

Models for Network Graphs

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

March 27, 2023

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

- Statistical graph models are used for a variety of reasons:
- Mechanisms explaining properties observed on real-world networks Ex: small-world effects, power-law degree distributions
- Testing for 'significance' of a characteristic η(G) in a network graph Ex: is the observed average degree unusual or anomalous?
- Assessment of factors potentially predictive of relational ties Ex: are there reciprocity or transitivity effects in play?
- ► Focus today on construction and use of models for network data

Def: A model for a network graph is a collection

 $\{\mathsf{P}_{\theta}(G), G \in \mathcal{G} : \theta \in \Theta\}$

- \mathcal{G} is an ensemble of possible graphs
- ▶ $P_{\theta}(\cdot)$ is a probability distribution on \mathcal{G} (often write $P(\cdot)$)
- Parameters θ ranging over values in parameter space Θ
- Richness of models derives from how we specify $P_{\theta}(\cdot)$

 \Rightarrow Methods range from the simple to the complex

- 1) Let $P(\cdot)$ be uniform on G, add structural constraints to GEx: Erdös-Renyi random graphs, generalized random graph models
- 2) Induce $P(\cdot)$ via application of simple generative mechanisms Ex: small world, preferential attachment, copying models
- Model structural features and their effect on G's topology Ex: exponential random graph models
- Model propensity towards establishing links via latent variables
 Ex: stochastic block models, graphons, random dot product graphs
- Computational cost of associated inference algorithms relevant

Assign equal probability on all undirected graphs of given order and size

- ▶ Specify collection \mathcal{G}_{N_v,N_e} of graphs G(V,E) with $|V| = N_v$, $|E| = N_e$
- Assign $P(G) = {\binom{N}{N_e}}^{-1}$ to each $G \in \mathcal{G}_{N_v,N_e}$, where $N = |V^{(2)}| = {\binom{N_v}{2}}$

▶ Most common variant is the Erdös-Renyi random graph model G_{n,p}

 \Rightarrow Undirected graph on $N_v = n$ vertices

 \Rightarrow Edge (*u*, *v*) present w.p. *p*, independent of other edges

• Simulation: simply draw $N = \binom{N_v}{2} \approx N_v^2/2$ i.i.d. Ber(p) RVs

- Inefficient when $p \sim N_v^{-1} \Rightarrow$ sparse graph, most draws are 0
- Skip non-edges drawing Geo(p) i.i.d. RVs, runs in $O(N_v + N_e)$ time

- ► *G_{n,p}* is well-studied and tractable. Noteworthy properties:
- P1) Degree distribution P(d) is binomial with parameters (n-1, p)
 - Large graphs have concentrated P(d) with exponentially-decaying tails
- P2) Phase transition on the emergence of a giant component
 - If np > 1, $G_{n,p}$ has a giant component of size O(n) w.h.p.
 - If np < 1, $G_{n,p}$ has components of size only $O(\log n)$ w.h.p.

P3) Small clustering coefficient $O(n^{-1})$ and short diameter $O(\log n)$ w.h.p.

Recipe for generalization of Erdös-Renyi models

- \Rightarrow Specify \mathcal{G} of fixed order N_v , possessing a desired characteristic
- \Rightarrow Assign equal probability to each graph ${\it G} \in {\cal G}$
- Configuration model: fixed degree sequence $\{d_{(1)}, \ldots, d_{(N_v)}\}$
 - ▶ Size fixed under this model, since $N_e = \bar{d}N_v/2 \Rightarrow G \subset G_{N_v,N_e}$
 - Equivalent to specifying model via conditional distribution on \mathcal{G}_{N_v,N_e}
- Configuration models useful as reference, i.e., 'null' models Ex: compare observed G with G' ∈ G having power law P(d) Ex: expected group-wise edge counts in modularity measure

P1) Phase transition on the emergence of a giant component

- Condition depends on first two moments of given P(d)
- Giant component has size $O(N_v)$ as in $G_{N_v,p}$

M. Molloy and B. Reed, "A critical point for random graphs with a given degree sequence," *Random Struct. and Alg.*, vol. 6, pp. 161-180, 1995

P2) Clustering coefficient vanishes slower than in $G_{N_v,p}$

M. Newman et al, "Random graphs with arbitrary degree distrbutions and their applications", *Physical Rev. E*, vol. 64, p. 26,118, 2001

P3) Special case of given power-law degree distribution P (d) ~ Cd^{-α}
For α ∈ (2, 3), short diameter O(log N_ν) as in G_{N_ν,p}

F. Chung and L. Lu, "The average distances in random graphs with given expected degrees," *PNAS*, vol. 99, pp. 15,879-15,882, 2002

Simulating generalized random graphs

Matching algorithm

Given: nodes with spokes

Randomly match mini-nodes

Sample graph

Switching algorithm

Initialize

Randomly switch a pair of edges Repeat ~100N_e times

Sample graph

- Consider a sample G^* of a population graph G(V, E)
 - \Rightarrow Suppose a given characteristic $\eta(G)$ is of interest
 - \Rightarrow Q: Useful estimate $\hat{\eta} = \hat{\eta}(G^*)$ of $\eta(G)$?
- Statistical inference in sampling theory via design-based methods
 Only source of randomness is due to the sampling design
- Augment this perspective to include a model-based component
 - Assume G drawn uniformly from the collection G, prior to sampling
- ► Inference on $\eta(G)$ should incorporate both randomness due to \Rightarrow Selection of *G* from *G* and sampling *G*^{*} from *G*

• Directed graph G(V, E), V the members of the hidden population

- \Rightarrow Graph describing willingness to identify other members
- \Rightarrow Arc (i, j) when ask individual i, mentions j as a member
- ► For given V, model G as drawn from a collection G of random graphs ⇒ Independently add arcs between vertex pairs w.p. p_G
- Graph G^* obtained via one-wave snowball sampling, i.e., $V^* = V_0^* \cup V_1^*$ \Rightarrow Initial sample V_0^* obtained via BS from V with probability p_0
- Consider the following RVs of interest
 - $N = |V_0^*|$: size of the initial sample
 - ► M₁: number of arcs among individuals in V₀^{*}
 - M₂: number of arcs from individuals in V^{*}₀ to individuals in V^{*}₁
- Snowball sampling yields measurements n, m_1 , and m_2 of these RVs

• Method of moments: now
$$A_{ij} = \mathbb{I}\{(i,j) \in E\}$$
 also a RV

$$\mathbb{E}[N] = \mathbb{E}\left[\sum_{i} \mathbb{I}\{i \in V_{0}^{*}\}\right] = N_{v}p_{0} = n$$
$$\mathbb{E}[M_{1}] = \mathbb{E}\left[\sum_{j} \sum_{i \neq j} \mathbb{I}\{i \in V_{0}^{*}\}\mathbb{I}\{j \in V_{0}^{*}\}A_{ij}\right] = N_{v}(N_{v} - 1)p_{0}^{2}p_{\mathcal{G}} = m_{1}$$
$$\mathbb{E}[M_{2}] = \mathbb{E}\left[\sum_{j} \sum_{i \neq j} \mathbb{I}\{i \in V_{0}^{*}\}\mathbb{I}\{j \notin V_{0}^{*}\}A_{ij}\right] = N_{v}(N_{v} - 1)p_{0}(1 - p_{0})p_{\mathcal{G}} = m_{2}$$

Expectation w.r.t. randomness in selecting G and sample V_0^* . Solution:

$$\hat{p}_0 = rac{m_1}{m_1 + m_2}, \; \hat{p}_{\mathcal{G}} = rac{m_1(m_1 + m_2)}{n[(n-1)m_1 + nm_2]}, \; \; ext{and} \; \; \hat{N}_{v} = n \left(rac{m_1 + m_2}{m_1}
ight)$$

