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Why statistical graph modeling?

▶ Statistical graph models are used for a variety of reasons:

1) Mechanisms explaining properties observed on real-world networks

Ex: small-world effects, power-law degree distributions

2) Testing for ‘significance’ of a characteristic η(G ) in a network graph

Ex: is the observed average degree unusual or anomalous?

3) Assessment of factors potentially predictive of relational ties

Ex: are there reciprocity or transitivity effects in play?

▶ Focus today on construction and use of models for network data
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Modeling network graphs

▶ Def: A model for a network graph is a collection

{Pθ(G ),G ∈ G : θ ∈ Θ}

▶ G is an ensemble of possible graphs
▶ Pθ(·) is a probability distribution on G (often write P (·))
▶ Parameters θ ranging over values in parameter space Θ

▶ Richness of models derives from how we specify Pθ(·)
⇒ Methods range from the simple to the complex
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Model specification

1) Let P(·) be uniform on G, add structural constraints to G
Ex: Erdös-Renyi random graphs, generalized random graph models

2) Induce P(·) via application of simple generative mechanisms

Ex: small world, preferential attachment, copying models

3) Model structural features and their effect on G ’s topology

Ex: exponential random graph models

4) Model propensity towards establishing links via latent variables

Ex: stochastic block models, graphons, random dot product graphs

▶ Computational cost of associated inference algorithms relevant
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Classical random graph models

▶ Assign equal probability on all undirected graphs of given order and size
▶ Specify collection GNv ,Ne of graphs G(V ,E) with |V | = Nv , |E | = Ne

▶ Assign P (G) =
(
N
Ne

)−1
to each G ∈ GNv ,Ne , where N = |V (2)| =

(
Nv
2

)
▶ Most common variant is the Erdös-Renyi random graph model Gn,p

⇒ Undirected graph on Nv = n vertices

⇒ Edge (u, v) present w.p. p, independent of other edges

▶ Simulation: simply draw N =
(
Nv

2

)
≈ N2

v /2 i.i.d. Ber(p) RVs

▶ Inefficient when p ∼ N−1
v ⇒ sparse graph, most draws are 0

▶ Skip non-edges drawing Geo(p) i.i.d. RVs, runs in O(Nv + Ne) time
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Properties of Gn,p

▶ Gn,p is well-studied and tractable. Noteworthy properties:

P1) Degree distribution P (d) is binomial with parameters (n − 1, p)
▶ Large graphs have concentrated P (d) with exponentially-decaying tails

P2) Phase transition on the emergence of a giant component
▶ If np > 1, Gn,p has a giant component of size O(n) w.h.p.
▶ If np < 1, Gn,p has components of size only O(log n) w.h.p.

np>1 np<1 

P3) Small clustering coefficient O(n−1) and short diameter O(log n) w.h.p.
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Generalized random graph models

▶ Recipe for generalization of Erdös-Renyi models

⇒ Specify G of fixed order Nv , possessing a desired characteristic

⇒ Assign equal probability to each graph G ∈ G
▶ Configuration model: fixed degree sequence {d(1), . . . , d(Nv )}

▶ Size fixed under this model, since Ne = d̄Nv/2 ⇒ G ⊂ GNv ,Ne

▶ Equivalent to specifying model via conditional distribution on GNv ,Ne

▶ Configuration models useful as reference, i.e., ‘null’ models

Ex: compare observed G with G ′ ∈ G having power law P (d)
Ex: expected group-wise edge counts in modularity measure
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Results on the configuration model

P1) Phase transition on the emergence of a giant component
▶ Condition depends on first two moments of given P (d)
▶ Giant component has size O(Nv ) as in GNv ,p

M. Molloy and B. Reed, “A critical point for random graphs with a given

degree sequence,” Random Struct. and Alg., vol. 6, pp. 161-180, 1995

P2) Clustering coefficient vanishes slower than in GNv ,p

M. Newman et al, “Random graphs with arbitrary degree distrbutions and

their applications”, Physical Rev. E, vol. 64, p. 26,118, 2001

P3) Special case of given power-law degree distribution P (d) ∼ Cd−α

▶ For α ∈ (2, 3), short diameter O(logNv ) as in GNv ,p

F. Chung and L. Lu, “The average distances in random graphs with given

expected degrees,” PNAS, vol. 99, pp. 15,879-15,882, 2002
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Simulating generalized random graphs

▶ Matching algorithm
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Task 1: Model-based estimation in network graphs

▶ Consider a sample G∗ of a population graph G (V ,E )

⇒ Suppose a given characteristic η(G ) is of interest

⇒ Q: Useful estimate η̂ = η̂(G∗) of η(G )?

▶ Statistical inference in sampling theory via design-based methods

⇒ Only source of randomness is due to the sampling design

▶ Augment this perspective to include a model-based component
▶ Assume G drawn uniformly from the collection G, prior to sampling

▶ Inference on η(G ) should incorporate both randomness due to

⇒ Selection of G from G and sampling G∗ from G
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Example: size of a “hidden population”

▶ Directed graph G (V ,E ), V the members of the hidden population

⇒ Graph describing willingness to identify other members

⇒ Arc (i , j) when ask individual i , mentions j as a member

▶ For given V , model G as drawn from a collection G of random graphs

⇒ Independently add arcs between vertex pairs w.p. pG

▶ Graph G∗ obtained via one-wave snowball sampling, i.e., V ∗ = V ∗
0 ∪ V ∗

1

⇒ Initial sample V ∗
0 obtained via BS from V with probability p0

▶ Consider the following RVs of interest
▶ N = |V ∗

0 |: size of the initial sample
▶ M1: number of arcs among individuals in V ∗

0

▶ M2: number of arcs from individuals in V ∗
0 to individuals in V ∗

1

▶ Snowball sampling yields measurements n,m1, and m2 of these RVs
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Method of moments estimator

▶ Method of moments: now Aij = I {(i , j) ∈ E} also a RV

E [N] = E

[∑
i

I {i ∈ V ∗
0 }

]
= Nvp0= n

E [M1] = E

∑
j

∑
i ̸=j

I {i ∈ V ∗
0 }I {j ∈ V ∗

0 }Aij

 = Nv (Nv − 1)p20pG= m1

E [M2] = E

∑
j

∑
i ̸=j

I {i ∈ V ∗
0 }I {j /∈ V ∗

0 }Aij

 = Nv (Nv − 1)p0(1− p0)pG= m2

▶ Expectation w.r.t. randomness in selecting G and sample V ∗
0 . Solution:

p̂0 =
m1

m1 +m2
, p̂G =

m1(m1 +m2)

n[(n − 1)m1 + nm2]
, and N̂v = n

(
m1 +m2

m1

)
⇒ Same estimates for p0 and Nv as in the design-based approach
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Directly modeling η(G )

▶ So far considered modeling G for model-based estimation of η(G )

⇒ Classical random graphs typical in social networks research

▶ Alternatively, one may specify a model for η(G ) directly

Example

▶ Estimate the power-law exponent η(G ) = α from degree counts

▶ A power law implies the linear model log P (d) = C − α log d + ϵ

⇒ Could use a model-based estimator such as least squares

▶ Better form the MLE for the model f (d ;α) = α−1
dmin

(
d

dmin

)−α

Hill estimator ⇒ α̂ = 1 +

[
1

Nv

Nv∑
i=1

log

(
di
dmin

)]−1
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Task 2: Assessing significance in network graphs

▶ Consider a graph G obs derived from observations

▶ Q: Is a structural characteristic η(G obs) significant, i.e., unusual?

