

Network Topology Inference

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

March 28, 2023

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

- So far dealt with modeling and inference of observed network graphs ⇒ Q: If a portion of G is unobserved, can we infer it from data?
- ▶ Discussed construction of representations G(V, E) for network mapping
 - \Rightarrow Largely informal methodology, lacking an element of validation
- ► Formulate instead as statistical inference task, i.e. given
 - Measurements x_i of attributes at some or all vertices $i \in V$
 - ▶ Indicators y_{ij} of edge status for some vertex pairs $\{i, j\} \in V^{(2)}$
 - A collection G of candidate graphs G

Goal: infer the topology of the network graph G(V, E)

- Three canonical network topology inference problems
 - (i) Link prediction
 - (ii) Association network inference
 - (iii) Tomographic network topology inference

- Suppose we observe vertex attributes $\mathbf{x} = [x_1, \dots, x_{N_v}]^\top$; and
- Edge status is only observed for some subset of pairs $V_{obs}^{(2)} \subset V^{(2)}$
- Goal: predict edge status for all other pairs, i.e., $V_{miss}^{(2)} = V^{(2)} \setminus V_{obs}^{(2)}$

Association network inference

- Suppose we only observe vertex attributes $\mathbf{x} = [x_1, \dots, x_{N_v}]^\top$; and
- Assume (i, j) defined by nontrivial 'level of association' among x_i, x_j
- Goal: predict edge status for all vertex pairs $V^{(2)}$

Tomographic network topology inference

Suppose we only observe x_i for vertices $i \subset V$ in the 'perimeter' of G

Goal: predict edge and vertex status in the 'interior' of *G*

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

▶ Let G(V, E) be a random graph, with adjacency matrix $\mathbf{Y} \in \{0, 1\}^{N_v \times N_v}$ $\Rightarrow \mathbf{Y}^{obs}$ and \mathbf{Y}^{miss} denote entries in $V_{obs}^{(2)}$ and $V_{miss}^{(2)}$

Link prediction

Predict entries in \mathbf{Y}^{miss} , given observations $\mathbf{Y}^{obs} = \mathbf{y}^{obs}$ and possibly various vertex attributes $\mathbf{X} = \mathbf{x} \in \mathbb{R}^{N_v}$

Edge status information may be missing due to:

- \Rightarrow Difficulty in observation, issues of sampling
- \Rightarrow Edge is not yet present, wish to predict future status
- ► Given a model for **X** and (**Y**^{obs}, **Y**^{miss}), jointly predict **Y**^{miss} based on

$$\mathsf{P}\left(\mathbf{Y}^{\textit{miss}} \,\middle|\, \mathbf{Y}^{\textit{obs}} = \mathbf{y}^{\textit{obs}}, \mathbf{X} = \mathbf{x}\right)$$

 \Rightarrow More manageable to predict the variables Y_{ii}^{miss} individually

- Idea: compute score s(i, j) for missing 'potential edges' {i, j} ∈ V⁽²⁾_{miss}
 ⇒ Predicted edges returned by retaining the top n* scores
- ► Scores designed to assess certain local structural properties of G^{obs} ⇒ Distance-based, inspired by the small-world principle

$$s(i,j) = -\operatorname{dist}_{G^{obs}}(i,j)$$

 \Rightarrow Neighborhood-based, e.g., the number of common neighbors

$$s(i,j) = |\mathcal{N}_i^{obs} \cap \mathcal{N}_j^{obs}| \text{ or } s(i,j) = \frac{|\mathcal{N}_i^{obs} \cap \mathcal{N}_j^{obs}|}{|\mathcal{N}_i^{obs} \cup \mathcal{N}_j^{obs}|}$$

⇒ Favor loosely-connected common neighbors [Adamic-Adar'03]

$$s(i,j) = \sum_{k \in \mathcal{N}_i^{obs} \cap \mathcal{N}_j^{obs}} \frac{1}{\log |\mathcal{N}_k^{obs}|}$$

Tests on co-authorship networks

Results from a link prediction study in [Liben Nowell-Kleinberg'03]

► Idea: use training data y^{obs} and x to build a binary classifier ⇒ Classifier is in turn used to predict the entries in Y^{miss}

Logistic regression classifiers most popular, based on the model

$$\log \left[\frac{\mathsf{P}_{\beta}(Y_{ij} = 1 \mid \mathbf{Z}_{ij} = \mathbf{z})}{\mathsf{P}_{\beta}(Y_{ij} = 0 \mid \mathbf{Z}_{ij} = \mathbf{z})} \right] = \boldsymbol{\beta}^{\top} \mathbf{z}, \text{ where }$$

