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Communities within networks

I Networks play the powerful role of bridging the local and the global

⇒ Explain how processes at node/link level ripple to a population

I We often think of (social) networks as having the following structure

I Q: Can we gain insights behind this conceptualization?
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Motivating context

I In the 60s., M. Granovetter interviewed people who changed jobs
I Asked about how they discovered their new jobs
I Many learned about opportunities through personal contacts

I Surprisingly, contacts where often acquaintances rather than friends

⇒ Close friends likely have the most motivation to help you out

I Q: Why do distant acquaintances convey the crucial information?

I M. Granovetter, Getting a job: A study of contacts and careers.
University of Chicago Press, 1974
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Granovetter’s answer and impact

I Linked two different perspectives on distant friendships
I Structural: focus on how friendships span the network
I Interpersonal: local consequences of friendship being strong or weak

I Intertwining between structural and informational role of an edge

1) Structurally-embedded edges within a community:

⇒ Tend to be socially strong; and

⇒ Are highly redundant in terms of information access

2) Long-range edges spanning different parts of the network:

⇒ Tend to be socially weak; and

⇒ Offer access to useful information (e.g., on a new job)

I General way of thinking about the architecture of social networks

⇒ Answer transcends the specific setting of job-seeking
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Triadic closure

I A basic principle of network formation is that of triadic closure

“If two people have a friend in common, then there is an
increased likelihood that they will become friends in the future”

I Emergent edges in a social network likely to close triangles

⇒ More likely to see the red edge than the blue one

I Prevalence of triadic closure measured by the clustering coefficient

cl(v) =
#pairs of friends of v that are connected

#pairs of friends of v
=

#4 involving v

dv (dv − 1)/2

v v v 

cl(v)=0 cl(v)=1/3 cl(v)=1 
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Reasons for triadic closure

I Triadic closure is intuitively very natural. Reasons why it operates:

A 

B 
C 

1) Increased opportunity for B and C to meet

⇒ Both spend time with A

2) There is a basis for mutual trust among B and C

⇒ Both have A as a common friend

3) A may have an incentive to bring B and C together

⇒ Lack of friendship may become a source of latent stress

I Premise based on theories dating to early work in social psychology

I F. Heider, The Psychology of Interpersonal Relations. Wiley, 1958
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Bridges

I Ex: Consider the simple social network in the figure

A B 

C 
D 

E 

I A’s links to C,D, and E connect her to a tightly knit group

⇒ A,C,D, and E likely exposed to similar opinions

I A’s link to B seems to reach to a different part of the network

⇒ Offers her access to views she would otherwise not hear about

I A-B edge is called a bridge, its removal disconnects the network

⇒ Giant components suggest that bridges are quite rare
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Local bridges

I Ex: In reality, the social network is larger and may look as

A B 

C 
D 

E 

⇒ Without A, B knowing, may have a longer path among them

I Def: Span of (u, v) is the u − v distance when the edge is removed

I Def: A local bridge is and edge with span > 2

⇒ Ex: Edge A-B is a local bridge with span 3

I Local bridges with large spans ≈ bridges, but less extreme

⇒ Link with triadic closure: local bridges not part of triangles
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Strong triadic closure property

I Categorize all edges in the network according to their strength

⇒ Strong ties corresponding to friendship

⇒ Weak ties corresponding to acquaintances

S 

S S 

S W 

W 

W 

W W 
S 

S 

S 

S 
W 

W 

W 

S 

I Opportunity, trust, incentive act more powerfully for strong ties

⇒ Suggests qualitative assumption termed strong triadic closure

“Two strong ties implies a third edge exists closing the triangle”

S 
S 

I Abstraction to reason about consequences of strong/weak ties
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Local bridges and weak ties

a) Local, interpersonal distinction between edges ⇒ strong/weak ties

b) Global, structural notion ⇒ local bridges present or absent

Theorem
If a node satisfies the strong triadic closure property and is involved in at
least two strong ties, then any local bridge incident to it is a weak tie.