⇒ Assessing significance requires a frame of reference, or null model

⇒ Random graph models often used in setting up such comparisons

▶ Define collection G, and compare η(G obs) with values {η(G ) : G ∈ G}
⇒ Formally, construct the reference distribution

Pη,G(t) =
|{G ∈ G : η(G ) ≤ t}|

|G|

▶ If η(G obs) found to be sufficiently unlikely under Pη,G(t)

⇒ Evidence against the null H0: G
obs is a uniform draw from G
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Example: Zachary’s karate club

▶ Zachary’s karate club has clustering coefficient cl(G obs) = 0.2257

⇒ Random graph models to assess whether the value is unusual

▶ Construct two ‘comparable’ abstract frames of reference

1) Collection G1 of random graphs with same Nv = 34 and Ne = 78
2) Add the constraint that G2 has the same degree distribution as G obs

▶ |G1| ≈ 8.4× 1096 and |G2| much smaller, but still large

⇒ Enumerating G1 intractable to obtain Pη,G1(t) exactly

▶ Instead use simulations to approximate both distributions

⇒ Draw 10,000 uniform samples G from each G1 and G2

⇒ Calculate η(G ) = cl(G ) for each sample, plot histograms
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Example: Zachary’s karate club (cont.)

▶ Plot histograms to approximate the distributions
1
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Fig. 6.1 Histograms of clustering coefficients clT (G) for random graphs of order Nv = 34, gen-
erated uniformly from those with the same number of edges Ne (top, in red) and the same degree
distribution (bottom, in blue) as in the karate club network.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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Same order and size Same degree distribution 

▶ Unlikely to see a value cl(G obs) = 0.2257 under both graph models

Ex: only 3 out of 10,000 samples from G1 had cl(G ) > 0.2257

▶ Strong evidence to reject G obs obtained as sample from G1 or G2
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Task 3: Detecting network motifs

▶ Related use of random graph models is for detecting network motifs

⇒ Find the simple ‘building blocks’ of a large complex network

▶ Def: Network motifs are small subgraphs occurring far more frequently in
a given network than in comparable random graphs

▶ Ex: there are L3 = 13 different connected 3-vertex subdigraphs

▶ Let Ni be the count in G of the i-th type k-vertex subgraph, i = 1, . . . , Lk

⇒ Each value Ni can be compared to a suitable reference PNi ,G

⇒ Subgraphs for which Ni is extreme are declared as network motifs

Network Science Analytics Models for Network Graphs 18



Example: AIDS blog network

▶ AIDS blog network G obs with Nv = 146 bloggers and Ne = 183 links

⇒ Examined evidence for motifs of size k = 3 and 4 vertices4

Fig. 1.4 AIDS Blog Network

2

Fig. 6.2 Three-vertex motif discovered for the AIDS blog network.

3

Fig. 6.3 Four-vertex motifs discovered for the AIDS blog network.

3-vertex motif 

4-vertex motifs 

▶ Simulated 10,000 digraphs using a switching algorithm

⇒ Fixed in- and out-degree sequences, mutual edges as in G obs

⇒ Constructed approximate reference distributions PNi ,G(t)

▶ Ex: two bloggers with a mutual edge and a common ‘authority’
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Challenges in detecting motifs

▶ Individual motifs frequently overlap with other copies of itself

⇒ May require them to be frequent and mostly disjoint subgraphs

▶ With large graphs come significant computational challenges

⇒ Number of different potential motifs Lk grows fast with k

Ex: Connected subdigraphs L3 = 13, L4 = 199, L5 = 9364

▶ May sample subgraphs H along with the HT estimation framework

N̂i =
∑

H of type i

π−1
H
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Small-world models
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Small-world models
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Models for real-world networks

▶ Arguably the most important innovation in modern graph modeling

 
Traditional random 

 graph models 
 

 
Models mimicking observed 

``real-world’’ properties 
 

Transition 
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A “small” world?

▶ Six degrees of separation popularized by a play [Guare’90]

⇒ Short paths between us and everyone else on the planet

⇒ Term relatively new, the concept has a long history

▶ Traced back to F. Karinthy in the 1920s

⇒ ‘Shrinking’ modern world due to increased human connectedness

⇒ Challenge: find someone whose distance from you is > 5

⇒ Inspired by G. Marconi’s Nobel prize speech in 1909

▶ First mathematical treatment [Kochen-Pool’50]

⇒ Formally modeled the mechanics of social networks

⇒ But left ‘degrees of separation’ question unanswered

▶ Chain of events led to a groundbreaking experiment [Milgram’67]
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Milgram’s experiment

▶ Q1: What is the typical geodesic distance between two people?

⇒ Experiment on the global friendship (social) network

⇒ Cannot measure in full, so need to probe explicitly

▶ S. Milgram’s ingenious small-world experiment in 1967
▶ 296 letters sent to people in Wichita, KS and Omaha, NE
▶ Letters indicated a (unique) contact person in Boston, MA
▶ Asked them to forward the letter to the contact, following rules

▶ Def: friend is someone known on a first-name basis

Rule 1: If contact is a friend then send her the letter; else

Rule 2: Relay to friend most-likely to be a contact’s friend

▶ Q2: How many letters arrived? How long did they take?
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Milgram’s experimental results

▶ 64 of 296 letter reached the destination, average path length ℓ̄ = 6.2

⇒ Inspiring Guare’s ‘6 degrees of separation’

▶ Conclusion: short paths connect arbitrary pairs of people

▶ S. Milgram, “The small-world problem,” Psychology Today, vol. 2,
pp. 60-67, 1967
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Moment to reflect

▶ Milgram demonstrated that short paths are in abundance

▶ Q: Is the small-world theory reasonable? Sure, e.g., assumes:
▶ We have 100 friends, each of them has 100 other friends, . . .
▶ After 5 degrees we get 1010 friends > twice the Earth’s population

