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Sampling network graphs

I Measurements often gathered only from a portion of a complex system

I Ex: social study of high-school class vs. large corporation, Internet
I Network graph → sample from a larger underlying network

I Goal: use sampled network data to infer properties of the whole system
I Approach using principles of statistical sampling theory

I Sampling in network contexts introduces various potential challenges

System under study
G (V ,E )

Population graph
Random Procedure−−−−−−−−−−−→

Available measurements
G∗(V ∗,E∗)

Sampled graph

I G∗ often a subgraph of G (i.e., V ∗ ⊆ V , E∗ ⊆ E ), but may not be
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The fundamental problem

I Suppose a given graph characteristic or summary η(G ) is of interest
I Ex: order Nv , size Ne , degree dv , clustering coefficient cl(G ), . . .

I Typically impossible to recover η(G ) exactly from G∗

⇒ Q: Can we still form a useful estimate η̂ = η̂(G∗) of η(G )?

I Plug-in estimator η̂ := η(G∗)

I Boils down to computing the characteristic of interest in G∗

I Many familiar estimators in statistical practice are of this type

Ex: sample means, standard deviations, covariances, quantiles. . .

I Oftentimes η(G∗) is a poor representation of η(G )
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Example: Estimating average degreee

I Let G (V ,E ) be a network of protein interactions in yeast

⇒ Characteristic of interest is average degree

η(G ) =
1

Nv

∑

i∈V

di

I Here Nv = 5, 151, Ne = 31, 201 ⇒ η(G ) = 12.115

I Consider two sampling designs to obtain G∗

I First sample n vertices V ∗ = {i1, . . . , in} without replacement
I Design 1: For each i ∈ V ∗, observe incident edges (i , j) ∈ E
I Design 2: Observe edge (i , j) only when both i , j ∈ V ∗

I Estimate η(G ) by averaging the observed degree sequence {d∗i }i∈V ∗

η(G∗) =
1

n

∑

i∈V ∗

d∗i
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Example: Estimating average degreee (cont.)

I Random sample of n = 1, 500 vertices, Designs 1 and 2 for edges

⇒ Process repeated for 10,000 trials ⇒ histogram of η(G∗)
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Fig. 5.1 Histograms of estimated average degree in the yeast protein interaction network, based
on sampling under Design 1 (blue) and Design 2 (red), over 10,000 trials.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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Design 2 

Design 1 

I Under-estimate η(G ) for Design 2, but Design 1 on target. Why?
I Design 1: sample vertex degree explicitly, i.e., d∗

i = di
I Design 2: (implicitly) sample vertex degree with bias, i.e., d∗

i ≈ n
Nv

di
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Improving estimation accuracy

I In order to do better we need to incorporate the effects of

⇒ Random sampling; and/or

⇒ Measurement error

I Sampling design, topology of G , nature of η(·) all critical

I Model-based inference → Likelihood-based and Bayesian paradigms

I Design-based methods → Statistical sampling theory

I Assume observations made without measurement error
I Only source of randomness → sampling procedure

I Ex: Estimating average degree
I Under Design 2 the estimate is biased, with mean of only 3.528
I Adjusting η(G∗) upward by a factor Nv

n
= 3.434 yields 12,115

I Will see how statistical sampling theory justifies this correction
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Statistical sampling theory

I Suppose we have a population U = {1, . . . ,Nu} of Nu units
I Ex: People, animals, objects, vertices, . . .

I A value yi is associated with each unit i ∈ U
I Ex: Height, age, gender, infected, membership, . . .