I Links structural and interpersonal perspectives on friendships

S 

S S 

S W 

W 

W 

W W 
S 

S 

S 

S 
W 

W 

W 

S 

I Back to job-seeking, local bridges connect to new information

⇒ Conceptual span is related to their weakness as social ties

⇒ Surprising dual role suggests a “strength of weak ties”
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Proof by contradiction

Proof.

I We will argue by contradiction. Suppose node A has 2 strong ties

I Moreover, suppose A satisfies the strong triadic closure property

S 
S 

A 

I Let A-B be a local bridge as well as a strong tie

S 

S A B 

S 

S A B 

C C 

⇒ Edge B-C must exist by strong triadic closure

I This contradicts A-B is a local bridge (cannot be part of a triangle)
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Tie strength and structure in large-scale data

I Q: Can one test Granovetter’s theory with real network data?

⇒ Hard for decades. Lack of large-scale social interaction surveys

I Now we have “who-calls-whom” networks with both key ingredients

⇒ Network structure of communication among pairs of people

⇒ Total talking time, i.e., a proxy for tie strength

I Ex: Cell-phone network spanning ≈ 20% of country’s population

I J. P. Onella et al., “Structure and tie strengths in mobile
communication networks,” PNAS, vol. 104, pp. 7332-7336, 2007
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Generalizing weak ties and local bridges

I Model described so far imposes sharp dichotomies on the network

⇒ Edges are either strong or weak, local bridges or not

⇒ Convenient to have proxies exhibiting smoother gradations

I Numerical tie strength ⇒ Minutes spent in phone conversations

⇒ Order edges by strength, report their percentile occupancy

I Generalize local bridges ⇒ Define neighborhood overlap of edge (i , j)

Oij =
|n(i) ∩ n(j)|
|n(i) ∪ n(j)|

; n(i) := {j ∈ V : (i , j) ∈ E}

⇒ Desirable property: Oij = 0 if (i , j) is a local bridge
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Empirical results

I Strength of weak ties prediction: Oij grows with tie strength

⇒ Dependence borne out very cleanly by the data (o points)

N
ei

gh
bo

rh
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d 
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er
la

p 

Strength percentile 

I Randomly permuted tie strengths, fixed network structure (� points)

⇒ Effectively removes the coupling between Oij and tie strength
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Phone network and tie strengths

I Cell-phone network with color-coded tie strengths

1) Stronger ties more structurally-embedded (within communities)

2) Weaker ties correlate with long-range edges joining communities
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Randomly permuted tie strengths

I Same cell-phone network with randomly permuted tie strengths

I No apparent link between structural and interpersonal roles of edges
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Weak ties linking communities

I Strength of weak ties prediction: long-range, weak ties bridge communities

S
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Fraction of removed edges Fraction of removed edges 

Edge removal by strength Edge removal by overlap 

I Delete decreasingly weaker (small overlap) edges one at a time

⇒ Giant component shrinks rapidly, eventually disappears

I Repeat with strong-to-weak tie deletions ⇒ slower shrinkage observed
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Closing the loop

I We often think of (social) networks as having the following structure

Long-range, weak ties 

Embedded, strong ties 

I Conceptual picture supported by Granovetter’s strength of weak ties
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Communities

I Nodes in real-world networks organize into communities

Ex: families, clubs, political organizations, proteins by function, . . .

I Supported by Granovetter’s strength of weak ties theory

I Community (a.k.a. group, cluster, module) members are:

⇒ Well connected among themselves

⇒ Relatively well separated from the rest

I Exhibit high cohesiveness w.r.t. the underlying relational patterns
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Zachary’s karate club

I Social interactions among members of a karate club in the 70s2

a1

a2

a3

a4
a5

a6

a7

a8

a9

a10

a11

a12
a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23a24
a25

a26

a27

a28
a29

a30

a31

a32

a33
a34

Fig. 1.2 Zachary’s ‘karate club’ network. Subgroups, centered around actors 1 and 34, are indi-
cated by the coloring and shape of their nodes, using blue squares and red circles, respectively.
Links between actors within the same subgroup are colored similar to their nodes, while links
between actors of different subgroups are shown in yellow.