Friends 

Friends of friends 

Friends 

Friends of friends 

▶ Not a realistic model of social networks exhibiting:

⇒ Homophily [Lazarzfeld’54]

⇒ Triadic closure [Rapoport’53]

▶ Q: How can networks be highly-structured locally and globally small?
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Structure and randomness as extremes

High clustering and diameter Low clustering and diameter 

Gr Gn,p 

▶ One-dimensional regular lattice Gr on Nv vertices
▶ Each node is connected to its 2r closest neighbors (r to each side)

Structure yields high clustering and high diameter

cl(Gr ) =
3r − 3

4r − 2
and diam(Gr ) =

Nv

2r

▶ Other extreme is a GNv ,p random graph with p = O(N−1
v )

Randomness yields low clustering and low diameter

cl(GNv ,p) = O(N−1
v ) and diam(GNv ,p) = O(logNv )
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The Watts-Strogatz model

▶ Small-world model: blend of structure with little randomness

S1: Start with regular lattice that has desired clustering

S2: Introduce randomness to generate shortcuts in the graph

⇒ Each edge is randomly rewired with (small) probability p

▶ Rewiring interpolates between the regular and random extremes
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Numerical results

▶ Simulate Watts-Strogatz model with Nv = 1, 000 and r = 6
▶ Rewiring probability p varied from 0 (lattice Gr ) to 1 (random GNv ,p)
▶ Normalized cl(G) and diam(G) to maximum values (p = 0)
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Fig. 6.5 Plot of the clustering coefficient cl(G) (solid) and average geodesic distance l̄ (dashed),
as a function of the rewiring probability p for a Watts-Strogatz small-world model. Results are
averages based on 1,000 simulation trials.

cl(G) 

diam(G) 

Small world 

▶ Broad range of p ∈ [10−3, 10−1] yields small diam(G ) and high cl(G )
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Closing remarks

▶ Structural properties of Watts-Strogatz model [Barrat-Weigt’00]

P1: Large Nv analysis of clustering coefficient

cl(G ) ≈ 3r − 3

4r − 2
(1− p3) = cl(Gr )(1− p3)

P2: Degree distribution concentrated around 2r

▶ Small-world graph models of interest across disciplines

▶ Particularly relevant to ‘communication’ in a broad sense

⇒ Spread of news, gossip, rumors

⇒ Spread of natural diseases and epidemics

⇒ Search of content in peer-to-peer networks
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Network-growth models
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Time-evolving networks

▶ Many networks grow or otherwise evolve in time

Ex: Web, scientific citations, Twitter, genome . . .

▶ General approach to model construction mimicking network growth
▶ Specify simple mechanisms for network dynamics
▶ Study emergent structural characteristics as time t → ∞

▶ Q: Do these properties match observed ones in real-world networks?

▶ Two fundamental and popular classes of growth processes

⇒ Preferential attachment models

⇒ Copying models

▶ Tenable mechanisms for popularity and gene duplication, respectively
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Preferential attachment model

▶ Simple model for the creation of e.g., links among Web pages

▶ Vertices are created one at a time, denoted 1, . . . ,Nv

▶ When node j is created, it makes a single arc to i , 1 ≤ i < j

▶ Creation of (j , i) governed by a probabilistic rule:
▶ With probability p, j links to i chosen uniformly at random
▶ With probability 1− p, j links to i with probability ∝ d in

i

▶ The resulting graph is directed, each vertex has dout
v = 1

▶ Preferential attachment model leads to “rich-gets-richer” dynamics

⇒ Arcs formed preferentially to (currently) most popular nodes

⇒ Prob. that i increases its popularity ∝ i ’s current popularity
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Preferential attachment yields power laws

Theorem
The preferential attachment model gives rise to a power-law in-degree
distribution with exponent α = 1 + 1

1−p , i.e.,

P
(
d in = d

)
∝ d−(1+ 1

1−p )

▶ Key: “j links to i with probability ∝ d in
i ” equivalent to copying, i.e.,

“j chooses k uniformly at random, and links to i if (k, i) ∈ E”

▶ Reflect: Copy other’s decision vs. independent decisions in Gn,p

▶ As p → 0 ⇒ Copying more frequent ⇒ Smaller α→ 2
▶ Intuitive: more likely to see extremely popular pages (heavier tail)
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The Barabási-Albert model

▶ Barabási-Albert (BA) model is for undirected graphs

▶ Initial graph GBA(0) of Nv (0) vertices and Ne(0) edges (t = 0)

▶ For t = 1, 2, . . . current graph GBA(t − 1) grows to GBA(t) by:
▶ Adding a new vertex u of degree du(t) = m ≥ 1
▶ The m new edges are incident to m different vertices in GBA(t − 1)
▶ New vertex u is connected to v ∈ V (t − 1) w.p.

P ((u, v) ∈ E (t)) =
dv (t − 1)∑
v ′ dv ′(t − 1)

▶ Vertices connected to u preferentially towards higher degrees

⇒ GBA(t) has Nv (t) = Nv (0) + t and Ne(t) = Ne(0) + tm

▶ A. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509-512, 1999

Network Science Analytics Models for Network Graphs 35



Linearized chord diagram

▶ BA model ambiguous in how to select m vertices ∝ to their degree

⇒ Joint distribution not specified by marginal on each vertex

▶ Linearzied chord diagram (LCD) model removes ambiguities

▶ For m = 1, start with GLCD(0) consisting of a vertex with a self-loop

▶ For t = 1, 2, . . . current graph GLCD(t − 1) grows to GLCD(t) by:
▶ Adding a new vertex vt with an edge to vs ∈ V (t)
▶ Vertex vs , 1 ≤ s ≤ t is chosen w.p.

P (s = j) =

{
dvj (t−1)

2t−1 , if 1 ≤ j ≤ t − 1,
1

2t−1 , if j = t

▶ For m > 1 simply run the above process m times for each t
▶ Collapse all created vertices into a single one, retaining edges

▶ A. Bollobás et al, “The degree sequence of a scale-free random graph
process,” Random Struct. and Alg., vol. 18, pp. 279-290, 2001
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Properties of the LCD model

P1) The LCD model allows for loops and multi-edges, occurring rarely

P2) GLCD(t) has power-law degree distribution with α = 3, as t → ∞

P3) The BA model yields connected graphs if GBA(0) connected

⇒ Not true for the LCD model, but GLCD(t) connected w.h.p.