I Typical interest in the population totals τ and averages µ

τ :=
∑

i∈U

yi and µ :=
1

Nu

∑

i∈U

yi =
1

Nu
τ

I Basic sampling theory paradigm oriented around these steps:

S1: Randomly sample n units S = {i1, . . . , in} from U
S2: Observe the value yik for k = 1, . . . , n

S3: Form an unbiased estimator µ̂ of µ, i.e., E [µ̂] = µ

S4: Evaluate or estimate the variance var [µ̂]
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Inclusion probabilities

I Def: For given sampling design, the inclusion probability πi of unit i is

πi := P (unit i belongs in the sample S)

I Simple random sampling (SRS): n units sampled uniformly form U

Without replacement: i1 chosen from U , i2 from U \ {i1}, and so on

⇒ There are
(
Nu

n

)
such possible samples of size n

⇒ There are
(
Nu−1
n−1

)
samples which include a given unit i

I The inclusion probability is

πi =

(
Nu−1
n−1

)
(
Nu

n

) =
n

Nu
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Sample mean estimator

I Definition of sample mean estimator

µ̂ =
1

n

∑

i∈S

yi

I Using indicator RVs I {i ∈ S} for i ∈ U , where E [I {i ∈ S}] = πi

⇒ E [µ̂] = E

[
1

n

∑

i∈S

yi

]
= E

[
1

n

Nu∑

i=1

yi I {i ∈ S}
]

=
1

n

Nu∑

i=1

yiE [I {i ∈ S}] =
1

n

Nu∑

i=1

yiπi

I SRS without replacement → unbiased because πi = n
Nu

I Unequal probability sampling
I More common than SRS, especially with networks. (More soon)
I Sample mean can be a poor (i.e., biased) estimator for µ
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Horvitz-Thompson estimation for totals

I Idea: weighted average using inclusion probabilities as weights

Horvitz-Thompson (HT) estimator

µ̂π =
1

Nu

∑

i∈S

yi
πi

and τ̂π = Nuµ̂π

I Remedies the bias problem

E [µ̂π] =
1

Nu

Nu∑

i=1

yi
πi
E [I {i ∈ S}] =

1

Nu

Nu∑

i=1

yi = µ

⇒ Size of the population Nu assumed known

⇒ Broad applicability, but πi may be difficult to compute

Network Science Analytics Sampling and Estimation in Network Graphs 12



Horvitz-Thompson estimator variance

I Def: Joint inclusion probability πij of units i and j is

πij := P (units i and j belong in the sample S)

I If inclusion of units i and j are independent events ⇒ πij = πiπj

I Ex: Simple random sampling without replacement yields

πij =
n(n − 1)

Nu(Nu − 1)

I Variance of the HT estimator:

var [τ̂π] =
∑

i∈U

∑

j∈U

yiyj

(
πij
πiπj

− 1

)
, var [µ̂π] =

var [τ̂π]

N2
u

⇒ Typically estimated in an unbiased fashion from the sample S
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Probability proportional to size sampling

I Unequal probability sampling

⇒ n units selected w.r.t. a distribution {p1, . . . , pNu} on U
⇒ Uniform sampling: special case with pi = 1

Nu
for all i ∈ U

I Probability proportional to size (PPS) sampling

⇒ Probabilities pi proportional to a characteristic ci

Ex: households chosen by drawing names from a database

I If sampling with replacement, PPS inclusion probabilities are

πi = 1− (1− pi )
n, where pi =

ci∑
k ck

I Joint inclusion probabilities for variance calculations

πij = πi + πj − [1− (1− pi − pj)
n]
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Estimation of group size

I So far implicitly assumed Nu known → Often not the case!

Ex: endangered animal species, people at risk of rare disease

I Special population total often of interest is the group size

Nu =
∑

i∈U

1

I Suggests the following HT estimator of Nu

N̂u =
∑

i∈S

π−1i

⇒ Infeasible, since knowledge of Nu needed to compute πi
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Capture-recapture estimator

I Capture-recapture estimators overcome HT limitations in this setting

I Two rounds of SRS without replacement ⇒ Two samples S1, S2

Round 1: Mark all units in sample S1 of size n1 from U
I Ex: tagging a fish, noting the ID number...
I All units in S1 are returned to the population

Round 2: Obtain a sample S2 of size n2 from U

Capture-recapture estimator of Nu

N̂u :=
n2
m
n1, where m := |S1 ∩ S2|

I Factor m/n2 indicative of marked fraction of the overall population

⇒ Can derive using model-based arguments as an ML estimator
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Graph sampling designs

I Q: What are common designs for sampling a network graph G?