 \Rightarrow Same estimates for p_0 and N_v as in the design-based approach

Directly modeling $\eta(G)$

- So far considered modeling G for model-based estimation of η(G) ⇒ Classical random graphs typical in social networks research
- Alternatively, one may specify a model for $\eta(G)$ directly

Example

- Estimate the power-law exponent $\eta(G) = \alpha$ from degree counts
- A power law implies the linear model log P (d) = C − α log d + ϵ ⇒ Could use a model-based estimator such as least squares
- Better form the MLE for the model $f(d; \alpha) = \frac{\alpha 1}{d_{\min}} \left(\frac{d}{d_{\min}}\right)^{-\alpha}$

$$\text{Hill estimator} \ \Rightarrow \ \hat{\alpha} = 1 + \left[\frac{1}{N_{v}}\sum_{i=1}^{N_{v}}\log\left(\frac{d_{i}}{d_{\min}}\right)\right]^{-1}$$

- Consider a graph G^{obs} derived from observations
- Q: Is a structural characteristic $\eta(G^{obs})$ significant, i.e., unusual?
 - \Rightarrow Assessing significance requires a frame of reference, or null model
 - \Rightarrow Random graph models often used in setting up such comparisons
- ▶ Define collection G, and compare $\eta(G^{obs})$ with values $\{\eta(G) : G \in G\}$

 \Rightarrow Formally, construct the reference distribution

$$\mathsf{P}_{\eta,\mathcal{G}}(t) = rac{|\{G \in \mathcal{G} : \eta(G) \leq t\}|}{|\mathcal{G}|}$$

If η(G^{obs}) found to be sufficiently unlikely under P_{η,G}(t)
 ⇒ Evidence against the null H₀: G^{obs} is a uniform draw from G

- Zachary's karate club has clustering coefficient cl(G^{obs}) = 0.2257

 ⇒ Random graph models to assess whether the value is unusual

 Construct two 'comparable' abstract frames of reference

 1) Collection G₁ of random graphs with same N_v = 34 and N_e = 78
 2) Add the constraint that G₂ has the same degree distribution as G^{obs}

 |G₁| ≈ 8.4 × 10⁹⁶ and |G₂| much smaller, but still large

 ⇒ Enumerating G₁ intractable to obtain P_{η,G1}(t) exactly

 Instead use simulations to approximate both distributions

 ⇒ Draw 10,000 uniform samples G from each G₁ and G₂
 - \Rightarrow Calculate $\eta(G) = cl(G)$ for each sample, plot histograms

Plot histograms to approximate the distributions

- Unlikely to see a value cl(G^{obs}) = 0.2257 under both graph models
 Ex: only 3 out of 10,000 samples from G₁ had cl(G) > 0.2257
- ▶ Strong evidence to reject G^{obs} obtained as sample from \mathcal{G}_1 or \mathcal{G}_2

- Related use of random graph models is for detecting network motifs
 ⇒ Find the simple 'building blocks' of a large complex network
- Def: Network motifs are small subgraphs occurring far more frequently in a given network than in comparable random graphs
- Ex: there are $L_3 = 13$ different connected 3-vertex subdigraphs

- Let N_i be the count in G of the *i*-th type k-vertex subgraph, $i = 1, ..., L_k$
 - \Rightarrow Each value N_i can be compared to a suitable reference $\mathsf{P}_{N_i,\mathcal{G}}$
 - \Rightarrow Subgraphs for which N_i is extreme are declared as network motifs

- ▶ AIDS blog network G^{obs} with $N_v = 146$ bloggers and $N_e = 183$ links
 - \Rightarrow Examined evidence for motifs of size k = 3 and 4 vertices

Simulated 10,000 digraphs using a switching algorithm

- \Rightarrow Fixed in- and out-degree sequences, mutual edges as in G^{obs}
- \Rightarrow Constructed approximate reference distributions $\mathsf{P}_{N_i,\mathcal{G}}(t)$

Ex: two bloggers with a mutual edge and a common 'authority'

- Individual motifs frequently overlap with other copies of itself
 May require them to be frequent and mostly disjoint subgraphs
- ▶ With large graphs come significant computational challenges
 ⇒ Number of different potential motifs L_k grows fast with k
 Ex: Connected subdigraphs L₃ = 13, L₄ = 199, L₅ = 9364

► May sample subgraphs *H* along with the HT estimation framework

$$\hat{N}_i = \sum_{H \text{ of type } i} \pi_H^{-1}$$

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

Arguably the most important innovation in modern graph modeling

- Six degrees of separation popularized by a play [Guare'90]
 - \Rightarrow Short paths between us and everyone else on the planet
 - \Rightarrow Term relatively new, the concept has a long history
- Traced back to F. Karinthy in the 1920s
 - \Rightarrow 'Shrinking' modern world due to increased human connectedness
 - \Rightarrow Challenge: find someone whose distance from you is >5
 - \Rightarrow Inspired by G. Marconi's Nobel prize speech in 1909
- First mathematical treatment [Kochen-Pool'50]
 - \Rightarrow Formally modeled the mechanics of social networks
 - \Rightarrow But left 'degrees of separation' question unanswered
- Chain of events led to a groundbreaking experiment [Milgram'67]

- ▶ Q1: What is the typical geodesic distance between two people?
 - \Rightarrow Experiment on the global friendship (social) network
 - \Rightarrow Cannot measure in full, so need to probe explicitly
- ► S. Milgram's ingenious small-world experiment in 1967
 - 296 letters sent to people in Wichita, KS and Omaha, NE
 - Letters indicated a (unique) contact person in Boston, MA
 - Asked them to forward the letter to the contact, following rules
- Def: friend is someone known on a first-name basis
 Rule 1: If contact is a friend then send her the letter; else
 Rule 2: Relay to friend most-likely to be a contact's friend
- Q2: How many letters arrived? How long did they take?

Milgram's experimental results

- ► 64 of 296 letter reached the destination, average path length $\bar{\ell} = 6.2$ ⇒ Inspiring Guare's '6 degrees of separation'
- Conclusion: short paths connect arbitrary pairs of people

S. Milgram, "The small-world problem," *Psychology Today*, vol. 2, pp. 60-67, 1967

Moment to reflect

- Milgram demonstrated that short paths are in abundance
- ▶ Q: Is the small-world theory reasonable? Sure, e.g., assumes:
 - We have 100 friends, each of them has 100 other friends, ...
 - ▶ After 5 degrees we get 10¹⁰ friends > twice the Earth's population

- Not a realistic model of social networks exhibiting:
 - \Rightarrow Homophily [Lazarzfeld'54]
 - \Rightarrow Triadic closure [Rapoport'53]
- Q: How can networks be highly-structured locally and globally small?

Structure and randomness as extremes

High clustering and diameter

Low clustering and diameter

• One-dimensional regular lattice G_r on N_v vertices

• Each node is connected to its 2*r* closest neighbors (*r* to each side) Structure yields high clustering and high diameter

$$\mathsf{cl}(G_r) = rac{3r-3}{4r-2}$$
 and $\mathsf{diam}(G_r) = rac{N_v}{2r}$

• Other extreme is a $G_{N_v,p}$ random graph with $p = O(N_v^{-1})$ Randomness yields low clustering and low diameter

$$\mathsf{cl}(G_{N_{v},p}) = O(N_{v}^{-1})$$
 and $\mathsf{diam}(G_{N_{v},p}) = O(\log N_{v})$

The Watts-Strogatz model

- Small-world model: blend of structure with little randomness
 - S1: Start with regular lattice that has desired clustering
 - S2: Introduce randomness to generate shortcuts in the graph
 - \Rightarrow Each edge is randomly rewired with (small) probability p

Rewiring interpolates between the regular and random extremes

Numerical results

- Simulate Watts-Strogatz model with $N_v = 1,000$ and r = 6
 - Rewiring probability p varied from 0 (lattice G_r) to 1 (random $G_{N_v,p}$)
 - Normalized cl(G) and diam(G) to maximum values (p = 0)