P4) Small-world behavior

diam(GLCD(t)) =

{
O(logNv (t)), m = 1

O( logNv (t)
log logNv (t)

), m > 1

P5) Unsatisfactory clustering, since small for m > 1

E [cl(GLCD(t))] ≈
m − 1

8

(logNv (t))
2

Nv (t)

⇒ Marginally better than O(N−1
v ) in classical random graphs
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Copying models

▶ Copying is another mechanism of fundamental interest

Ex: gene duplication to re-use information in organism’s evolution

▶ Different from preferential attachment, but still results in power laws

▶ Initialize with a graph GC (0) (t = 0)

▶ For t = 1, 2, . . . current graph GC (t − 1) grows to GC (t) by:
▶ Adding a new vertex u
▶ Choosing vertex v ∈ V (t − 1) with uniform probability 1

Nv (t−1)
▶ Joining vertex u with v ’s neighbors independently w.p. p

▶ Case p = 1 leads to full duplication of edges from an existing node

▶ F. Chung et al, “Duplication models for biological networks,”
Journal of Computational Biology, vol. 10, pp. 677-687, 2003
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Asymptotic degree distribution

▶ Degree distribution tends to a power law w.h.p. [Chung et al’03]

⇒ Exponent α is the plotted solution to the equation

p(α− 1) = 1− pα−16

0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

p

α

Fig. 6.6 Power-law exponent α , as a function of p, for the copying model of Chung, Lu, Dewey,
and Galas [89], as given by the expression in equation (6.19).▶ Full duplication does not lead to power-law behavior; but does if

⇒ Partial duplication performed a fraction q ∈ (0, 1) of times
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Fitting network growth models

▶ Most common practical usage of network growth models is predictive

Goal: compare characteristics of G obs and G (t) from the models

▶ Little attempt to date to fit network growth models to data

⇒ Expected due to simplicity of such models

⇒ Still useful to estimate e.g., the duplication probability p

▶ To fit a model ideally would like to observe a sequence {G obs(τ)}tτ=1

⇒ Unfortunately, such dynamic network data is still fairly elusive

▶ Q: Can we fit a network growth model to a single snap-shot G obs?

▶ A: Yes, if we leverage the Markovianity of the growth process
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Duplication-attachment models

▶ Similar to all network growth models described so far, suppose:

As1: A single vertex is added to G(t − 1) to create G(t); and
As2: The manner in which it is added depends only on G(t − 1)

▶ In other words, we assume {G (t)}∞t=0 is a Markov chain

▶ Let graph δ(G (t), v) be obtained by deleting v and its edges from G (t)

▶ Def: vertex v is removable if G (t) can be obtained from δ(G (t), v) via
copying. If G (t) has no removable vertices, we call it irreducible

▶ The class of duplication-attachment (DA) models satisfies:

(i) The initial graph G(0) is irreducible; and
(ii) Pθ(G(t)

∣∣G(t − 1)) > 0 ⇔ G(t) obtained by copying a vertex in G(t − 1)

▶ C. Wiuf et al, “A likelihood approach to analysis of network data,”
PNAS, vol. 103, pp. 7566-7570, 2006
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Example: reducible graph

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

�(G(t), vA) �(G(t), vB)G(t)

▶ Vertex vA is removable (likewise vc by symmetry)

⇒ Obtain G (t) from δ(G (t, va)) by copying vc

▶ This implies that G (t) is reducible

⇒ Notice though that vB or vD are not removable
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MLE for DA model parameters

▶ Suppose that G obs = G (t) represents the observed network graph

▶ The likelihood for the parameter θ is recursively given by

L (θ;G (t)) =
1

t

∑
v∈RG(t)

Pθ

(
G (t)

∣∣ δ(G (t), v)
)
L (θ; δ(G (t), v))

⇒ RG(t) is the set of all removable nodes in G (t)

▶ The MLE for θ is thus defined as

θ̂ = argmax
θ

L (θ;G (t))

⇒ Computing L (θ;G (t)) non-trivial, even for modest-size graphs

▶ Monte Carlo methods to approximate L (θ;G (t)) [Wiupf et al’06]

⇒ Open issues: vector θ, other growth models, scalability
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Exponential random graph models

Random graph models

Small-world models

Network-growth models

Exponential random graph models

Latent network models

Random dot product graphs
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Statistical network graph models

▶ Good statistical network graph models should be [Robbins-Morris’07]:

⇒ Estimable from and reasonably representative of the data

⇒ Theoretically plausible about the underlying network effects

⇒ Discriminative among competing effects to best explain the data

▶ Network-based versions of canonical statistical models

⇒ Regression models - Exponential random graph models (ERGMs)

⇒ Latent variable models - Latent network models

⇒ Mixture models - Stochastic block models

▶ Focus here on ERGMs, also known as p∗ models

▶ G. Robbins et al., “An introduction to exponential random graph (p∗)
models for social networks,” Social Networks, vol. 29, pp. 173-191, 2007
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Exponential family

▶ Def: discrete random vector Z ∈ Z belongs to an exponential family if

Pθ(Z = z) = exp
{
θ⊤g(z)− ψ(θ)

}
▶ θ ∈ Rp is a vector of parameters and g : Z 7→ Rp is a function
▶ ψ(θ) is a normalization term, ensuring

∑
z∈Z Pθ(z) = 1

▶ Ex: Bernoulli, binomial, Poisson, geometric distributions

▶ For continuous exponential families, the pdf has an analogous form

Ex: Gaussian, Pareto, chi-square distributions

▶ Exponential families share useful algebraic and geometric properties

⇒ Mathematically convenient for inference and simulation
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Exponential random graph model

▶ Let G (V ,E ) be a random undirected graph, with Yij := I {(i , j) ∈ E}
▶ Matrix Y = [Yij ] is the random adjacency matrix, y = [yij ] a realization

▶ An ERGM specifies in exponential family form the distribution of Y, i.e.,

Pθ(Y = y) =

(
1

κ(θ)

)
exp

{∑
H

θHgH(y)

}
, where

(i) each H is a configuration, meaning a set of possible edges in G ;
(ii) gH(y) is the network statistic corresponding to configuration H

gH(y) =
∏
yij∈H

yij = I {H occurs in y}

(iii) θH ̸= 0 only if all edges in H are conditionally dependent; and
(iv) κ(θ) is a normalization constant ensuring

∑
y Pθ(y) = 1
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Discussion

▶ Graph order Nv is fixed and given, only edges are random

⇒ Assumed unweighted, undirected edges. Extensions possible

▶ ERGMs describe random graphs ‘built-on’ localized patterns
▶ These configurations are the structural characteristics of interest
▶ Ex: Are there reciprocity effects? Add mutual arcs as configurations
▶ Ex: Are there transitivity effects? Consider triangles

▶ (In)dependence is conditional on all other variables (edges) in G

⇒ Control configurations relevant (i.e., θH ̸= 0) to the model

▶ Well-specified dependence assumptions imply particular model classes
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A general framework for model construction