I A: Will see a few examples, along with their inclusion probabilities πi

I Graph-based sampling designs

⇒ Two inter-related classes of units, vertices i and edges (i , j)

I Often two stages
I Selection among one class of units (e.g., vertices)
I Observation of units from the other class (e.g., edges)

I Inclusion probabilities offer insight into the nature of the designs

⇒ Central to HT estimators of network graph characteristics η(G )
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Induced subgraph sampling

S) Sample n vertices V ∗ = {i1, . . . , in} without replacement (SRS)

O) Observe edges (i , j) ∈ E∗ only when both i , j ∈ V ∗ (induced by V ∗)
2

Fig. 5.2 Schematic illustration of induced subgraph sampling. Selected nodes are shown in yellow,
while observed edges are shown in orange.

I Ex: construction of contact networks in social network research

I Vertex and edge inclusion probabilities are uniformly equal to

πi =
n

Nv
and π{i,j} =

n(n − 1)

Nv (Nv − 1)
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Incident subgraph sampling

I Consider a complementary design to induced subgraph sampling

S) Sample n edges E∗ without replacement (SRS)

O) Observe vertices i ∈ V ∗ incident to those selected edges in E∗

3

Fig. 5.3 Schematic illustration of incident subgraph sampling. Selected edges are shown in yellow,
while observed nodes are shown in orange.

I Ex: construction of sampled telephone call graphs
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Inclusion probabilities

I For incident subgraph sampling, edge inclusion probabilities are

π{i,j} =
n

Ne

I Vertex in V ∗ if any one or more of its incident edges are sampled

πi = P (vertex i is sampled)

= 1− P (no edge incident to i is sampled)

=

{
1− (Ne−di

n )
(Ne

n )
, if n ≤ Ne − di

1, if n > Ne − di

I Vertices included with unequal probs. that depend on their degrees

⇒ Probability proportional to size (degree) sampling of vertices

⇒ Requires knowledge of Ne and degree sequence {di}i∈V ∗
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Snowball sampling

S) Sample n vertices V ∗0 = {i1, . . . , in} without replacement (SRS)

O1) Observe edges E∗0 incident to each i ∈ V ∗0 , forming the initial wave

O2) Observe neighbors N (V ∗0 ) of i ∈ V ∗0 , i.e., V ∗1 = N (V ∗0 ) ∩ (V ∗0 )c4

Fig. 5.4 Schematic illustration of two-stage snowball sampling. Nodes selected in the initial sam-
pling are shown in yellow, while edges and nodes observed in the first and second waves of sam-
pling are shown in orange and brown, respectively.

I Iterate to a desired number of e.g., k waves, or until V ∗k empty

⇒ G∗ has V ∗ = V ∗0 ∪ V ∗1 ∪ . . . ∪ V ∗k , and their incident edges

I Ex: ‘spiders’ or ‘crawlers’ to discover the WWW’s structure
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Star sampling

I Difficult to compute inclusion probabilities beyond a single wave

⇒ Single-wave snowball sampling reduces to star sampling

I Unlabeled: V ∗ = V ∗0 and E∗ = E∗0 their incident edges
I Ex: Count all co-authors of n sampled authors
I Vertex inclusion probabilities are simply πi = n/Nv

I Labeled: V ∗ = V ∗0 ∪ (N (V ∗0 ) ∩ (V ∗0 )c) and E∗ = E∗0
I Ex: Count and identify all co-authors of n sampled authors
I Vertex inclusion probabilities can be shown to look like