(i) $\beta \in \mathbb{R}^{K}$ is a vector of regression coefficients; and (ii) \mathbf{Z}_{ij} is a vector of explanatory variables indexed by $\{i, j\}$

$$\mathsf{Z}_{ij} = [g_1(\mathsf{Y}^{obs}_{(-ij)}, \mathsf{X}), \dots, g_{\mathcal{K}}(\mathsf{Y}^{obs}_{(-ij)}, \mathsf{X})]^{ op}$$

Functions g_k(·) encode useful predictive information in y^{obs}_(-ij) and x Ex: vertex attributes, score functions, network statistics in ERGMs

- **Frain:** Obtain MLE $\hat{\beta}$ via iteratively-reweighted LS
- **Test**: Potential edges (i, j) declared present based on probabilities

$$\mathsf{P}_{\hat{\beta}}(Y_{ij} = 1 \,\big|\, \mathbf{Z}_{ij} = \mathbf{z}) = \frac{\exp\left(\hat{\boldsymbol{\beta}}^{\top} \mathbf{z}\right)}{1 + \exp\left(\hat{\boldsymbol{\beta}}^{\top} \mathbf{z}\right)}$$

- ► Logistic regression assumes Y_{ij} conditionally independent given z ⇒ Seldom the case with relational network data
- Underlying mechanism of data missingness is important
 Classification for link prediction reminiscent of cross-validation
 Assumption that data are missing at random is fundamental

ROCHESTER

- ► In addition to a lineal predictor $\beta^{\top} z$, latent models describe Y_{ij}
 - \Rightarrow As a function of vertex-specific latent variables $u_{\it i}$ and $u_{\it j}$

Latent models are flexible to capture underlying social mechanisms
 Ex: homophily (transitivity) and stochastic equivalence (groups)

- ▶ Latent distance model: node *i* has unobserved position $\mathbf{U}_i \in \mathbb{R}^d$
 - Positions U_i in latent space assumed i.i.d. e.g., Gaussian distributed
 - Model cond. probability of edge Y_{ij} as function of $\beta^{\top} \mathbf{z} \|\mathbf{u}_i \mathbf{u}_j\|_2$
 - Homophily: Nearby nodes in latent space more likely to link

▶ Latent class model: node *i* belongs to unobserved class $U_i \in \{1, ..., k\}$

- Classes U_i assumed i.i.d. e.g., multinomial distributed
- Model cond. probability of edge Y_{ij} as function of $\beta^{\top} \mathbf{z} \theta_{u_i, u_i}$
- Stochastic equivalence: Nodes in same class equally likely to link

P. D. Hoff, "Modeling homophily and stochastic equivalence in symmetric relational data," *NeurIPS*, 2008

▶ Let $\mathbf{M} \in \mathbb{R}^{N_v \times N_v}$ be an unknown, random, and symmetric matrix

 $\mathbf{M} = \mathbf{U}^\top \mathbf{\Lambda} \mathbf{U} + \mathbf{E}, \text{ where }$

- (i) $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is a random orthonormal matrix of latent variables;
- (ii) Λ is a random diagonal matrix; and
- (iii) **E** is a symmetric matrix of i.i.d. noise entries ϵ_{ij}
- ► Latent eigenmodel subsumes the class and distance variants [Hoff'08] ⇒ Notice that $M_{ij} = \mathbf{u}_i^\top \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{ij}$

The logistic regression model with latent variables is

$$\log \left[\frac{\mathsf{P}_{\beta}(Y_{ij} = 1 \mid \mathsf{Z}_{ij} = \mathsf{z}, M_{ij} = m)}{\mathsf{P}_{\beta}(Y_{ij} = 0 \mid \mathsf{Z}_{ij} = \mathsf{z}, M_{ij} = m)} \right] = \boldsymbol{\beta}^{\top} \mathsf{z} + m$$

• Y_{ij} still assumed conditionally independent given Z_{ij} and M_{ij} \Rightarrow But they are conditionally dependent given only Z_{ii}

- Specify distributions for U, Λ, E to make statistical link predictions
 Bayesian inference natural ⇒ Specify a prior for β as well
 - Dayesian interefice natural \Rightarrow Specify a prior for β as well
- \blacktriangleright To predict those entries in $\mathbf{Y}^{miss},$ threshold the posterior mean

$$\mathbb{E}\left[\frac{\exp\left(\boldsymbol{\beta}^{\top} \mathbf{Z}_{ij} + M_{ij}\right)}{1 + \exp\left(\boldsymbol{\beta}^{\top} \mathbf{Z}_{ij} + M_{ij}\right)} \, \big| \, \mathbf{Y}^{obs} = \mathbf{y}^{obs}, \mathbf{Z}_{ij} = \mathbf{z}\right]$$