▶ In positing an ERGM for a network, one implicitly follows five steps

⇒ Explicit choices connecting hypothesized theory to data analysis

Step 1: Each edge (relational tie) is regarded as a random variable

Step 2: A dependence hypothesis is proposed

Step 3: Dependence hypothesis implies a particular form to the model

Step 4: Simplification of parameters through e.g., homogeneity

Step 5: Estimate and interpret model parameters
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Example: Bernoulli random graphs

▶ Assume edges present independently of all other edges (e.g., in Gn,p)

⇒ Simplest possible (and unrealistic) dependence assumption

▶ For each (i , j), we assume Yij independent of Yuv , for all (u, v) ̸= (i , j)

⇒ θH = 0 for all H involving two or more edges

▶ Edge configurations i.e., gH(y) = yij relevant, and the ERGM becomes

Pθ(Y = y) =

(
1

κ(θ)

)
exp

∑
i,j

θijyij


▶ Specifies that edge (i , j) present independently, with probability

pij =
exp(θij)

1 + exp(θij)
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Constraints on parameters: homogeneity

▶ Too many parameters makes estimation infeasible from single y

⇒ Under independence have N2
v parameters {θij}. Reduction?

▶ Homogeneity across all G , i.e., θij = θ for all (i , j) yields

Pθ(Y = y) =

(
1

κ(θ)

)
exp {θL(y)}

▶ Relevant statistic is the number of edges observed L(y) =
∑

i,j yij

▶ ERGM identical to Gn,p, where p =
exp θ

1 + exp θ

Ex: suppose we know a priori that vertices fall in two sets

▶ Can impose homogeneity on edges within and between sets, i.e.,

Pθ(Y = y) =

(
1

κ(θ)

)
exp {θ1L1(y) + θ12L12(y) + θ2L2(y)}
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Example: Markov random graphs

▶ Markov dependence notion for network graphs [Frank-Strauss’86]
▶ Assumes two ties are dependent if they share a common node
▶ Edge status Yij dependent on any other edge involving i or j

Theorem
Under homogeneity, G is a Markov random graph if and only if

Pθ(Y = y) =

(
1

κ(θ)

)
exp

{
Nv−1∑
k=1

θkSk(y) + θτT (y)

}
, where

Sk(y) is the number of k-stars, and T (y) the number of triangles

1-star=edge 2-star 3-star Triangle 
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Alternative statistics

▶ Including many higher-order terms challenges estimation

⇒ High-order star effects often omitted, e.g., θk = 0, k ≥ 4

⇒ But these models tend to fit real data poorly. Dilemma?

▶ Idea: Impose parametric form θk ∝ (−1)kλ2−k [Snijders et al’06]

▶ Combine Sk(y), k ≥ 2 into a single alternating k-star statistic, i.e.,

AKSλ(y) =
Nv−1∑
k=2

(−1)k
Sk(y)

λk−2
, λ > 1

▶ Can show AKSλ(y) ∝ the geometrically-weighted degree count

GWDγ(y) =
Nv−1∑
d=0

e−γdNd(y), γ > 0

⇒ Nd(y) is the number of vertices with degree d
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Incorporating vertex attributes

▶ Straightforward to incorporate vertex attributes to ERGMs

Ex: gender, seniority in organization, protein function

▶ Consider a realization x of a random vector X ∈ RNv defined on V

▶ Specify an exponential family form for the conditional distribution

Pθ(Y = y
∣∣X = x)

⇒ Will include additional statistics g(·) of y and x

▶ Ex: configurations for Markov, binary vertex attributes
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Estimating ERGM parameters

▶ MLE for the parameter vector θ in an ERGM is

θ̂ = argmax
θ

{
θ⊤g(y)− ψ(θ)

}
, where ψ(θ) := log κ(θ)

▶ Optimality condition yields

g(y) = ∇ψ(θ)|θ=θ̂

▶ Using also that Eθ[g(Y)] = ∇ψ(θ), the MLE solves

Eθ̂[g(Y)] = g(y)

▶ Unfortunately ψ(θ) cannot be computed except for small graphs

⇒ Involves a summation over 2(
Nv
2 ) values of y for each θ

⇒ Numerical methods needed to obtain approximate values of θ̂
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Proof of E [g(Y)] = ∇ψ(θ)

▶ The pmf of Y is Pθ(Y = y) = exp
{
θ⊤g(y)− ψ(θ)

}
, hence

Eθ[g(Y)] =
∑
y

g(y)Pθ(Y = y)

=
∑
y

g(y) exp
{
θ⊤g(y)− ψ(θ)

}

▶ Recall ψ(θ) = log
∑

y exp
{
θ⊤g(y)

}
and use the chain rule

∇ψ(θ) =

∑
y g(y) exp

{
θ⊤g(y)

}
∑

y exp
{
θ⊤g(y)

} =

∑
y g(y) exp

{
θ⊤g(y)

}
expψ(θ)

=
∑
y

g(y) exp
{
θ⊤g(y)− ψ(θ)

}
▶ The red and blue sums are identical ⇒ Eθ[g(Y)] = ∇ψ(θ) follows
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Markov chain Monte Carlo MLE

▶ Idea: for fixed θ0, maximize instead the log-likelihood ratio

r(θ,θ0) = ℓ(θ)− ℓ(θ0) = (θ − θ0)
⊤g(y)− [ψ(θ)− ψ(θ0)]

▶ Key identity: will show that

exp {ψ(θ)− ψ(θ0)} = Eθ0

[
exp

{
(θ − θ0)

⊤g(Y)
}]

▶ Markov chain Monte Carlo MLE algorithm to search over θ

Step 1: draw samples Y1, . . . ,Yn from the ERGM under θ0

Step 2: approximate the above Eθ0 [·] via sample averaging

Step 3: the logarithm of the result approximates ψ(θ)− ψ(θ0)

Step 4: evaluate an ≈ log-likelihood ratio r(θ,θ0)

▶ For large n, the maximum value found approximates the MLE θ̂
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Derivation of key identity

▶ Recall expψ(θ) =
∑

y exp
{
θ⊤g(y)

}
to write

exp {ψ(θ)− ψ(θ0)} =

∑
y exp

{
θ⊤g(y)

}
expψ(θ0)

▶ Multiplying and dividing by exp
{
θ⊤
0 g(y)

}
> 0 yields

exp {ψ(θ)− ψ(θ0)} =
∑
y

exp
{
(θ−θ0)

⊤g(y)
}
×

exp
{
θ⊤
0 g(y)

}
expψ(θ0)

=
∑
y

exp
{
(θ − θ0)

⊤g(y)
}
Pθ0(Y = y)

= Eθ0

[
exp

{
(θ − θ0)

⊤g(Y)
}]