πi =
∑

L⊆Ni

(−1)|L|+1P (L) , where P (L) =

(Nv−|L|
n−|L|

)
(
Nv

n

)

I Denoted by Ni the neighborhood of vertex i (including i itself)
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Link tracing

I Link-tracing designs

⇒ Select an initial sample of vertices V ∗S
⇒ Trace edges (links) from V ∗s to another set of vertices V ∗T

I Snowball sampling: special case where all incident edges are traced

I May be infeasible to follow all incident edges to a given vertex

Ex: lack of recollection/deception in social contact networks

I Path sampling designs

⇒ Source nodes V ∗S = {s1, . . . , snS} ⊂ V

⇒ Target nodes V ∗T = {t1, . . . , tnT } ⊂ V \ V ∗S
⇒ Traverse and measure the path between each pair (si , tj)

Ex: Traceroute Internet studies, Milgram’s “Six Degrees” experiment
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Traceroute sampling

I Trace shortest paths from each source to all targets 5

s1

s2

t1

t2

Fig. 5.5 Schematic illustration of the traceroute version of link-tracing. Selected source nodes
{s1,s2} and target nodes {t1, t2} are shown in yellow, while nodes and edges observed on traces
from sources to targets are shown in orange.I Vertex and edge inclusion probabilities roughly [Dall’Asta et al ’06]:

πi ≈ 1− (1− ρS − ρT )e−ρSρT cBe(i) and π{i,j} ≈ 1− e−ρSρT cBe({i,j})

I Source and target sampling fractions ρS := nS/Nv and ρT := nT/Nv

⇒ Induces PPS sampling, size given by betweenness centralities
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Estimation of totals in network graphs
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Background on statistical sampling theory

Network graph sampling designs

Estimation of network totals and group size

Estimation of degree distributions
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Network summaries as totals

I Various graph summaries η(G ) are expressible in terms of totals τ

Average degree: Let U = V and yi = di , then η(G ) = d̄ ∝∑i∈V di

Graph size: Let U = E and yij = 1, then η(G ) = Ne =
∑

(i,j)∈E 1

Betweenness centrality: Let U = V (2) (unordered vertex pairs) and
yij = I

{
k ∈ P(i,j)

}
. For unique shortest i − j paths P(i,j), then

η(G ) = cBe(k) =
∑

(i,j)∈V (2)

I
{
k ∈ P(i,j)

}

Clustering coefficient: Let U = V (3) (unordered vertex triples), then

η(G ) = cl(G ) = 3× total number of triangles

total number of connected triples

I Often such totals can be obtained from sampled G∗ via HT estimation

Network Science Analytics Sampling and Estimation in Network Graphs 27



Vertex totals

I Vertex totals are of the form τ =
∑

i∈V yi , averages are τ/Nv

I Ex: average degree where yi = di
I Ex: nodes with characteristic C, where yi = I {i ∈ C}

I Given a sample V ∗ ⊆ V , the HT estimator for vertex totals is

τ̂π =
∑

i∈V ∗

yi
πi

⇒ Variance expressions carry over, let U = V and V ∗ for estimates

I Inclusion probabilities πi depend on network sampling design

⇒ Sampling also influences whether yi is observable, e.g., yi = di
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Totals on vertex pairs

I Quantity yij corresponding to vertex pairs (i , j) ∈ V (2) of interest

⇒ Totals τ =
∑

(i,j)∈V (2) yij become relevant

I Ex: graph size Ne and betweenness cBe(k) where yij = I
{
k ∈ P(i,j)

}
I Ex: shared gender in friendship network, average dissimilarity

I The HT estimator in this context is

τ̂π =
∑

(i,j)∈V (2)∗

yij
πij

⇒ Edge totals a special case, when yij 6= 0 only for (i , j) ∈ E

I Variance expression increasingly complicated, namely

var [τ̂π] =
∑

(i,j)∈V (2)

∑

(k,l)∈V (2)

yikykl

(
πijkl
πijπkl

− 1

)