I Zachary witnessed the club split in two during his study

⇒ Toy network, yet canonical for community detection algorithms

⇒ Offers “ground truth” community membership (a rare luxury)
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Political blogs

I The political blogosphere for the US 2004 presidential election

I Community structure of liberal and conservative blogs is apparent

⇒ People have a stronger tendency to interact with “equals”
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Electrical power grid

I Split power network into areas with minimum inter-area interactions

I Applications:
I Decide control areas for distributed power system state estimation
I Parallel computation of power flow
I Controlled islanding to prevent spreading of blackouts
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High-school students

I Network of social interactions among high-school students

I Strong assortative mixing, with race as latent characteristic
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Physicists working on Network Science

I Coauthorship network of physicists publishing networks’ research

I Tightly-knit subgroups are evident from the network structure
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College football

I Vertices are NCAA football teams, edges are games during Fall’00

I Communities are the NCAA conferences and independent teams
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Facebook friendships

I Facebook egonet with 744 vertices and 30K edges

I Asked “ego” to identify social circles to which friends belong

⇒ Company, high-school, basketball club, squash club, family
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Network community detection

Community structure in networks
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Modularity maximization

Spectral graph partitioning
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Unveiling network communities

I Nodes in real-world networks organize into communities

Ex: families, clubs, political organizations, proteins by function, . . .

I Community (a.k.a. group, cluster, module) members are:

⇒ Well connected among themselves

⇒ Relatively well separated from the rest

I Exhibit high cohesiveness w.r.t. the underlying relational patterns

I Q: How can we automatically identify such cohesive subgroups?
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Community detection and graph partitioning

I Community detection is a challenging clustering problem

C1) No consensus on the structural definition of community
C2) Node subset selection often intractable
C3) Lack of ground-truth for validation

I Useful for exploratory analysis of network data

Ex: clues about social interactions, content-related web pages

Graph partitioning

Split V into given number of non-overlapping groups of given sizes

I Criterion: number of edges between groups is minimized (more soon)

Ex: task-processor assignment for load balancing

I Number and sizes of groups unspecified in community detection

⇒ Identify the natural fault lines along which a network separates
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Graph partitioning is hard

I Ex: Graph bisection problem, i.e., partition V into two groups
I Suppose the groups V1 and V2 are non-overlapping
I Suppose groups have equal size, i.e., |V1| = |V2| = Nv/2
I Minimize edges running between vertices in different groups

I Simple problem to describe, but hard to solve

Number of ways to partition V :

(
Nv

Nv/2

)
≈ 2Nv

√
Nv

⇒ Used Stirling’s formula Nv ! ≈
√
2πNv (Nv/e)

Nv

⇒ Exhaustive search intractable beyond toy small-sized networks

I No smart (i.e., polynomial time) algorithm, NP-hard problem

⇒ Seek good heuristics, e.g., relaxations of natural criteria
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Strength of weak ties motivation

I Local bridges connect weakly interacting parts of the network

I Q: What about removing those to reveal communities?

I Challenges
I Multiple local bridges. Some better that others? Which one first?
I There might be no local bridge, yet an apparent natural division
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Edge betweenness centrality

I Idea: high edge betweenness centrality to identify weak ties
I High cBe(e) edges carry large traffic volume over shortest paths
I Position at the interface between tightly-knit groups

I Ex: cell-phone network with colored edge strength and betwenness

Edge strength Edge betweenness 
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Girvan-Newman’s method

I Girvan-Newmann’s method extremely simple conceptually

⇒ Find and remove “spanning links” between cohesive subgroups

I Algorithm: Repeat until there are no edges left

⇒ Calculate the betweenness centrality cBe(e) of all edges

⇒ Remove edge(s) with highest cBe(e)

I Connected components are the communities identified
I Divisive method: network falls apart into pieces as we go
I Nested partition: larger communities potentially host denser groups
I Recompute edge betweenness in O(NvNe)-time per step