▶ Broad range of $p \in [10^{-3}, 10^{-1}]$ yields small diam(G) and high cl(G)

Structural properties of Watts-Strogatz model [Barrat-Weigt'00]
 P1: Large N_v analysis of clustering coefficient

$$cl(G) \approx \frac{3r-3}{4r-2}(1-p^3) = cl(G_r)(1-p^3)$$

P2: Degree distribution concentrated around 2r

- Small-world graph models of interest across disciplines
- Particularly relevant to 'communication' in a broad sense
 - \Rightarrow Spread of news, gossip, rumors
 - \Rightarrow Spread of natural diseases and epidemics
 - \Rightarrow Search of content in peer-to-peer networks

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

- Many networks grow or otherwise evolve in time Ex: Web, scientific citations, Twitter, genome
- ► General approach to model construction mimicking network growth
 - Specify simple mechanisms for network dynamics
 - Study emergent structural characteristics as time $t o \infty$
- Q: Do these properties match observed ones in real-world networks?
- Two fundamental and popular classes of growth processes
 - \Rightarrow Preferential attachment models
 - \Rightarrow Copying models
- ▶ Tenable mechanisms for popularity and gene duplication, respectively

- Simple model for the creation of e.g., links among Web pages
- Vertices are created one at a time, denoted $1, \ldots, N_v$
- When node *j* is created, it makes a single arc to *i*, $1 \le i < j$
- Creation of (j, i) governed by a probabilistic rule:
 - With probability p, j links to i chosen uniformly at random
 - With probability 1 p, j links to i with probability $\propto d_i^{in}$
- The resulting graph is directed, each vertex has $d_v^{out} = 1$
- Preferential attachment model leads to "rich-gets-richer" dynamics
 - \Rightarrow Arcs formed preferentially to (currently) most popular nodes
 - \Rightarrow Prob. that *i* increases its popularity \propto *i*'s current popularity

Theorem

The preferential attachment model gives rise to a power-law in-degree distribution with exponent $\alpha = 1 + \frac{1}{1-p}$, i.e.,

$$\mathsf{P}\left(d^{\textit{in}}=d
ight) \propto d^{-\left(1+rac{1}{1-p}
ight)}$$

► Key: "*j* links to *i* with probability $\propto d_i^{in}$ " equivalent to copying, i.e., "*j* chooses *k* uniformly at random, and links to *i* if $(k, i) \in E$ "

- ▶ Reflect: Copy other's decision vs. independent decisions in $G_{n,p}$
- As $p \rightarrow 0 \Rightarrow$ Copying more frequent \Rightarrow Smaller $\alpha \rightarrow 2$
 - Intuitive: more likely to see extremely popular pages (heavier tail)

- Barabási-Albert (BA) model is for undirected graphs
- ▶ Initial graph $G_{BA}(0)$ of $N_{\nu}(0)$ vertices and $N_{e}(0)$ edges (t = 0)
- For t = 1, 2, ... current graph $G_{BA}(t-1)$ grows to $G_{BA}(t)$ by:
 - Adding a new vertex u of degree $d_u(t) = m \ge 1$
 - The *m* new edges are incident to *m* different vertices in $G_{BA}(t-1)$
 - New vertex u is connected to $v \in V(t-1)$ w.p.

$$\mathsf{P}\left((u,v)\in E(t)\right)=\frac{d_v(t-1)}{\sum_{v'}d_{v'}(t-1)}$$

- ► Vertices connected to *u* preferentially towards higher degrees $\Rightarrow G_{BA}(t)$ has $N_v(t) = N_v(0) + t$ and $N_e(t) = N_e(0) + tm$
- A. Barabási and R. Albert, "Emergence of scaling in random networks," *Science*, vol. 286, pp. 509-512, 1999

- ► BA model ambiguous in how to select *m* vertices ∝ to their degree ⇒ Joint distribution not specified by marginal on each vertex
- Linearzied chord diagram (LCD) model removes ambiguities
- ▶ For m = 1, start with $G_{LCD}(0)$ consisting of a vertex with a self-loop
- For t = 1, 2, ... current graph $G_{LCD}(t 1)$ grows to $G_{LCD}(t)$ by:
 - Adding a new vertex v_t with an edge to $v_s \in V(t)$
 - Vertex v_s , $1 \le s \le t$ is chosen w.p.

$$\mathsf{P}(s = j) = \begin{cases} \frac{d_{v_j}(t-1)}{2t-1}, & \text{if } 1 \le j \le t-1, \\ \frac{1}{2t-1}, & \text{if } j = t \end{cases}$$

- For m > 1 simply run the above process m times for each t
 - Collapse all created vertices into a single one, retaining edges
- A. Bollobás et al, "The degree sequence of a scale-free random graph process," *Random Struct. and Alg.*, vol. 18, pp. 279-290, 2001

- P1) The LCD model allows for loops and multi-edges, occurring rarely
- P2) $G_{LCD}(t)$ has power-law degree distribution with lpha = 3, as $t \to \infty$
- P3) The BA model yields connected graphs if $G_{BA}(0)$ connected \Rightarrow Not true for the LCD model, but $G_{LCD}(t)$ connected w.h.p.
- P4) Small-world behavior

$$\mathsf{diam}(G_{LCD}(t)) = \begin{cases} O(\log N_v(t)), & m = 1\\ O(\frac{\log N_v(t)}{\log \log N_v(t)}), & m > 1 \end{cases}$$

P5) Unsatisfactory clustering, since small for m > 1

$$\mathbb{E}\left[\mathsf{cl}(\mathit{G}_{LCD}(t))
ight] pprox rac{m-1}{8} rac{(\log \mathit{N_v}(t))^2}{\mathit{N_v}(t)}$$

 \Rightarrow Marginally better than $O(N_v^{-1})$ in classical random graphs

- Copying is another mechanism of fundamental interest
 Ex: gene duplication to re-use information in organism's evolution
- ▶ Different from preferential attachment, but still results in power laws
- Initialize with a graph $G_C(0)$ (t = 0)
- For t = 1, 2, ... current graph $G_C(t 1)$ grows to $G_C(t)$ by:
 - Adding a new vertex u
 - Choosing vertex $v \in V(t-1)$ with uniform probability $\frac{1}{N_v(t-1)}$
 - Joining vertex u with v's neighbors independently w.p. p
- Case p = 1 leads to full duplication of edges from an existing node
- F. Chung et al, "Duplication models for biological networks," Journal of Computational Biology, vol. 10, pp. 677-687, 2003

Degree distribution tends to a power law w.h.p. [Chung et al'03]
 ⇒ Exponent α is the plotted solution to the equation

▶ Full duplication does not lead to power-law behavior; but does if
⇒ Partial duplication performed a fraction
$$q \in (0, 1)$$
 of times

$$p(\alpha - 1) = 1 - p^{\alpha - 1}$$

- Most common practical usage of network growth models is predictive
 Goal: compare characteristics of G^{obs} and G(t) from the models
- Little attempt to date to fit network growth models to data
 - \Rightarrow Expected due to simplicity of such models
 - \Rightarrow Still useful to estimate e.g., the duplication probability p
- ► To fit a model ideally would like to observe a sequence {G^{obs}(τ)}^t_{τ=1} ⇒ Unfortunately, such dynamic network data is still fairly elusive
- ▶ Q: Can we fit a network growth model to a single snap-shot G^{obs} ?
- A: Yes, if we leverage the Markovianity of the growth process

- Similar to all network growth models described so far, suppose:
 As1: A single vertex is added to G(t 1) to create G(t); and
 As2: The manner in which it is added depends only on G(t 1)
- ▶ In other words, we assume $\{G(t)\}_{t=0}^{\infty}$ is a Markov chain
- Let graph $\delta(G(t), v)$ be obtained by deleting v and its edges from G(t)
- ▶ **Def:** vertex v is removable if G(t) can be obtained from $\delta(G(t), v)$ via copying. If G(t) has no removable vertices, we call it irreducible
- The class of duplication-attachment (DA) models satisfies:
 (i) The initial graph G(0) is irreducible; and
 (ii) P_θ(G(t) | G(t − 1)) > 0 ⇔ G(t) obtained by copying a vertex in G(t − 1)
- C. Wiuf et al, "A likelihood approach to analysis of network data," PNAS, vol. 103, pp. 7566-7570, 2006