⇒ Depends on inclusion probabilities πijkl of vertex quadruples
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Example: Estimating network size

I Consider estimating Ne as an edge total, i.e.,

Ne =
∑

(i,j)∈E

1 =
∑

(i,j)∈V (2)

Aij

I Bernoulli sampling (BS): I {i ∈ V ∗} ∼ Ber(p) i.i.d. for all i ∈ V

⇒ Edges E∗ obtained via induced subgraph sampling ⇒ πij = p2

I The HT estimator of Ne is

N̂e =
∑

(i,j)∈V (2)∗

Aij

πij
= p−2N∗e

⇒ Scales up the empirically observed edge total N∗e by p−2 > 1

I Variance can be shown to take the form [Frank ’77]

var
[
N̂e

]
= (p−1 − 1)

∑

i∈V

d2
i + (p−2 − 2p−1 + 1)Ne
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Example: Estimating network size (cont.)

I Protein network: Nv = 5, 151, Ne = 31, 201

⇒ BS of vertices with p = 0.1 and p = 0.3

⇒ Process repeated for 10,000 trials ⇒ histogram of N̂e
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Fig. 5.6 Histograms of estimates N̂e (left) of Ne = 31,201, as well as estimated standard errors
(right), in the yeast protein interaction network, under induced subgraph sampling, with Bernoulli
sampling of vertices, using p= 0.10 (blue), 0.20 (red), and 0.30 (yellow). Results based on 10,000
trials.
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Fig. 5.6 Histograms of estimates N̂e (left) of Ne = 31,201, as well as estimated standard errors
(right), in the yeast protein interaction network, under induced subgraph sampling, with Bernoulli
sampling of vertices, using p= 0.10 (blue), 0.20 (red), and 0.30 (yellow). Results based on 10,000
trials.

I Average of N̂e was 31, 116 and 31, 203⇒ Unbiasedness supported

⇒ Mean and variability of ŝe shrinks with p (larger sample)
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Example: Estimating clustering coefficient

I Average clustering coefficient cl(G ) can be expressed as

cl(G ) = 3× τ4(G )

τ3(G )

I Involves the quotient of two totals on vertex triples

τ =
∑

(i,j,k)∈V (3)

yijk ⇒ τ̂π =
∑

(i,j,k)∈V (3)∗

yijk
πijk

I Total number of triangles τ4(G ), where

yijk = AijAjkAki

I Total number of connected triples τ3(G ), where

yijk = AijAjk(1− Aki ) + Aij(1− Ajk)Aki + (1− Aij)AjkAki
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Example: Estimating clustering coefficient (cont.)

I Protein network: τ4(G ) = 44, 858, τ3(G ) ≈ 1M, and cl(G ) = 0.1179

⇒ BS of vertices with p = 0.2

⇒ Induced subgraph sampling of edges

⇒ Process repeated for 10,000 trials ⇒ histogram of ĉl(G )
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Fig. 5.7 Histograms of estimates τ̂△(G) (top), τ̂†3 (G) (middle), and ĉlT (G) (bottom) in the yeast
protein interaction network, under induced subgraph sampling, with Bernoulli sampling of ver-
tices, using p= 0.20. True values being estimated were τ△(G) = 44,858, τ†3 (G) = 1,006,575, and
clT (G) = 0.1179. Results based on 10,000 trials.

