenness centrality; clustering coeff.

⇒ Show preictal and ictal periods, as well as their difference

12

Fig. 4.12 Visual summaries of vertex degree, closeness centrality, betweenness centrality, and
clustering coefficient (Rows 1 – 4), averaged over eight seizures. Columns correspond to preic-
tal (left) and ictal (right) periods, and to their difference (center). Vertices are drawn with radius
proportional to the square root of the relative magnitude, which allows for meaningful visual com-
parison of their areas. In the middle column, blue indicates positive differences, and red, negative.

12

Fig. 4.12 Visual summaries of vertex degree, closeness centrality, betweenness centrality, and
clustering coefficient (Rows 1 – 4), averaged over eight seizures. Columns correspond to preic-
tal (left) and ictal (right) periods, and to their difference (center). Vertices are drawn with radius
proportional to the square root of the relative magnitude, which allows for meaningful visual com-
parison of their areas. In the middle column, blue indicates positive differences, and red, negative.
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▶ Identifies spatially localized brain regions that may facilitate seizures

⇒ May serve to more precisely guide surgical intervention
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Glossary

▶ Network cohesion

▶ Cohesive subgroups

▶ Familiarity

▶ Reachability

▶ Robustness

▶ Local density

▶ Cliques

▶ k-plex and k-core

▶ k-clique and k-club

▶ Egonet

▶ Clustering coefficient

▶ Bridge edges

▶ Giant connected component

▶ Small world phenomenon

▶ Average path length

▶ Bowtie structure

▶ Strongly-connected component

▶ (Dis) assortative mixing

▶ Homophily

▶ Brain networks
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