Example: reducible graph

- Vertex v_A is removable (likewise v_c by symmetry)
 - \Rightarrow Obtain G(t) from $\delta(G(t, v_a))$ by copying v_c
- This implies that G(t) is reducible
 - \Rightarrow Notice though that v_B or v_D are not removable

- Suppose that $G^{obs} = G(t)$ represents the observed network graph
- The likelihood for the parameter θ is recursively given by

$$\mathcal{L}\left(heta; G(t)
ight) = rac{1}{t} \sum_{v \in \mathcal{R}_{G(t)}} \mathsf{P}_{ heta}\left(G(t) \, \left| \, \delta(G(t), v)
ight) \mathcal{L}\left(heta; \delta(G(t), v)
ight)$$

 $\Rightarrow \mathcal{R}_{\mathcal{G}(t)}$ is the set of all removable nodes in $\mathcal{G}(t)$

• The MLE for θ is thus defined as

$$\hat{ heta} = rg\max_{ heta} \mathcal{L}\left(heta; G(t)
ight)$$

 \Rightarrow Computing $\mathcal{L}(\theta; G(t))$ non-trivial, even for modest-size graphs

• Monte Carlo methods to approximate $\mathcal{L}(\theta; G(t))$ [Wiupf et al'06] \Rightarrow Open issues: vector θ , other growth models, scalability

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

- ► Good statistical network graph models should be [Robbins-Morris'07]:
 - \Rightarrow Estimable from and reasonably representative of the data
 - \Rightarrow Theoretically plausible about the underlying network effects
 - \Rightarrow Discriminative among competing effects to best explain the data
- Network-based versions of canonical statistical models
 - \Rightarrow Regression models Exponential random graph models (ERGMs)
 - \Rightarrow Latent variable models Latent network models
 - \Rightarrow Mixture models Stochastic block models
- ► Focus here on ERGMs, also known as *p*^{*} models
- G. Robbins et al., "An introduction to exponential random graph (p*) models for social networks," Social Networks, vol. 29, pp. 173-191, 2007

▶ Def: discrete random vector $Z \in \mathcal{Z}$ belongs to an exponential family if

$$\mathsf{P}_{\theta}(\mathsf{Z}=\mathsf{z}) = \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathsf{z}) - \psi(\boldsymbol{\theta})\right\}$$

▶ $\theta \in \mathbb{R}^{p}$ is a vector of parameters and $\mathbf{g} : \mathcal{Z} \mapsto \mathbb{R}^{p}$ is a function

- $\psi(\theta)$ is a normalization term, ensuring $\sum_{\mathbf{z}\in\mathcal{Z}} \mathsf{P}_{\theta}(\mathbf{z}) = 1$
- Ex: Bernoulli, binomial, Poisson, geometric distributions
- For continuous exponential families, the pdf has an analogous form Ex: Gaussian, Pareto, chi-square distributions
- Exponential families share useful algebraic and geometric properties
 Mathematically convenient for inference and simulation

- Let G(V, E) be a random undirected graph, with Y_{ij} := I{(i, j) ∈ E}
 Matrix Y = [Y_{ij}] is the random adjacency matrix, y = [y_{ij}] a realization
- An ERGM specifies in exponential family form the distribution of Y, i.e.,

$$\mathsf{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}, \quad \text{ where }$$

(i) each *H* is a configuration, meaning a set of possible edges in *G*; (ii) $g_H(\mathbf{y})$ is the network statistic corresponding to configuration *H*

$$g_H(\mathbf{y}) = \prod_{y_{ij} \in H} y_{ij} = \mathbb{I} \{ H \text{ occurs in } \mathbf{y} \}$$

(iii) $\theta_H \neq 0$ only if all edges in H are conditionally dependent; and (iv) $\kappa(\theta)$ is a normalization constant ensuring $\sum_{\mathbf{y}} \mathsf{P}_{\theta}(\mathbf{y}) = 1$

- Graph order N_v is fixed and given, only edges are random
 - \Rightarrow Assumed unweighted, undirected edges. Extensions possible
- ERGMs describe random graphs 'built-on' localized patterns
 - These configurations are the structural characteristics of interest
 - Ex: Are there reciprocity effects? Add mutual arcs as configurations
 - Ex: Are there transitivity effects? Consider triangles
- (In)dependence is conditional on all other variables (edges) in G
 ⇒ Control configurations relevant (i.e., θ_H ≠ 0) to the model
- ▶ Well-specified dependence assumptions imply particular model classes

In positing an ERGM for a network, one implicitly follows five steps

 Explicit choices connecting hypothesized theory to data analysis

 Step 1: Each edge (relational tie) is regarded as a random variable
 Step 2: A dependence hypothesis is proposed
 Step 3: Dependence hypothesis implies a particular form to the model
 Step 4: Simplification of parameters through e.g., homogeneity
 Step 5: Estimate and interpret model parameters

- ► Assume edges present independently of all other edges (e.g., in G_{n,p}) ⇒ Simplest possible (and unrealistic) dependence assumption
- ► For each (i, j), we assume Y_{ij} independent of Y_{uv} , for all $(u, v) \neq (i, j)$ $\Rightarrow \theta_H = 0$ for all H involving two or more edges
- Edge configurations i.e., $g_H(\mathbf{y}) = y_{ij}$ relevant, and the ERGM becomes

$$\mathsf{P}_{ heta}(\mathbf{Y}=\mathbf{y}) = \left(rac{1}{\kappa(oldsymbol{ heta})}
ight) \exp\left\{\sum_{i,j} heta_{ij}y_{ij}
ight\}$$

Specifies that edge (i, j) present independently, with probability

$$p_{ij} = rac{\exp(heta_{ij})}{1+\exp(heta_{ij})}$$

- ► Too many parameters makes estimation infeasible from single **y** ⇒ Under independence have N_v^2 parameters $\{\theta_{ij}\}$. Reduction?
- Homogeneity across all G, i.e., $\theta_{ij} = \theta$ for all (i, j) yields

$$\mathsf{P}_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa(m{ heta})}
ight) \exp\left\{ heta L(\mathbf{y})
ight\}$$

▶ Relevant statistic is the number of edges observed $L(\mathbf{y}) = \sum_{i,j} y_{ij}$ ▶ ERGM identical to $G_{n,p}$, where $p = \frac{\exp \theta}{1 + \exp \theta}$

- Ex: suppose we know a priori that vertices fall in two sets
 - Can impose homogeneity on edges within and between sets, i.e.,

$$\mathsf{P}_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\theta_{1}\mathcal{L}_{1}(\mathbf{y}) + \theta_{12}\mathcal{L}_{12}(\mathbf{y}) + \theta_{2}\mathcal{L}_{2}(\mathbf{y})\right\}$$

Markov dependence notion for network graphs [Frank-Strauss'86]

- Assumes two ties are dependent if they share a common node
- Edge status Y_{ij} dependent on any other edge involving i or j

Theorem

Under homogeneity, G is a Markov random graph if and only if

$$P_{ heta}(\mathbf{Y} = \mathbf{y}) = \left(rac{1}{\kappa(m{ heta})}
ight) \exp\left\{\sum_{k=1}^{N_{v}-1} heta_{k} S_{k}(\mathbf{y}) + heta_{ au} T(\mathbf{y})
ight\}, ext{ where }$$

 $S_k(\mathbf{y})$ is the number of k-stars, and $T(\mathbf{y})$ the number of triangles