I Unbiased HT estimators τ̂4 = p−3τ4(G∗) and τ̂3 = p−3τ3(G∗)

⇒ Plug-in estimator ĉl(G ) = 3τ̂4/τ̂3 results in ĉl(G ) = cl(G∗)

⇒ Quite accurate with mean 0.1191 and ŝe of 0.0251
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Caveat emptor

I Horvitz-Thompson framework fairly straightforward in its essence

I Success in network sampling and estimation rests on interaction among

a) Sampling design;
b) Measurements taken; and
c) Total to be estimated

I Three basic elements must be present in the problem

1) Network summary statistic η(G) expressible as total;
2) Values y either observed, or obtainable from measurements; and
3) Inclusion probabilities π computable for the sampling design

I Unfortunately, often not all three are present at the same time . . .
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Example: Estimating average degreee

I Recall our first example on estimation of average degree 1
Nv

∑
i∈V di

I Design 1: Unlabeled star sampling, observes degrees di , i ∈ V ∗

I Design 2: Induced subgraph sampling, does not observe degrees

I Average degree is a scaling of a vertex total (Nv known)

⇒ HT estimation applicable so long as yi = di observed

I True for unlabeled star sampling, and since πi = n/Nv we have

µ̂St =
τ̂St
Nv

, where τ̂St =
∑

i∈V ∗
St

di
n/Nv

I We do not observe di under induced subgraph sampling

⇒ Not amenable to HT estimation as vertex total for this design
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Example: Estimating average degreee (cont.)

I Identity µ = 2Ne

Nv
⇒ Tackle instead as estimation of network size Ne

I For induced subgraph sampling πij = n(n−1)
Nv (Nv−1) , so HT estimator is

N̂e,IS =
∑

(i,j)∈V (2)∗

Aij

n(n − 1)/[Nv (Nv − 1)]
=

Nv (Nv − 1)

n(n − 1)
N∗e,IS

⇒ Desired unbiased estimator for the average degree is

µ̂IS =
2N̂e,IS

Nv

I Estimators under both designs can be compared by writing them as

µ̂St =
2N∗e,St

n
and µ̂IS =

2N∗e,IS
n

.
Nv − 1

n − 1

⇒ Design 1: uses the identity µ = 2Ne

Nv
on G∗St

⇒ Design 2: same but inflated by Nv−1
n−1 , compensates d∗i,IS < di

Network Science Analytics Sampling and Estimation in Network Graphs 36



Estimation of network group size

I Assuming that Nv is known may not be on safe grounds

⇒ Human or animal groups too mobile or elusive to count accurately

⇒ All Web pages or Internet routers are too massive and dispersed

I Often estimating Nv may well be the prime objective

I If vertex SRS or BS feasible, could sample twice ‘marking’ in between

⇒ Facilitates usage of capture-recapture estimators ‘off-the-shelf’

I If sampling infeasible, or capture-recapture performs poorly

⇒ Develop estimators of Nv tailored to the graph sampling at hand
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Estimating the size of a “hidden population”

I Hidden population: individuals do not wish to expose themselves
I Ex: humans of socially sensitive status, such as homeless
I Ex: involved in socially sensitive activities, e.g., drugs, prostitution

I Such groups are often small ⇒ Estimating their size is challenging

I Snowball sampling used to estimate the size of hidden populations

I O. Frank and T. Snijders, “Estimating the size of hidden populations
using snowball sampling,” J. Official Stats., vol. 10, pp. 53-67, 1994
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Sampling a hidden population

I Directed graph G (V ,E ), V the members of the hidden population

⇒ Graph describing willingness to identify other members

⇒ Arc (i , j) when ask individual i , mentions j as a member

I Graph G∗ obtained via one-wave snowball sampling, i.e., V ∗ = V ∗0 ∪ V ∗1
⇒ Initial sample V ∗0 obtained via BS from V with probability p0

I Consider the following random variables (RVs) of interest
I N = |V ∗

0 |: size of the initial sample
I M1: number of arcs among individuals in V ∗

0

I M2: number of arcs from individuals in V ∗
0 to individuals in V ∗

1

I Snowball sampling yields measurements n,m1, and m2 of these RVs
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Method of moments estimator

I Method of moments: equate moments to sample counterparts

E [N] = E

[∑

i

I {i ∈ V ∗0 }
]