- Use MCMC algorithms to approximate the posterior distribution
 Gaussian distributions attractive for their conjugacy properties
- ► Higher complexity than MLE for standard logistic regression
 - \Rightarrow Need to generate draws for N_v^2 unobserved variables $\{U_{ij}\}$
 - \Rightarrow Major cost reduction with reduced rank(\mathbf{U}) = $k \ll N_{v}$ models

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

Lawyer collaboration network

- ▶ Network *G*^{obs} of working relationships among lawyers [Lazega'01]
 - ▶ Nodes are $N_v = 36$ partners, edges indicate partners worked together

- Data includes various node-level attributes:
 - Seniority (node labels indicate rank ordering)
 - Office location (triangle, square or pentagon)
 - Type of practice, i.e., litigation (red) and corporate (cyan)
 - Gender (three partners are female labeled 27, 29 and 34)

► Goal: predict cooperation among social actors in an organization

Define the following set of explanatory variables:

$$Z_{ij}^{(1)} = \text{seniority}_i + \text{seniority}_j, \quad Z_{ij}^{(2)} = \text{practice}_i + \text{practice}_j$$

$$Z_{ij}^{(3)} = \mathbb{I} \{ \text{practice}_i = \text{practice}_j \}, \quad Z_{ij}^{(4)} = \mathbb{I} \{ \text{gender}_i = \text{gender}_j \}$$

$$Z_{ij}^{(5)} = \mathbb{I} \{ \text{office}_i = \text{office}_j \}, \quad Z_{ij}^{(6)} = |\mathcal{N}_i^{obs} \cap \mathcal{N}_j^{obs}|$$
Method 1: standard logistic regression with $Z_{ij}^{(1)}, \dots, Z_{ij}^{(5)}$
Method 2: standard logistic regression with $Z_{ij}^{(1)}, \dots, Z_{ij}^{(6)}$
Method 3 informal scoring method with $s(i,j) = Z_{ij}^{(6)}$
Method 4: logistic regression with $Z_{ij}^{(1)}, \dots, Z_{ij}^{(5)}$ and latent eigenmodel
Five-fold cross-validation over the set of $36(36 - 1)/2 = 630$ vertex pairs
 \Rightarrow For each fold, $630/5 = 126$ pairs in \mathbf{Y}^{miss} and the rest in \mathbf{Y}^{obs}

Receiver operating characteristic curves show predictive performance

▶ Method 1 performs worst ⇒ Agnostic to network structure

Informal Method 3 yields slightly worst performance than 2 and 4

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

• Given a collection of N_v elements represented as vertices $v \in V$

- ▶ Let $\mathbf{x}_i \in \mathbb{R}^m$ be a vector of observed vertex attributes, for all $i \in V$
- ▶ User-defined similarity $sim(i,j) = f(\mathbf{x}_i, \mathbf{x}_j)$ specifies edges $(i,j) \in E$
 - Q: What if sim values themselves (i.e., edge status) not observable?

Association network inference

Infer non-trivial sim values from vertex observations $\{\mathbf{x}_1, \ldots, \mathbf{x}_{N_v}\}$

► Various choices to be made, hence multiple possible approaches

- Choice of sim: correlation, partial correlation, mutual information
- Choice of inference: hypothesis testing, regression, ad hoc
- Choice of parameters: testing thresholds, tuning regularization

- ▶ Let $X_i \in \mathbb{R}$ be an RV of interest corresponding to $i \in V$
- Pearson product-moment correlation as sim between vertex pairs

$$extsim(i,j) :=
ho_{ij} = rac{ extsf{cov}[X_i,X_j]}{\sqrt{ extsf{var}[X_i] extsf{var}[X_j]}}, \ i,j \in V$$

Def: the correlation network graph G(V, E) has edge set

$$\boldsymbol{E} = \left\{ (i,j) \in \boldsymbol{V}^{(2)} : \rho_{ij} \neq \boldsymbol{0} \right\}$$

► Association network inference ⇔ Inference of non-zero correlations

▶ Inference of *E* typically approached as a testing problem

$$H_0: \rho_{ij} = 0$$
 versus $H_1: \rho_{ij} \neq 0$

► Let x_{i1},..., x_{in} be observations of zero-mean X_i, for each i ∈ V ⇒ Common choice of test statistic are empirical correlations

$$\hat{\rho}_{ij} = rac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}}, \text{ where } \hat{\boldsymbol{\Sigma}} = [\hat{\sigma}_{ij}] = rac{\boldsymbol{X}^{\top}\boldsymbol{X}}{n-1}$$