▶ Used exp
{
θ⊤
0 g(y)− ψ(θ0)

}
is the exponential family pmf Pθ0(Y = y)
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Model goodness-of-fit

▶ Best fit chosen from a given class of models . . .

may not be a good fit to the data if model class not rich enough

▶ Assessing goodness-of-fit for ERGMs

Step 1: simulate numerous random graphs from the fitted model

Step 2: compare high-level characteristics with those of G obs

Ex: distributions of degree, centrality, diameter

▶ If significant differences found in G obs , conclude

⇒ Systematic gap between specified model class and data

⇒ Lack of goodness-of-fit

▶ Take home: model specification for ERGMs highly nontrivial

⇒ Goodness-of-fit diagnostics can play key facilitating role
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Lawyer collaboration network

▶ Network G obs of working relationships among lawyers [Lazega’01]
▶ Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

▶ Data includes various node-level attributes:
▶ Seniority (node labels indicate rank ordering)
▶ Office location (triangle, square or pentagon)
▶ Type of practice, i.e., litigation (red) and corporate (cyan)
▶ Gender (three partners are female labeled 27, 29 and 34)

▶ Goal: study cooperation among social actors in an organization
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Modeling lawyer collaborations

▶ Assess network effects S1(y) = Ne and alternating k-triangles statistic

AKTλ(y) = 3T1(y) +
Nv−2∑
k=2

(−1)k+1Tk(y)

λk−1

⇒ Tk(y) counts sets of k individual triangles sharing a common base

▶ Test the following set of exogenous effects:

h(1)(xi , xj) = seniorityi + seniorityj , h(2)(xi , xj) = practicei + practicej

h(3)(xi , xj) = I
{
practicei = practicej

}
, h(4)(xi , xj) = I

{
genderi = genderj

}
h(5)(xi , xj) = I {officei = officej}, h(xi , xj) := [h(1)(xi , xj), . . . , h

(5)(xi , xj)]
T

▶ Resulting ERGM

Pθ,β(Y = y|X = x) =
1

κ(θ,β)
exp

{
θ1S1(y) + θ2AKTλ(y) + βTg(y, x)

}
g(y, x) =

∑
i,j

yijh(xi , xj)
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Model fitting result

▶ Fitting results using the MCMC MLE approach

⇒ Standard errors heuristically obtained via asymptotic theory

▶ Identified factors that may increase odds of cooperation

Ex: same practice, gender and office location double odds

▶ Strong evidence for transitivity effects since θ̂2 ≫ se(θ̂2)

⇒ Something beyond basic homophily explaining such effects
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Assessing goodness-of-fit

▶ Assess goodness-of-fit to G obs

▶ Sample from fitted ERGM

▶ Compared distributions of
▶ Degree
▶ Edge-wise shared partners
▶ Geodesic distance

▶ Plots show good fit overall
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Fig. 6.8 Goodness-of-fit plots comparing original Lazega lawyer network and 100 realizations
from the model in (6.43), with the parameters in Table 6.1. Comparisons are made based on the
distribution of degree, edge-wise shared partners, and geodesic distance over the 100 realizations,
represented by box-plots and curves showing 10-th and 90-th quantiles – both in green. Values for
the Lazega network itself are shown with solid blue lines. In the distribution of geodesic distances
between pairs, the rightmost box-plot is separate and corresponds to the proportion of nonreachable
pairs.
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Roadmap

Random graph models

Small-world models

Network-growth models

Exponential random graph models

Latent network models

Random dot product graphs
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Latent network models

▶ Latent variables widely used to model observed data

Ex: Hidden Markov models, factor analysis

▶ Basic idea permeated to statistical network analysis. Two types:
▶ Latent class models: unobserved class membership drives propensity

towards establishing relational ties
▶ Latent feature models: relational ties more likely to form among

vertices that are ‘closer’ in some latent space

▶ As of now latent network models come in many flavors. Focus here:

⇒ Stochastic block models (SBMs)
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Example: French political blogs

▶ French political blog network from October 2006 [Kolaczyk’17]

⇒ Consists of Nv = 192 blogs linked by Ne = 1431 edges

⇒ Colors indicate blog affiliation to a French political party

▶ Visual evidence of mixing of smaller subgraphs

⇒ Different rates of connections among blogs (driven by party)

⇒ Erdös-Renyi with fixed p cannot capture this structure
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Stochastic block models

▶ SBMs explicitly parameterize the notion of communities C1, . . . , CQ
⇒ Connection rates πqr of vertices between/within groups

SBM. Generative model for an undirected random graph G (V, E)
▶ Fix Q. Each vertex i ∈ V independently belongs to Cq w.p. αq

α = [α1, . . . , αQ ]
⊤, 1⊤α = 1

▶ For vertices i , j ∈ V, with i ∈ Cq and j ∈ Cr ⇒ (i , j) ∈ E w.p. πqr

P. W. Holland et al., “Stochastic block-models: First steps,” Social

Networks, vol. 5, pp. 109-137, 1983
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Model specification and flexibility

▶ In other words, with Ziq = I {i ∈ Cq} and Zi = [Zi1, . . . ,ZiQ ]
⊤

Zi
i.i.d.∼ Multinomial(1,α),

Aij

∣∣Zi = zi ,Zj = zj ∼ Bernoulli(πzi ,zj )

for 1 ≤ i , j ≤ Nv , where Aij = Aji and Aii ≡ 0

▶ Parameters: Q mixing weights αq and Q(Q +1)/2 connection probs. πqr

▶ Mixture of classical random graph models

P (Aij = 1) =
∑

1≤q,r≤Q

αqαrπqr

⇒ More flexible to capture the structure of observed networks

⇒ May face issues of identifiability [Allman et al’11]

▶ Emergence of giant component, size distribution of groups [Söderberg’03]
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Model specification and flexibility (cont.)
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▶ Mixtures of Erdös-Renyi models can be surprisingly flexible
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Plausibility

▶ Good statistical network graph models should be [Robbins-Morris’07]:

⇒ Estimable from and reasonably representative of the data

⇒ Theoretically plausible about the underlying network effects

▶ Q: How appropriate are latent network models? Are they plausible?

▶ Q: Can we approximate well an observed graph G obs with an SBM?