Alternative statistics

Including many higher-order terms challenges estimation

- \Rightarrow High-order star effects often omitted, e.g., $heta_k =$ 0, $k \ge$ 4
- \Rightarrow But these models tend to fit real data poorly. Dilemma?
- ▶ Idea: Impose parametric form $\theta_k \propto (-1)^k \lambda^{2-k}$ [Snijders et al'06]
- Combine $S_k(\mathbf{y})$, $k \ge 2$ into a single alternating k-star statistic, i.e.,

$$\mathsf{AKS}_{\lambda}(\mathbf{y}) = \sum_{k=2}^{N_v-1} (-1)^k \frac{\mathcal{S}_k(\mathbf{y})}{\lambda^{k-2}}, \quad \lambda > 1$$

• Can show $AKS_{\lambda}(\mathbf{y}) \propto$ the geometrically-weighted degree count

$$\mathsf{GWD}_\gamma(\mathbf{y}) = \sum_{d=0}^{N_
u-1} e^{-\gamma d} N_d(\mathbf{y}), \quad \gamma > 0$$

 $\Rightarrow N_d(\mathbf{y})$ is the number of vertices with degree d

- Straightforward to incorporate vertex attributes to ERGMs
 Ex: gender, seniority in organization, protein function
- ▶ Consider a realization **x** of a random vector $\mathbf{X} \in \mathbb{R}^{N_{v}}$ defined on V
- Specify an exponential family form for the conditional distribution

$$\mathsf{P}_{\theta}(\mathbf{Y} = \mathbf{y} \,\big|\, \mathbf{X} = \mathbf{x})$$

 \Rightarrow Will include additional statistics $g(\cdot)$ of **y** and **x**

Ex: configurations for Markov, binary vertex attributes

 \blacktriangleright MLE for the parameter vector $\pmb{\theta}$ in an ERGM is

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \, \left\{ \boldsymbol{\theta}^\top \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ where } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

Optimality condition yields

$$\mathbf{g}(\mathbf{y}) = \left. \nabla \psi(\boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}$$

• Using also that $\mathbb{E}_{\theta}[\mathbf{g}(\mathbf{Y})] = \nabla \psi(\boldsymbol{\theta})$, the MLE solves

 $\mathbb{E}_{\hat{\theta}}[\mathbf{g}(\mathbf{Y})] = \mathbf{g}(\mathbf{y})$

Unfortunately ψ(θ) cannot be computed except for small graphs
 ⇒ Involves a summation over 2^(N_y)/₂ values of y for each θ
 ⇒ Numerical methods needed to obtain approximate values of θ̂

► The pmf of **Y** is
$$\mathsf{P}_{\theta}(\mathsf{Y} = \mathsf{y}) = \exp\left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathsf{y}) - \psi(\theta) \right\}$$
, hence

$$\mathbb{E}_{\theta}[g(\mathbf{Y})] = \sum_{\mathbf{y}} g(\mathbf{y}) \mathsf{P}_{\theta}(\mathbf{Y} = \mathbf{y})$$
$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\theta^{\top} \mathbf{g}(\mathbf{y}) - \psi(\theta)\right\}$$

► Recall
$$\psi(\theta) = \log \sum_{\mathbf{y}} \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}$$
 and use the chain rule

$$\nabla \psi(\theta) = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}}{\sum_{\mathbf{y}} \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}} = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}}{\exp \psi(\theta)}$$

$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) - \psi(\theta) \right\}$$

▶ The red and blue sums are identical $\Rightarrow \mathbb{E}_{\theta}[g(\mathbf{Y})] = \nabla \psi(\theta)$ follows

ldea: for fixed θ_0 , maximize instead the log-likelihood ratio

$$\mathsf{r}(\boldsymbol{\theta}, \boldsymbol{\theta}_0) = \ell(\boldsymbol{\theta}) - \ell(\boldsymbol{\theta}_0) = (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y}) - [\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)]$$

Key identity: will show that

$$\exp\left\{\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)\right\} = \mathbb{E}_{\theta_0}\left[\exp\left\{(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{Y})\right\}\right]$$

Markov chain Monte Carlo MLE algorithm to search over θ

Step 1: draw samples $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ from the ERGM under θ_0 **Step 2:** approximate the above $\mathbb{E}_{\theta_0}[\cdot]$ via sample averaging **Step 3:** the logarithm of the result approximates $\psi(\theta) - \psi(\theta_0)$ **Step 4:** evaluate an \approx log-likelihood ratio $r(\theta, \theta_0)$

 \blacktriangleright For large *n*, the maximum value found approximates the MLE $\hat{m{ heta}}$

Derivation of key identity

• Recall
$$\exp \psi(\theta) = \sum_{\mathbf{y}} \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}$$
 to write
$$\exp \left\{ \psi(\theta) - \psi(\theta_0) \right\} = \frac{\sum_{\mathbf{y}} \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}}{\exp \psi(\theta_0)}$$

• Multiplying and dividing by $\exp\left\{\boldsymbol{\theta}_{0}^{\top}\mathbf{g}(\mathbf{y})\right\} > 0$ yields

$$\exp \left\{ \psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0) \right\} = \sum_{\mathbf{y}} \exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \mathbf{g}(\mathbf{y}) \right\} \times \frac{\exp \left\{ \boldsymbol{\theta}_0^\top \mathbf{g}(\mathbf{y}) \right\}}{\exp \psi(\boldsymbol{\theta}_0)}$$
$$= \sum_{\mathbf{y}} \exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \mathbf{g}(\mathbf{y}) \right\} \mathsf{P}_{\boldsymbol{\theta}_0}(\mathbf{Y} = \mathbf{y})$$
$$= \mathbb{E}_{\boldsymbol{\theta}_0} \left[\exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \mathbf{g}(\mathbf{Y}) \right\} \right]$$

► Used $\exp\left\{ \boldsymbol{\theta}_{0}^{\top}\mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}_{0}) \right\}$ is the exponential family pmf $\mathsf{P}_{\theta_{0}}(\mathbf{Y} = \mathbf{y})$

- Best fit chosen from a given class of models ... may not be a good fit to the data if model class not rich enough
- Assessing goodness-of-fit for ERGMs

Step 1: simulate numerous random graphs from the fitted model **Step 2:** compare high-level characteristics with those of G^{obs} Ex: distributions of degree, centrality, diameter

- ▶ If significant differences found in G^{obs}, conclude
 ⇒ Systematic gap between specified model class and data
 ⇒ Lack of goodness-of-fit
- Take home: model specification for ERGMs highly nontrivial
 ⇒ Goodness-of-fit diagnostics can play key facilitating role

Lawyer collaboration network

- ▶ Network *G*^{obs} of working relationships among lawyers [Lazega'01]
 - ▶ Nodes are $N_v = 36$ partners, edges indicate partners worked together

- Data includes various node-level attributes:
 - Seniority (node labels indicate rank ordering)
 - Office location (triangle, square or pentagon)
 - Type of practice, i.e., litigation (red) and corporate (cyan)
 - Gender (three partners are female labeled 27, 29 and 34)

► Goal: study cooperation among social actors in an organization

Assess network effects $S_1(\mathbf{y}) = N_e$ and alternating k-triangles statistic

$$\mathsf{AKT}_{\lambda}(\mathbf{y}) = 3T_{1}(\mathbf{y}) + \sum_{k=2}^{N_{v}-2} (-1)^{k+1} \frac{T_{k}(\mathbf{y})}{\lambda^{k-1}}$$