I M. Girvan and M. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, pp. 7821-7826, 2002
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Example: The algorithm in action

Original graph Step 1 

Step 2 Step 3 

Nested graph decomposition 
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Scientific collaboration network

I Ex: Coauthorship network of scientists at the Santa Fe Institute

I Communities found can be traced to different disciplines
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Hierarchical clustering

I Greedy approach to iteratively modify successive candidate partitions
I Agglomerative: successive coarsening of partitions through merging
I Divisive: successive refinement of partitions through splitting

I Per step, partitions are modified in a way that minimizes a cost
I Measures of (dis)similarity xij between pairs of vertices vi and vj
I Ex: Euclidean distance dissimilarity

xij =

√∑
k 6=i,j

(Aik − Ajk)2

I Method returns an entire hierarchy of nested partitions of the graph

⇒ Can range fully from {{v1}, . . . , {vNv }} to V
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Agglomerative clustering

I An agglomerative hierarchical clustering algorithm proceeds as follows

S1: Choose a dissimilarity metric and compute it for all vertex pairs

S2: Assign each vertex to a group of its own

S3: Merge the pair of groups with smallest dissimilarity

S4: Compute the dissimilarity between the new group and all others

S5: Repeat from S3 until all vertices belong to a single group

I Need to define group dissimilarity from pairwise vertex counterparts
I Single linkage: group dissimilarity xSL

Gi ,Gj
follows single most dissimilar pair

xSL
Gi ,Gj

= max
u∈Gi ,v∈Gj

xuv

I Complete linkage: every vertex pair highly dissimilar to have high xCL
Gi ,Gj

xCL
Gi ,Gj

= min
u∈Gi ,v∈Gj

xuv

Network Science Analytics Network Community Detection 39



Dendrogram

I Hierarchical partitions often represented with a dendrogram

I Shows groups found in the network at all algorithmic steps

⇒ Split the network at different resolutions

I Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

I Q: Which of the divisions is the most useful/optimal in some sense?

I A: Need to define metrics of graph clustering quality
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Modularity

I Size of communities typically unknown ⇒ Identify automatically

I Modularity measures how well a network is partitioned in communities
I Intuition: density of edges in communities higher than expected

I Consider a graph G and a partition into groups s ∈ S . Modularity:

Q(G ,S) ∝
∑
s∈S

[(# of edges within group s)− E [# of such edges]]

I Formally, after normalization such that Q(G ,S) ∈ [−1, 1]

Q(G ,S) =
1

2Ne

∑
s∈S

∑
i,j∈s

[
Aij −

didj
2Ne

]
⇒ Null model: randomize edges, preserving degree distribution
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Expected connectivity among nodes

I Null model: randomize edges preserving degree distribution in G

⇒ Random variable Aij := I {(i , j) ∈ E}
⇒ Expectation is E [Aij ] = P ((i , j) ∈ E )

I Suppose node i has degree di , node j has degree dj
⇒ Degree is “# of spokes” per node, 2Ne spokes in G

j i ? 
ik 

I Probability spoke ik connected to j is
dj

2Ne−1 ≈ dj
2Ne

, hence

P ((i , j) ∈ E ) = P

(
di⋃

ik=1

{spoke ik connected to j}

)

=

di∑
ik=1

P (spoke ik connected to j) =
didj
2Ne
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Assessing clustering quality

I Can evaluate the modularity of each partition in a dendrogram

⇒ Maximum value gives the “best” community structure

I Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

Q 

I Q: Why not optimize Q(G ,S) directly over possible partitions S?
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Modularity revisited

I Recall our definition of modularity

Q(G ,S) =
1

2Ne

∑
s∈S

∑
i,j∈s

[
Aij −

didj
2Ne

]