⇒ A variant of the Szemerédi regularity lemma useful here

C. Borgs et al, “Graph limits and parameter testing,” Symposium on Theory

of Computing, 2006
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Cut distance

▶ Discussing approximation notions requires a distance between graphs

▶ Def: For graphs G (V, E) and G ′(V ′, E ′) with |V| = |V ′| = Nv , the
cut distance is given by

d□(G ,G
′) =

1

N2
v

max
S,T ∈{1,...,Nv}

∣∣∣∑
i∈S

∑
j∈T

(Aij − A′
ij)
∣∣∣

⇒ One can show the quantity d□(·, ·) is a formal metric

▶ Defining and studying properties of graph distances is a timely topic

B. Bollobás and O. Riordan, “Sparse graphs: Metrics and random

models,” Random Structures & Algorithms, vol. 39, 2011
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An approximation result

▶ Let P = {V1, . . . ,VQ} partition the vertices V of G into Q classes

▶ Define the complete graph GP with vertex set V and edge weights

wij(GP) =
1

|Vq||Vr |
∑
u∈Vq

∑
v∈Vr

Auv , i ∈ Vq, j ∈ Vr

⇒ Expectation of a Q−class block model approximation to G

⇒ Probability an edge joins i , j is just wij(GP)

Theorem: For every ϵ > 0 and every graph G (V, E), there exists a

partition P of V into Q ≤ 2
2
ϵ2 classes such that d□(G ,GP) ≤ ϵ.

▶ Justifies the claim that an SBM can approximate well an arbitrary graph

⇒ The upper bound on Q can be prohibitively large
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Estimating SBM parameters

▶ SBMs defined up to parameters {αq}Qq=1 and {πqr}1≤q,r≤Q

▶ Conceptually useful to think about two sets of ‘observations’

⇒ Latent class labels: Z = {{Ziq}Qq=1}i∈V , where Ziq = I {i ∈ Cq}
⇒ Relational ties: A = [Aij ], where Aij = I {(i , j) ∈ E}

▶ But we only observe A, recall Z are latent. Q assumed given

⇒ Interest both in parameter estimation and in vertex clustering

Model-based community detection

Suppose G adheres to an SBM with Q classes. Predict class member-
ship labels Z = {{Ziq}Qq=1}i∈V , given observations A = a.
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Maximum likelihood estimation

▶ If we were to observe A = a and Z = z, the log-likelihood would be

ℓ(a, z;θ) =
∑
i

∑
q

ziq logαq +
1

2

∑
i ̸=j

∑
q,r

ziqzjr log b(Aij ;πqr )

⇒ Defined θ = {{αq}, {πqr}} and b(a;π) = πa(1− π)1−a

▶ But we do not. Instead have to work with the observed data likelihood

ℓ(a;θ) = log
(∑

z

exp {ℓ(a, z;θ)}
)

⇒ Unfortunately, evaluation of ℓ(a;θ) is typically intractable

▶ Mixture model viewpoint suggests an E-M procedure [Snijders’97]

⇒ Alternate between estimation of E
[
Ziq

∣∣A = a
]
and θ

⇒ Does not scale beyond Q = 2, P
(
Z
∣∣A = a

)
expensive
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Variational maximum likelihood

▶ Variational approach to optimize a lower bound of ℓ(a;θ), namely

J(Ra;θ) = ℓ(a;θ)− KL(Ra(Z),P
(
Z
∣∣A = a

)
)

▶ KL denotes de Kullback–Leibler divergence
▶ Ra(Z) is a tractable approximation of P

(
Z
∣∣A = a

)
▶ Mean field approximation to the conditional distribution

Ra(Z) =
Nv∏
i=1

h(Zi ; τ i )

▶ h(·; τ i ): multinomial pmf with parameter τ i = [τi1, . . . , τiQ ]
⊤

J. J. Daudin et al, “A mixture model for random graphs,” Stat. Comput.,

vol. 18, 2008
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Alternating maximization algorithm

Proposition: Given θ, the optimal variational parameters {τ̂ i} =
argmax{τ i} J(Ra; {τ i},θ) satisfy the following fixed-point relation

τ̂iq ∝ αq

∏
j ̸=i

∏
r

b(Aij ;πqr )
τ̂jr

Given {τ i}, the values of θ that maximize J(Ra; {τ i},θ) are

α̂q =
1

Nv

∑
i

τiq, π̂qr =
∑
i ̸=j

τiqτjrAij

/∑
i ̸=j

τiqτjr

▶ Algorithm alternates between updates of θ and {τ i} as follows

θ[k + 1] = argmax
θ

J(Ra; {τ i [k]},θ)

{τ i [k + 1]} = argmax
{τ i}

J(Ra; {τ i},θ[k + 1])

▶ The sequence of J values is non-decreasing [Daudin et al’08]
▶ Consistency results available as Nv → ∞, Q fixed [Celisse et al’12]

Network Science Analytics Models for Network Graphs 76



Choice of the number of classes

▶ Number of classes Q often unknown and should be estimated

⇒ Use principles of Bayesian model selection

⇒ Prior g(θ
∣∣mQ) on θ given the SBM mQ has Q classess

▶ Integrated Classification Likelihood (ICL) criterion yields

ICL(mQ) = max
θ

logL(a, ẑ(θ)
∣∣θ,mQ)

− Q(Q + 1)

4
log

Nv (Nv − 1)

2
− Q − 1

2
logNv

▶ Asymptotic approximation of the complete-data integrated likelihood

L(a, z
∣∣mQ) =

∫
L(a, z

∣∣θ,mQ)g(θ
∣∣mQ)dθ
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Assessing goodness-of-fit

▶ Goodness-of-fit diagnostics ⇒ mostly computational, visualization based

▶ Ex: French political blog network from October 2006 [Kolaczyk’17]

⇒ We fit an SBM using variational MLE (mixer in R)

▶ Optimal value Q̂ = 12, but Q ∈ [8, 12] reasonable (9 political parties)

⇒ Permuted adjacency shows group structure (room for merging few)

▶ Relatively good fit of the degree distribution
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Extensions of SBMs

Degree-corrected SBMs

▶ Communities with broad degree distributions

B. Karrer B and M. E. Newman, “Stochastic blockmodels and community

structure in networks,” Physical Review E., vol. 83, 2011

Mixed-membership SBMs

▶ Nodes may belong only partially to more than one class

E. M. Airoldi, “Mixed membership stochastic blockmodels,” J. Machine

Learning Research, vol. 9, 2008

Hierarchical SBMs

▶ Hierarchical clustering meets SBMs

A. Clauset et al, “Hierarchical structure and the prediction of missing links

in networks,” Nature, vol. 453, 2008
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Roadmap

Random graph models

Small-world models

Network-growth models

Exponential random graph models

Latent network models

Random dot product graphs
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Random dot product graphs

▶ Consider a latent space Xd ⊂ Rd such that for all

x, y ∈ Xd ⇒ x⊤y ∈ [0, 1]

⇒ Inner-product distribution F : Xd 7→ [0, 1]