 $\Rightarrow T_k(\mathbf{y}) \text{ counts sets of } k \text{ individual triangles sharing a common base}$ Test the following set of exogenous effects:

$$\begin{split} h^{(1)}(\mathbf{x}_i, \mathbf{x}_j) &= \text{seniority}_i + \text{seniority}_j, \quad h^{(2)}(\mathbf{x}_i, \mathbf{x}_j) = \text{practice}_i + \text{practice}_j \\ h^{(3)}(\mathbf{x}_i, \mathbf{x}_j) &= \mathbb{I} \left\{ \text{practice}_i = \text{practice}_j \right\}, \quad h^{(4)}(\mathbf{x}_i, \mathbf{x}_j) = \mathbb{I} \left\{ \text{gender}_i = \text{gender}_j \right\} \\ h^{(5)}(\mathbf{x}_i, \mathbf{x}_j) &= \mathbb{I} \left\{ \text{office}_i = \text{office}_j \right\}, \quad \mathbf{h}(\mathbf{x}_i, \mathbf{x}_j) := \left[h^{(1)}(\mathbf{x}_i, \mathbf{x}_j), \dots, h^{(5)}(\mathbf{x}_i, \mathbf{x}_j) \right]^T \end{split}$$

$$\mathbb{P}_{\boldsymbol{\theta},\boldsymbol{\beta}}(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) = \frac{1}{\kappa(\boldsymbol{\theta},\boldsymbol{\beta})} \exp\left\{\theta_1 S_1(\mathbf{y}) + \theta_2 \mathsf{AKT}_{\lambda}(\mathbf{y}) + \boldsymbol{\beta}^T \mathbf{g}(\mathbf{y}, \mathbf{x})\right\}$$
$$\mathbf{g}(\mathbf{y}, \mathbf{x}) = \sum_{i,j} y_{ij} \mathbf{h}(\mathbf{x}_i, \mathbf{x}_j)$$

Fitting results using the MCMC MLE approach

Parameter	Estimate	'Standard Error'
Density (θ_1)	-6.2073	0.5697
Alternating k-triangles (θ_2)	0.5909	0.0882
Seniority Main Effect (β_1)	0.0245	0.0064
Practice Main Effect (β_2)	0.3945	0.1103
Same Practice (β_3)	0.7721	0.1973
Same Gender (β_4)	0.7302	0.2495
Same Office (β_5)	1.1614	0.1952

 \Rightarrow Standard errors heuristically obtained via asymptotic theory

- Identified factors that may increase odds of cooperation
 Ex: same practice, gender and office location double odds
- Strong evidence for transitivity effects since $\hat{\theta}_2 \gg \operatorname{se}(\hat{\theta}_2)$

 \Rightarrow Something beyond basic homophily explaining such effects

Assessing goodness-of-fit

Sample from fitted ERGM

- Compared distributions of
 - Degree
 - Edge-wise shared partners
 - Geodesic distance
- Plots show good fit overall

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

Latent variables widely used to model observed data
 Ex: Hidden Markov models, factor analysis

Basic idea permeated to statistical network analysis. Two types:

- Latent class models: unobserved class membership drives propensity towards establishing relational ties
- Latent feature models: relational ties more likely to form among vertices that are 'closer' in some latent space

► As of now latent network models come in many flavors. Focus here:

⇒ Stochastic block models (SBMs)

French political blog network from October 2006 [Kolaczyk'17]

- \Rightarrow Consists of $\mathit{N_v} = 192$ blogs linked by $\mathit{N_e} = 1431$ edges
- \Rightarrow Colors indicate blog affiliation to a French political party

Visual evidence of mixing of smaller subgraphs

- \Rightarrow Different rates of connections among blogs (driven by party)
- \Rightarrow Erdös-Renyi with fixed *p* cannot capture this structure

► SBMs explicitly parameterize the notion of communities C₁,...,C_Q ⇒ Connection rates π_{qr} of vertices between/within groups

SBM. Generative model for an undirected random graph $G(\mathcal{V}, \mathcal{E})$

Fix Q. Each vertex $i \in \mathcal{V}$ independently belongs to C_q w.p. α_q

$$\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_Q]^\top, \quad \mathbf{1}^\top \boldsymbol{\alpha} = 1$$

For vertices $i, j \in \mathcal{V}$, with $i \in C_q$ and $j \in C_r \Rightarrow (i, j) \in \mathcal{E}$ w.p. π_{qr}

P. W. Holland et al., "Stochastic block-models: First steps," *Social Networks*, vol. 5, pp. 109-137, 1983

▶ In other words, with $Z_{iq} = \mathbb{I}\{i \in C_q\}$ and $\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iQ}]^\top$

$$\mathbf{Z}_i \stackrel{ ext{i.i.d.}}{\sim} \mathsf{Multinomial}(1, lpha), \ A_{ij} \, ig| \, \mathbf{Z}_i = \mathbf{z}_i, \mathbf{Z}_j = \mathbf{z}_j \sim \mathsf{Bernoulli}(\pi_{\mathbf{z}_i, \mathbf{z}_j})$$

for $1 \leq i,j \leq N_v$, where $A_{ij} = A_{ji}$ and $A_{ii} \equiv 0$

- ▶ Parameters: *Q* mixing weights α_q and Q(Q+1)/2 connection probs. π_{qr}
- Mixture of classical random graph models

$$\mathsf{P}(A_{ij}=1) = \sum_{1 \le q, r \le Q} \alpha_q \alpha_r \pi_{qr}$$

- \Rightarrow More flexible to capture the structure of observed networks
- \Rightarrow May face issues of identifiability [Allman et al'11]
- Emergence of giant component, size distribution of groups [Söderberg'03]

Model specification and flexibility (cont.)

Mixtures of Erdös-Renyi models can be surprisingly flexible

Good statistical network graph models should be [Robbins-Morris'07]:

 ⇒ Estimable from and reasonably representative of the data
 ⇒ Theoretically plausible about the underlying network effects

 Q: How appropriate are latent network models? Are they plausible?
 Q: Can we approximate well an observed graph G^{obs} with an SBM?
 ⇒ A variant of the Szemerédi regularity lemma useful here

C. Borgs et al, "Graph limits and parameter testing," *Symposium on Theory of Computing*, 2006

- Discussing approximation notions requires a distance between graphs
- ▶ Def: For graphs G(V, E) and G'(V', E') with |V| = |V'| = N_v, the cut distance is given by

$$d_{\Box}(G,G') = rac{1}{\mathcal{N}_v^2} \max_{\mathcal{S},\mathcal{T}\in\{1,...,\mathcal{N}_v\}} \Big| \sum_{i\in\mathcal{S}} \sum_{j\in\mathcal{T}} (\mathcal{A}_{ij}-\mathcal{A}_{ij}') \Big|$$

 \Rightarrow One can show the quantity $d_{\Box}(\cdot, \cdot)$ is a formal metric

Defining and studying properties of graph distances is a timely topic

B. Bollobás and O. Riordan, "Sparse graphs: Metrics and random models," *Random Structures & Algorithms*, vol. 39, 2011

• Let $\mathcal{P} = \{\mathcal{V}_1, \dots, \mathcal{V}_Q\}$ partition the vertices \mathcal{V} of G into Q classes

▶ Define the complete graph G_P with vertex set \mathcal{V} and edge weights

$$w_{ij}(G_P) = \frac{1}{|\mathcal{V}_q||\mathcal{V}_r|} \sum_{u \in \mathcal{V}_q} \sum_{v \in \mathcal{V}_r} A_{uv}, \quad i \in \mathcal{V}_q, j \in \mathcal{V}_r$$

 $\Rightarrow \text{Expectation of a } Q-\text{class block model approximation to } G$ $\Rightarrow \text{Probability an edge joins } i, j \text{ is just } w_{ij}(G_P)$

Theorem: For every $\epsilon > 0$ and every graph $G(\mathcal{V}, \mathcal{E})$, there exists a partition \mathcal{P} of \mathcal{V} into $Q \leq 2^{\frac{2}{\epsilon^2}}$ classes such that $d_{\Box}(G, G_P) \leq \epsilon$.