I Let gi be the group membership of vertex i , and rewrite

Q(G ,S) =
1

2Ne

∑
i,j∈V

[
Aij −

didj
2Ne

]
I {gi = gj}

I Define for convenience the summands Bij := Aij − didj
2Ne

⇒ Both marginal sums of Bij vanish, since e.g.,∑
j

Bij =
∑
j

Aij −
di
2Ne

∑
j

dj = di −
di
2Ne

2Ne = 0
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Graph bisection

I Consider (for simplicity) dividing the network in two groups

I Binary community membership variables per vertex

si =

{
+1, vertex i belongs to group 1
−1, vertex i belongs to group 2

I Using the identity 1
2 (si sj + 1) = I {gi = gj}, the modularity is

Q(G ,S) =
1

2Ne

∑
i,j∈V

[
Aij −

didj
2Ne

]
I {gi = gj}

=
1

4Ne

∑
i,j∈V

Bij(si sj + 1)

I Recall
∑

j Bij = 0 to obtain the simpler expression

Q(G ,S) =
1

4Ne

∑
i,j∈V

Bijsi sj
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Optimizing modularity

I Let B ∈ RNv×Nv be the modularity matrix with entries Bij := Aij − didj
2Ne

⇒ Any partition S is defined by the vector s = [s1, . . . , sNv ]
>

I Modularity is a quadratic form

Q(G ,S) =
1

4Ne

∑
i,j∈V

Bijsi sj =
1

4Ne
s>Bs

I Modularity as criterion for graph bisection yields the formulation

ŝ = arg max
s∈{±1}Nv

s>Bs

⇒ Nasty binary constraints s ∈ {±1}Nv (hypercube vertices)

⇒ Modularity optimization is NP-hard [Brandes et al ’06]
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Just relax!

I Relax the constraint s ∈ {±1}Nv to s ∈ RNv , ‖s‖2 =
√
Nv

ŝ = argmax
s

s>Bs, s. to s>s = Nv

I Associate a Langrange multiplier λ to the constraint s>s = Nv

⇒ Optimality conditions yields

∇s

[
s>Bs+ λ(Nv − s>s)

]
= 0 ⇒ Bs = λs

I Conclusion is that s is an eigenvector of B with eigenvalue λ

I Q: Which eigenvector should we pick?

⇒ At optimum Bs = λs so objective becomes

s>Bs = λs>s = λ

I A: To maximize modularity pick the dominant eigenvector of B

Network Science Analytics Network Community Detection 48



Spectral modularity maximization

I Let u1 be the dominant eigenvector of B, with i-th entry [u1]i

⇒ Cannot just set s =
√
Nvu1 because u1 6= {±1}Nv

⇒ Best effort: maximize their similarity s>u1 which gives

si = sign([u1]i ) :=

{
+1, [u1]i > 0
−1, [u1]i ≤ 0

I Spectral modularity maximization algorithm

S1: Compute modularity matrix B with entries Bij = Aij − didj
2Ne

S2: Find dominant eigenvector u1 of B (e.g., power method)

S3: Cluster membership of vertex i is si = sign([u1]i )

I Multiple (> 2) communities through e.g., repeated graph bisection
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Example: Zachary’s karate club

I Spectral modularity maximization
I Shapes of vertices indicate community membership
I Dotted line indicates partition found by the algorithm
I Vertex colors indicate the strength of their membership
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Graph bisection

I Consider an undirected graph G (V ,E )

I Ex: Graph bisection problem, i.e., partition V into two groups
I Groups V1 and V2 = V C

1 are non-overlapping
I Groups have given size, i.e., |V1| = N1 and |V2| = N2

V1 V2 

I Q: What is a good criterion to partition the graph?

I A: We have already seen modularity. Let’s see a different one
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Graph cut

I Desiderata: Community members should be

⇒ Well connected among themselves; and

⇒ Relatively well separated from the rest of the nodes

V1 V2 

I Def: A cut C is the number of edges between groups V1 and V \V1

C := cut(V1,V2) =
∑

i∈V1,j∈V2

Aij

I Natural criterion: minimize cut, i.e., edges across groups V1 and V2
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From graph cuts . . .