= Nvp0= n

E [M1] = E


∑

j

∑

i 6=j

I {i ∈ V ∗0 }I {j ∈ V ∗0 }Aij


 = Nep

2
0= m1

E [M2] = E


∑

j

∑

i 6=j

I {i ∈ V ∗0 }I {j /∈ V ∗0 }Aij


 = Nep0(1− p0)= m2

I Expectation w.r.t. randomness in selecting the sample V ∗0 . Solution:

N̂v = n

(
m1 + m2

m1

)

⇒ Size of initial sample inflated by estimate of the sampling rate
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Estimation of degree distributions

Network sampling and challenges

Background on statistical sampling theory

Network graph sampling designs

Estimation of network totals and group size

Estimation of degree distributions
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Estimation of other network characteristics

I Classical sampling theory rests heavily on Horvitz-Thompson framework

⇒ Scope limited to network totals

⇒ Q: Other network summaries, e.g., degree distributions?

I Findings on the effect of sampling on observed degree distributions:
I Highly unrepresentative of actual degree distributions; and
I Unhelpful to characterizing heterogeneous distributions

I Ex: Internet traceroute sampling [Lakhina et al’ 03]

⇒ Broad degree distribution in G∗, while concentrated in G

I Ex: Sampling protein-protein interaction networks [Han et al’ 05]

⇒ Power-law exponent estimate from G∗ underestimates α in G
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Impact of sampling on degree distribution

I Let N(d) denote the number of vertices with degree d in G

⇒ Let N∗(d) be the counterpart in a sampled graph G∗

⇒ Introduce vectors n = [N(0), . . . ,N(dmax)]> and likewise n∗

I Under a variety of sampling designs, it holds that

E [n∗] = Pn

⇒ Matrix P depends fully on the sampling, not G itself

⇒ Expectation w.r.t. randomness in selecting the sample G∗

I O. Frank, “Estimation of the number of vertices of different degrees
in a graph,” J. Stat. Planning and Inference, vol. 4, pp. 45-50, 1980
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An inverse problem

I Recall the identity E [n∗] = Pn ⇒ Face a linear inverse problem

I Unbiased estimator of the degree distribution n

n̂naive = P−1n∗

I While natural, two problems with this simple solution

⇒ Matrix P typically not invertible in practice; and

⇒ Non-negativity of the solution is not guaranteed

I We actually have an ill-posed linear inverse problem
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Performance of naive estimator

I Erdös-Renyi graph with Nv = 100 and Ne = 500

⇒ BS of vertices with p = 0.6

⇒ Induced subgraph sampling of edges
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Penalized least-squares formulation

I Constrained, penalized, weighted least-squares [Zhang et al ’14]

min
n

(Pn− n∗)>C−1(Pn− n∗) + λpen(n)

s. to N(d) ≥ 0, d = 0, 1, . . . , dmax,

dmax∑

d=1

N(d) = Nv

⇒ Matrix C denotes the covariance of n∗

⇒ Functional pen(n) penalizes complexity in n, tuned by λ

I Constraints

⇒ Non-negativity of degree counts

⇒ Total degree counts equal the number of vertices

⇒ Smoothness: pen(n) = ‖Dn‖2, D differentiating operator
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Application to online social networks

I Communities from online social networks Orkut and LiveJournal

⇒ BS of vertices with p = 0.3

⇒ Induced subgraph sampling of edges

I True, sampled, and estimated degree distribution
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Glossary

I Enumeration and samping

I Population graph

I Sampled graph

I Plug-in estimator

I Sampling design

I Sample with(out) replacement

I Design-based methods

I Averages and totals

I Inclusion probability

I Simple random sampling

I Bernoulli sampling

I Unequal probability sampling

I Horvitz-Thompson estimator

I Probability proportional to size
sampling

I Capture-recapture estimator

I Induced subgraph sampling

I Incident subgraph sampling

I Snowball and star sampling

I Traceroute sampling

I Hidden population

I Ill-posed inverse problem

I Penalized least squares
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