► Justifies the claim that an SBM can approximate well an arbitrary graph ⇒ The upper bound on Q can be prohibitively large

- ▶ SBMs defined up to parameters $\{\alpha_q\}_{q=1}^Q$ and $\{\pi_{qr}\}_{1 \le q, r \le Q}$
- Conceptually useful to think about two sets of 'observations'
 - \Rightarrow Latent class labels: $\mathbf{Z} = \{\{Z_{iq}\}_{q=1}^Q\}_{i \in \mathcal{V}}$, where $Z_{iq} = \mathbb{I}\{i \in \mathcal{C}_q\}$
 - \Rightarrow Relational ties: $\mathbf{A} = [A_{ij}]$, where $A_{ij} = \mathbb{I}\{(i, j) \in \mathcal{E}\}$
- **But we only observe A**, recall **Z** are latent. *Q* assumed given

 \Rightarrow Interest both in parameter estimation and in vertex clustering

Model-based community detection

Suppose G adheres to an SBM with Q classes. Predict class membership labels $\mathbf{Z} = \{\{Z_{iq}\}_{q=1}^{Q}\}_{i \in \mathcal{V}}$, given observations $\mathbf{A} = \mathbf{a}$.

• If we were to observe A = a and Z = z, the log-likelihood would be

$$\ell(\mathbf{a}, \mathbf{z}; \boldsymbol{\theta}) = \sum_{i} \sum_{q} z_{iq} \log \alpha_{q} + \frac{1}{2} \sum_{i \neq j} \sum_{q, r} z_{iq} z_{jr} \log b(A_{ij}; \pi_{qr})$$

> Defined $\boldsymbol{\theta} = \{\{\alpha_q\}, \{\pi_{qr}\}\}$ and $b(a; \pi) = \pi^a (1 - \pi)^{1-a}$

But we do not. Instead have to work with the observed data likelihood

$$\ell(\mathbf{a}; \boldsymbol{ heta}) = \log \Big(\sum_{\mathbf{z}} \exp \left\{ \ell(\mathbf{a}, \mathbf{z}; \boldsymbol{ heta}) \right\} \Big)$$

⇒ Unfortunately, evaluation of ℓ(a; θ) is typically intractable
 Mixture model viewpoint suggests an E-M procedure [Snijders'97]
 ⇒ Alternate between estimation of E [Z_{iq} | A = a] and θ
 ⇒ Does not scale beyond Q = 2, P (Z | A = a) expensive

▶ Variational approach to optimize a lower bound of $\ell(\mathbf{a}; \boldsymbol{\theta})$, namely

$$J(R_{\mathsf{a}}; \boldsymbol{\theta}) = \ell(\mathsf{a}; \boldsymbol{\theta}) - \mathsf{KL}(R_{\mathsf{a}}(\mathsf{Z}), \mathsf{P}\left(\mathsf{Z} \,\middle|\, \mathsf{A} = \mathsf{a}\right))$$

KL denotes de Kullback–Leibler divergence

• $R_{a}(Z)$ is a tractable approximation of P(Z | A = a)

Mean field approximation to the conditional distribution

$$R_{\mathbf{a}}(\mathbf{Z}) = \prod_{i=1}^{N_{v}} h(\mathbf{Z}_{i}; \boldsymbol{\tau}_{i})$$

• $h(\cdot; \boldsymbol{\tau}_i)$: multinomial pmf with parameter $\boldsymbol{\tau}_i = [\tau_{i1}, \ldots, \tau_{iQ}]^{\top}$

J. J. Daudin et al, "A mixture model for random graphs," *Stat. Comput.,* vol. 18, 2008

Proposition: Given θ , the optimal variational parameters $\{\hat{\tau}_i\} = \operatorname{argmax}_{\{\tau_i\}} J(R_a; \{\tau_i\}, \theta)$ satisfy the following fixed-point relation

$$\hat{\tau}_{iq} \propto lpha_{q} \prod_{j \neq i} \prod_{r} b(A_{ij}; \pi_{qr})^{\hat{\tau}_{jr}}$$

Given $\{\boldsymbol{\tau}_i\}$, the values of $\boldsymbol{\theta}$ that maximize $J(R_{\mathsf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ are

$$\hat{\alpha}_{q} = \frac{1}{N_{v}} \sum_{i} \tau_{iq}, \quad \hat{\pi}_{qr} = \sum_{i \neq j} \tau_{iq} \tau_{jr} A_{ij} / \sum_{i \neq j} \tau_{iq} \tau_{jr}$$

• Algorithm alternates between updates of θ and $\{\tau_i\}$ as follows

$$\begin{aligned} \boldsymbol{\theta}[k+1] &= \operatorname*{argmax}_{\boldsymbol{\theta}} J(R_{\mathsf{a}}; \{\boldsymbol{\tau}_{i}[k]\}, \boldsymbol{\theta}) \\ \{\boldsymbol{\tau}_{i}[k+1]\} &= \operatorname*{argmax}_{\{\boldsymbol{\tau}_{i}\}} J(R_{\mathsf{a}}; \{\boldsymbol{\tau}_{i}\}, \boldsymbol{\theta}[k+1]) \end{aligned}$$

The sequence of J values is non-decreasing [Daudin et al'08]

• Consistency results available as $N_v \rightarrow \infty$, Q fixed [Celisse et al'12]

▶ Number of classes *Q* often unknown and should be estimated

- \Rightarrow Use principles of Bayesian model selection
- \Rightarrow Prior $g(\theta \mid m_Q)$ on θ given the SBM m_Q has Q classess

Integrated Classification Likelihood (ICL) criterion yields

$$\begin{aligned} \mathsf{CL}(m_Q) &= \max_{\boldsymbol{\theta}} \log \mathcal{L}(\mathbf{a}, \hat{\mathbf{z}}(\boldsymbol{\theta}) \mid \boldsymbol{\theta}, m_Q) \\ &- \frac{Q(Q+1)}{4} \log \frac{N_v(N_v-1)}{2} - \frac{Q-1}{2} \log N_v \end{aligned}$$

Asymptotic approximation of the complete-data integrated likelihood

$$\mathcal{L}(\mathbf{a}, \mathbf{z} \mid m_Q) = \int \mathcal{L}(\mathbf{a}, \mathbf{z} \mid \boldsymbol{\theta}, m_Q) g(\boldsymbol{\theta} \mid m_Q) d\boldsymbol{\theta}$$

- \blacktriangleright Goodness-of-fit diagnostics \Rightarrow mostly computational, visualization based
- Ex: French political blog network from October 2006 [Kolaczyk'17]
 We fit an SBM using variational MLE (mixer in R)

- Optimal value $\hat{Q} = 12$, but $Q \in [8, 12]$ reasonable (9 political parties)
 - \Rightarrow Permuted adjacency shows group structure (room for merging few)
- Relatively good fit of the degree distribution

Degree-corrected SBMs

Communities with broad degree distributions

B. Karrer B and M. E. Newman, "Stochastic blockmodels and community structure in networks," *Physical Review E.*, vol. 83, 2011

Mixed-membership SBMs

Nodes may belong only partially to more than one class

E. M. Airoldi, "Mixed membership stochastic blockmodels," *J. Machine Learning Research*, vol. 9, 2008

Hierarchical SBMs

Hierarchical clustering meets SBMs

A. Clauset et al, "Hierarchical structure and the prediction of missing links in networks," *Nature*, vol. 453, 2008

Random graph models

- Small-world models
- Network-growth models

Exponential random graph models

- Latent network models
- Random dot product graphs

• Consider a latent space
$$\mathcal{X}_d \subset \mathbb{R}^d$$
 such that for all

$$\mathbf{x}, \mathbf{y} \in \mathcal{X}_d \quad \Rightarrow \quad \mathbf{x}^\top \mathbf{y} \in [0, 1]$$