I Binary community membership variables per vertex

si =

{
+1, vertex i belongs to V1

−1, vertex i belongs to V2

I Let gi be the group membership of vertex i , such that

I {gi 6= gj} =
1

2
(1− si sj) =

{
1, i and j in different groups
0, i and j in the same group

I Cut expressible in terms of the variables si as

C =
∑

i∈V1,j∈V2

Aij =
1

2

∑
i,j∈V

Aij(1− si sj)
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. . . to the graph Laplacian matrix

I First summand in C = 1
2

∑
i,j Aij(1− si sj) is∑

i,j∈V

Aij =
∑
i∈V

di =
∑
i∈V

di s
2
i =

∑
i,j∈V

di si sjI {i = j}

I Used s2i = 1 since si ∈ {±1}. The cut becomes

C =
1

2

∑
i,j∈V

(di I {i = j} − Aij)si sj =
1

2

∑
i,j∈V

Lijsi sj

I Cut in terms of Lij , entries of the graph Laplacian L = D− A, i.e.,

C (s) =
1

2
s>Ls, s := [s1, . . . , sNv ]

>

I Maximize modularity Q(s) ∝ s>Bs vs. Minimze cut C (s) ∝ s>Ls
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Graph cut minimization

I Since |V1| = N1 and |V2| = N2 = N − N1, we have the constraint∑
i∈V

si =
∑
i∈V1

(+1) +
∑
i∈V2

(−1) = N1 − N2 ⇒ 1>s = N1 − N2

I Minimum-cut criterion for graph bisection yields the formulation

ŝ = arg min
s∈{±1}Nv

s>Ls, s. to 1>s = N1 − N2

I Again, binary constraints s ∈ {±1}Nv render cut minimization hard

⇒ Relax binary constraints as with modularity maximization
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Laplacian matrix properties revisited

I Smoothness: For any vector x ∈ RNv of “vertex values”, one has

x>Lx =
∑
i,j∈V

Lijxixj =
∑

(i,j)∈E

(xi − xj)
2

which can be minimized to enforce smoothness of functions on G

I Positive semi-definiteness: Follows since x>Lx ≥ 0 for all x ∈ RNv

I Spectrum: All eigenvalues of L are real and non-negative

⇒ Eigenvectors form an orthonormal basis of RNv

I Rank deficiency: Since L1 = 0, L is rank deficient

I Spectrum and connectivity: The smallest eigenvalue λ1 of L is 0
I If the second-smallest eigenvalue λ2 6= 0, then G is connected
I If L has n zero eigenvalues, G has n connected components
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Further intuition

I Since s>Ls =
∑

(i,j)∈E (si − sj)
2, the minimum-cut formulation is

ŝ = arg min
s∈{±1}Nv

∑
(i,j)∈E

(si − sj)
2, s. to 1>s = N1 − N2

I Q: Does this equivalent cost function make sense? A: Absolutely!

⇒ Edges joining vertices in the same group do not add to the sum

⇒ Edges joining vertices in different groups add 4 to the sum

V1 V2 

si +1 -1 0 

I Minimize cut: assign values si to nodes i such that few edges cross 0
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Minimum-cut relaxation

I Relax the constraint s ∈ {±1}Nv to s ∈ RNv , ‖s‖2 = 1

ŝ = argmin
s

s>Ls, s. to 1>s = N1 − N2 and s>s = 1

⇒ Straightforward to solve using Lagrange multipliers

I Characterization of the solution ŝ [Fiedler ’73]:

ŝ = v2 +
N1 − N2

Nv
1

⇒ The ‘second-smallest’ eigenvector v2 of L satisfies 1>v2 = 0

⇒ Minimum cut is C (ŝ) = ŝ>Lŝ = v>2 Lv2 ∝ λ2

I If the graph G is disconnected then we know λ2 = 0 = C (ŝ)

⇒ If G is amenable to bisection, the cut is small and so is λ2
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Theoretical guarantee

I Consider a partition of G into V1 and V2, where |V1| ≤ |V2|

I If G is connected, then the Cheeger inequality asserts

α2

2dmax
≤ λ2 ≤ 2α

where α = C
|V1| and dmax is the maximum node degree

⇒ Certifies that λ2 gives a useful bound

I F. Chung, “Four proofs for the Cheeger inequality and graph
partition algorithms,” Proc. of ICCM, 2007
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Spectral graph bisection

I Q: How to obtain the binary cluster labels s ∈ {±1}Nv from ŝ ∈ RNv ?