▶ Random dot product graphs (RDPGs) are defined as follows:

x1, . . . , xNv

i.i.d.∼ F ,

Aij

∣∣ xi , xj ∼ Bernoulli(x⊤i xj)

for 1 ≤ i , j ≤ Nv , where Aij = Aji and Aii ≡ 0

▶ A particularly tractable latent position random graph model

⇒ Vertex positions X = [x1, . . . , xNv ]
⊤ ∈ RNv×d

S. J. Young and E. R. Scheinerman, “Random dot product graph models

for social networks,” WAW, 2007
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Connections to other models

▶ RDPGs ecompass several other classic models for network graphs

Ex: Recover Erdös-Renyi GNv ,p graphs with d = 1 and Xd = {√p}

Ex: Recover SBM random graphs by constructing F with pmf

P (X = xq) = αq, q = 1, . . . ,Q

after selecting d and x1, . . . , xQ such that πqr = x⊤q xr

▶ Approximation results for SBMs justify the expressiveness of RDPGs

▶ RDPGs are special cases of latent position models [Hoff et al’02]

Aij

∣∣ xi , xj ∼ Bernoulli(κ(xi , xj))

⇒ Approximate these accurately for large enough d [Tang et al’13]
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Estimation of latent positions

▶ Q: Given G from an RDPG, find the ‘best’ X = [x1, . . . , xNv ]
⊤?

▶ MLE is well motivated but it is intractable for large Nv

X̂ML = argmax
X

∏
i<j

(x⊤i xj)
Aij (1− x⊤i xj)

1−Aij

▶ Instead, let Pij = P ((i , j) ∈ E) and define P = [Pij ] ∈ [0, 1]Nv×Nv

⇒ RDPG model specifies that P = XX⊤

⇒ Key: Observed A is a noisy realization of P (E [A] = P)

▶ Suggests a LS regression approach to find X s.t. XX⊤ ≈ A

X̂LS = argmin
X

∥XX⊤ − A∥2F

A. Athreya et al, “Statistical inference on random dot product graphs: A

survey,” J. Machine Learning Research, 2018
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Adjacency spectral embedding

▶ Since A is real and symmetric, can decompose it as A = UΛU⊤

▶ U = [u1, . . . , uNv ] is the orthogonal matrix of eigenvectors
▶ Λ = diag(λ1, . . . , λNv ), with eigvenvalues λ1 ≥ . . . ≥ λNv

▶ Define Λ̂ = diag(λ+1 , . . . , λ
+
d ) and Û = [u1, . . . ,ud ] (λ+ := max(0, λ))

▶ Best rank-d , positive semi-definite (PSD) approx. of A is P̂ := ÛΛ̂Û⊤

⇒ Adjacency spectral embedding (ASE) is X̂ASE = ÛΛ̂
1/2

since

A ≈ ÛΛ̂Û⊤ = ÛΛ̂
1/2

Λ̂
1/2

Û⊤ = X̂ASE X̂
⊤
ASE

▶ Q: Is the solution unique? Nope, inner-products are rotation invariant

P = XW(XW)⊤ = XX⊤, WW⊤ = Id

⇒ RDPG embedding problem is identifiable modulo rotations
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Embedding an Erdös-Renyi graph

▶ Ex: Erdös-Renyi graph G1000,0.3, realization of A (left)

▶ For d = 1 we compute the ASE x̂ASE and plot x̂ASE x̂⊤ASE (center)

⇒ Approximates well the constant matrix P = 0.3× 11⊤

⇒ Supported by histogram of entries in x̂ASE (right,
√
p = 0.547)

▶ Consistency and limiting distribution results for ASEs available
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Embedding an SBM graph

▶ Ex: SBM with Nv = 1500, Q = 3 and mixing parameters

α =

 1/3
1/3
1/3

 , Π =

 0.5 0.1 0.05
0.1 0.3 0.05
0.05 0.05 0.9



▶ Sample adjacency A (left), X̂ASE X̂⊤
ASE (center), rows of X̂ASE (right)

▶ Use embeddings to bring to bear geometric methods of analysis
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Interpretability of the embeddings

▶ Ex: Zachary’s karate club graph with Nv = 34, Ne = 78 (left)
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▶ Node embeddings (rows of X̂ASE ) for d = 2 (right)
▶ Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

▶ Interpretability of embeddings a valuable asset for RDPGs

⇒ Vector magnitudes indicate how well connected nodes are

⇒ Vector angles indicate positions in latent space
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Mathematicians collaboration graph

▶ Ex: Mathematics collaboration network centered at Paul Erdös

▶ Most mathematicians have an Erdös number of at most 4 or 5

⇒ Drawing created by R. Graham in 1979
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Mathematicians collaboration graph

▶ Coauthorship graph G , Nv = 4301 nodes with Erdös number ≤ 2

⇒ No discernible structure from the adjacency matrix A (left)

▶ Community structure revealed after row-colum permutation (right)

(i) Obtained the ASE X̂ASE for the mathematicians
(ii) Performed angular k-means on X̂ASE ’s rows [Scheinerman-Tucker’10]
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International relations

▶ Ex: Dynamic network Gt of international relations among nations

⇒ Nations (i , j) ∈ Et if they have an alliance treaty during year t

▶ Track the angle between UK and France’s ASE from 1890-1995
▶ Orthogonal during the late 19th century
▶ Came closer during the wars, retreat during Nazi invasion in WWII
▶ Strong alignment starts in the 1970s in the run up to the EU
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Closing remarks and extensions

▶ Neglected the constraint [X̂ASE X̂⊤
ASE ]ii = 0. Fix via iterative algorithm

E. R. Scheinerman and K. Tucker, “Modeling graphs using dot product

representations,” Comput. Stat., vol. 25, pp. 1-16, 2010

▶ Assumed A to be PSD. Extension known as generalized RDPG

P. Rubin-Delanchy et al, “A statistical interpretation of spectral embedding:

The generalised random dot product graph,” arXiv:1709.05506, 2017

▶ RDPG variants to model weighted and directed graphs possible

F. Larroca et al, “Change point detection in weighted and directed random

dot product graphs,” EUSIPCO, 2021

▶ Host of applications in testing, clustering, change-point detection, . . .

Network Science Analytics Models for Network Graphs 91



Glossary

▶ Network graph model

▶ Random graph models

▶ Configuration model

▶ Matching algorithm

▶ Switching algorithm

▶ Model-based estimation

▶ Assessing significance

▶ Reference distribution

▶ Network motif

▶ Small-world network

▶ Decentralized search

▶ Watts-Strogatz model

▶ Time-evolving network

▶ Network-growth models

▶ Preferential attachment

▶ Barabási-Albert model

▶ Copying models

▶ Exponential family

▶ Exponential random graph models

▶ Configurations

▶ Network statistic

▶ Homogeneity

▶ Markov random graphs
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