 \Rightarrow Inner-product distribution $F : \mathcal{X}_d \mapsto [0, 1]$

Random dot product graphs (RDPGs) are defined as follows:

$$\begin{aligned} \mathbf{x}_1, \dots, \mathbf{x}_{N_v} & \stackrel{\text{i.i.d.}}{\sim} F, \\ A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\mathbf{x}_i^\top \mathbf{x}_j) \end{aligned}$$

for $1 \leq i,j \leq N_{v}$, where $A_{ij} = A_{ji}$ and $A_{ii} \equiv 0$

► A particularly tractable latent position random graph model ⇒ Vertex positions $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top \in \mathbb{R}^{N_v \times d}$

S. J. Young and E. R. Scheinerman, "Random dot product graph models for social networks," *WAW*, 2007

► RDPGs ecompass several other classic models for network graphs Ex: Recover Erdös-Renyi G_{Nv,p} graphs with d = 1 and X_d = {√p} Ex: Recover SBM random graphs by constructing F with pmf

$$\mathsf{P}(\mathsf{X} = \mathsf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

after selecting d and $\mathbf{x}_1, \ldots, \mathbf{x}_Q$ such that $\pi_{qr} = \mathbf{x}_q^\top \mathbf{x}_r$

- Approximation results for SBMs justify the expressiveness of RDPGs
- RDPGs are special cases of latent position models [Hoff et al'02]

$$A_{ij} \, \big| \, \mathbf{x}_i, \mathbf{x}_j \sim \mathsf{Bernoulli}(\kappa(\mathbf{x}_i, \mathbf{x}_j))$$

 \Rightarrow Approximate these accurately for large enough d [Tang et al'13]

- Q: Given G from an RDPG, find the 'best' $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$?
- MLE is well motivated but it is intractable for large N_v

$$\hat{\mathbf{X}}_{ML} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{ op} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{ op} \mathbf{x}_j)^{1 - A_{ij}}$$

▶ Instead, let $P_{ij} = P((i, j) \in \mathcal{E})$ and define $\mathbf{P} = [P_{ij}] \in [0, 1]^{N_v \times N_v}$ ⇒ RDPG model specifies that $\mathbf{P} = \mathbf{X}\mathbf{X}^\top$

 \Rightarrow Key: Observed A is a noisy realization of P ($\mathbb{E}[A] = P$)

> Suggests a LS regression approach to find X s.t. $XX^{\top} \approx A$

$$\hat{\mathbf{X}}_{LS} = \operatorname*{argmin}_{\mathbf{X}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_{F}^{2}$$

A. Athreya et al, "Statistical inference on random dot product graphs: A survey," *J. Machine Learning Research*, 2018

Since **A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$

- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors
- $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{N_v})$, with eigvenvalues $\lambda_1 \ge \ldots \ge \lambda_{N_v}$
- ▶ Define $\hat{\mathbf{\Lambda}} = \text{diag}(\lambda_1^+, \dots, \lambda_d^+)$ and $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d] \ (\lambda^+ := \max(0, \lambda))$
- ► Best rank-*d*, positive semi-definite (PSD) approx. of **A** is $\hat{\mathbf{P}} := \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$ ⇒ Adjacency spectral embedding (ASE) is $\hat{\mathbf{X}}_{ASE} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ since

$$\boldsymbol{A} \approx \boldsymbol{\hat{U}} \boldsymbol{\hat{\Lambda}} \boldsymbol{\hat{U}}^\top = \boldsymbol{\hat{U}} \boldsymbol{\hat{\Lambda}}^{1/2} \boldsymbol{\hat{\Lambda}}^{1/2} \boldsymbol{\hat{U}}^\top = \boldsymbol{\hat{X}}_{ASE} \boldsymbol{\hat{X}}_{ASE}^\top$$

Q: Is the solution unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X}\mathbf{W}(\mathbf{X}\mathbf{W})^{\top} = \mathbf{X}\mathbf{X}^{\top}, \quad \mathbf{W}\mathbf{W}^{\top} = \mathbf{I}_d$$

 \Rightarrow RDPG embedding problem is identifiable modulo rotations

Ex: Erdös-Renyi graph $G_{1000,0.3}$, realization of **A** (left)

- ► For d = 1 we compute the ASE $\hat{\mathbf{x}}_{ASE}$ and plot $\hat{\mathbf{x}}_{ASE} \hat{\mathbf{x}}_{ASE}^{\top}$ (center) \Rightarrow Approximates well the constant matrix $\mathbf{P} = 0.3 \times \mathbf{11}^{\top}$ \Rightarrow Supported by histogram of entries in $\hat{\mathbf{x}}_{ASE}$ (right, $\sqrt{p} = 0.547$)
- Consistency and limiting distribution results for ASEs available

• Ex: SBM with $N_v = 1500$, Q = 3 and mixing parameters

$$\boldsymbol{\alpha} = \left[\begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array} \right], \quad \boldsymbol{\Pi} = \left[\begin{array}{cccc} 0.5 & 0.1 & 0.05 \\ 0.1 & 0.3 & 0.05 \\ 0.05 & 0.05 & 0.9 \end{array} \right]$$

- ► Sample adjacency **A** (left), $\hat{\mathbf{X}}_{ASE}\hat{\mathbf{X}}_{ASE}^{\top}$ (center), rows of $\hat{\mathbf{X}}_{ASE}$ (right)
- Use embeddings to bring to bear geometric methods of analysis

Ex: Zachary's karate club graph with $N_v = 34$, $N_e = 78$ (left)

- ► Node embeddings (rows of $\hat{\mathbf{X}}_{ASE}$) for d = 2 (right)
 - Club's administrator (i = 0) and instructor (j = 33) are orthogonal
- Interpretability of embeddings a valuable asset for RDPGs
 - \Rightarrow Vector magnitudes indicate how well connected nodes are
 - \Rightarrow Vector angles indicate positions in latent space

Mathematicians collaboration graph

Ex: Mathematics collaboration network centered at Paul Erdös

► Most mathematicians have an Erdös number of at most 4 or 5 ⇒ Drawing created by R. Graham in 1979

Network Science Analytics

Models for Network Graphs

► Coauthorship graph *G*, $N_v = 4301$ nodes with Erdös number ≤ 2 ⇒ No discernible structure from the adjacency matrix **A** (left)

- Community structure revealed after row-colum permutation (right)
 (i) Obtained the ASE X^{ASE} for the mathematicians
 - (ii) Performed angular k-means on $\hat{\mathbf{X}}_{ASE}$'s rows [Scheinerman-Tucker'10]

International relations

► Ex: Dynamic network G_t of international relations among nations \Rightarrow Nations $(i, j) \in \mathcal{E}_t$ if they have an alliance treaty during year t

- Track the angle between UK and France's ASE from 1890-1995
 - Orthogonal during the late 19th century
 - Came closer during the wars, retreat during Nazi invasion in WWII
 - Strong alignment starts in the 1970s in the run up to the EU

▶ Neglected the constraint $[\hat{\mathbf{X}}_{ASE}\hat{\mathbf{X}}_{ASE}^{\top}]_{ii} = 0$. Fix via iterative algorithm

E. R. Scheinerman and K. Tucker, "Modeling graphs using dot product representations," *Comput. Stat.*, vol. 25, pp. 1-16, 2010

Assumed A to be PSD. Extension known as generalized RDPG

P. Rubin-Delanchy et al, "A statistical interpretation of spectral embedding: The generalised random dot product graph," *arXiv:1709.05506*, 2017

RDPG variants to model weighted and directed graphs possible

F. Larroca et al, "Change point detection in weighted and directed random dot product graphs," *EUSIPCO*, 2021

▶ Host of applications in testing, clustering, change-point detection, ...

Glossary

- Network graph model
- Random graph models
- Configuration model
- Matching algorithm
- Switching algorithm
- Model-based estimation
- Assessing significance
- Reference distribution
- Network motif
- Small-world network
- Decentralized search
- Watts-Strogatz model

- Time-evolving network
- Network-growth models
- Preferential attachment
- Barabási-Albert model
- Copying models
- Exponential family
- Exponential random graph models
- Configurations
- Network statistic
- Homogeneity
- Markov random graphs