⇒ Again, maximize the similarity measure s>ŝ

si = f (v2) :=

{
+1, [v2]i among the N1 largest entries of v2
−1, otherwise

I Spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries Lij = Dij − Aij

S2: Find ‘second smallest’ eigenvector v2 of L

S3: Candidate membership of vertex i is s̄i = f ([v2]) (or s i = f ([−v2]))

S4: Among s̄ and s pick the one that minimizes C (s)

I Complexity: efficient Lanczos algorithm variant in O( Ne

λ3−λ2
) time

I Nomenclature: v2 is known as the Fiedler vector

⇒ Eigenvalue λ2 is Fiedler value, or algebraic connectivity of G
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Spectral gap in Fiedler vector entries

I Suppose G is disconnected and has two connected components
I L is block diagonal, two smallest eigenvectors indicate groups, i.e.,

v1 = [1, 1, . . . , 1, 0, . . . , 0]> and v2 = [0, 0, . . . , 0, 1, . . . , 1]>

I If G is connected but amenable to bisection, v1 = 1 and λ2 ≈ 0
I Also, 1>v2 =

∑
i [v2]i = 0 ⇒ Positive and negative entries in v2
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Unknown community sizes

I Consider the graph bisection problem with unknown group sizes

⇒ Minimizing the graph cut may be no longer meaningful!

Desired cut 

Min. cut 

⇒ Cost C :=
∑

i∈V1,j∈V2
Aij agnostic to groups’ internal structure

I Better criterion is the ratio cut R defined as

R :=
C

|V1|
+

C

|V2|

⇒ Balanced partitions: small community is penalized by the cost
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Ratio-cut minimization

I Fix a bisection S of G into groups V1 and V2

I Define f : f(S) = [f1, . . . , fNv ]
> ∈ RNv with entries

fi =


√

|V2|
|V1| , vertex i belongs to V1

−
√

|V1|
|V2| , vertex i belongs to V2

I One can establish the following properties:

P1: f>Lf = NvR(S);

P2:
∑

i fi = 0, i.e., 1>f = 0; and

P3: ‖f‖2 = Nv

I From P1-P3 it follows that ratio-cut minimization is equivalent to

min
f

f>Lf, s. to 1>f = 0 and f>f = Nv

Network Science Analytics Network Community Detection 64



Ratio cut and spectral graph bisection

I Ratio-cut minimization is also NP-hard. Relax to obtain

ŝ = arg min
s∈RNv

s>Ls, s. to 1>s = 0 and s>s = Nv

I Partition Ŝ also given by the spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries Lij = Dij − Aij

S2: Find ‘second smallest’ eigenvector v2 of L

S3: Cluster membership of vertex i is si = sign([v2]i )

I Alternative criterion is the normalized cut NC defined as

NC =
C

vol(V1)
+

C

vol(V2)
, vol(Vi ) :=

∑
v∈Vi

dv , i = 1, 2

⇒ Corresponds to using the normalized Laplacian D−1L
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Glossary

I Network community

I (Strong) triadic closure

I Clustering coefficient

I Bridges and local bridges

I Tie strength

I Neighborhood overlap

I Strength of weak ties

I Zachary’s karate club

I Community detection

I Graph partitioning and bisection

I Non-overlapping communities

I Edge betweenness centrality

I Girvan-Newmann method

I Hierarchical clustering

I Dendrogram

I Single and complete linkage

I Modularity

I Spectral modularity
maximization

I Modularity and Laplacian
matrices

I Minimum-cut partitioning

I Fiedler vector and value

I Ratio-cut minimization
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