Convenient alternative statistic is Fisher's transformation

$$z_{ij} = rac{1}{2} \log \left(rac{1 + \hat{
ho}_{ij}}{1 - \hat{
ho}_{ij}}
ight), \;\; i,j \in V$$

 \Rightarrow Under H_0 , $z_{ij} \sim \mathcal{N}(0, \frac{1}{n-3}) \Rightarrow$ Simple to assess significance

▶ Reject H_0 at significance level α , i.e., assign edge (i,j) if $|z_{ij}| > \frac{z_{\alpha/2}}{\sqrt{n-3}}$

- Interesting testing challenges emerge with large-scale networks

 ⇒ Suppose we test all (^{N_v}₂) vertex pairs, each at level α

 Even if the true G is the empty graph, i.e., E = Ø

 ⇒ We expect to declare (^{N_v}₂)α spurious edges just by chance!
 ⇒ For a large graph, this number can be considerable

 Ex: For G of order N_v = 100 and individual tests at level α = 0.05

 ⇒ Expected number of spurious edges is 4950 × 0.05 ≈ 250
 - ▶ This predicament known as the multiple testing problem in statistics

- Idea: Control errors at the level of collection of tests, not individually
- False discovery rate (FDR) control, i.e., for given level γ ensure

$$\mathsf{FDR} = \mathbb{E}\left[rac{R_{\mathit{false}}}{R} \mid R > 0
ight] \mathsf{P}\left(R > 0
ight) \leq \gamma$$

- R is the total number of edges detected; and
- *R_{false}* is the total number of false edges detected

Method of FDR control at level γ [Benjamini-Hochberg'94]

Step 1: Sort *p*-values for all $N = \binom{N_v}{2}$ tests, yields $p_{(1)} \leq \ldots \leq p_{(N)}$ Step 2: Reject H_0 , i.e., declare all those edges for which

$$p_{(k)} \leq \left(\frac{k}{N}\right)\gamma$$

- Use correlations carefully: 'correlation does not imply causation'
 - ▶ Vertices $i, j \in V$ may have high ρ_{ij} because they influence each other
- ► But ρ_{ij} could be high if both i, j influenced by a third vertex k ∈ V ⇒ Correlation networks may declare edges due to latent variables
- Partial correlations better capture direct influence among vertices
 For *i*, *j* ∈ *V* consider latent vertices S_m = {k₁,..., k_m} ⊂ V \ {*i*, *j*}
- ▶ Partial correlation of X_i and X_j , adjusting for $\mathbf{X}_{S_m} = [X_{k_1}, \dots, X_{k_m}]^\top$ is

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[X_i, X_j \mid \mathbf{X}_{S_m}]}{\sqrt{\operatorname{var}\left[X_i \mid \mathbf{X}_{S_m}\right] \operatorname{var}\left[X_j \mid \mathbf{X}_{S_m}\right]}}, \ i, j \in V$$

Q: How do we obtain these partial correlations?

• Given $\mathbf{X}_{S_m} = [X_{k_1}, \dots, X_{k_m}]^\top$, the partial correlation of X_i and X_j is

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[X_i, X_j \mid \mathbf{X}_{S_m}]}{\sqrt{\operatorname{var}\left[X_i \mid \mathbf{X}_{S_m}\right] \operatorname{var}\left[X_j \mid \mathbf{X}_{S_m}\right]}} = \frac{\sigma_{ij|S_m}}{\sqrt{\sigma_{ii|S_m}\sigma_{jj|S_m}}}$$

▶ Here $\sigma_{ii|S_m}, \sigma_{jj|S_m}$ and $\sigma_{ij|S_m}$ are diagonal and off-diagonal elements of

$$\boldsymbol{\Sigma}_{11|2} := \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \in \mathbb{R}^{2 \times 2}$$

• Matrices Σ_{11} , Σ_{22} and $\Sigma_{21} = \Sigma_{12}^{\top}$ are blocks of the covariance matrix

$$\operatorname{cov} \left[\begin{array}{c} \mathbf{W}_1 \\ \mathbf{W}_2 \end{array} \right] = \left(\begin{array}{cc} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array} \right), \text{ where } \mathbf{W}_1 = [X_i, X_j]^\top \text{ and } \mathbf{W}_2 = \mathbf{X}_{S_m}$$

Various ways to use partial correlations to define edges in G
 Ex: X_i, X_j correlated regardless of what m vertices we condition upon

$$E = \left\{ (i,j) \in V^{(2)} :
ho_{ij|\mathcal{S}_m}
eq 0, ext{ for all } \mathcal{S}_m \in V^{(m)}_{\setminus \{i,j\}}
ight\}$$

• Inference of potential edge (i, j) as a testing problem

$$\begin{aligned} H_0: \rho_{ij|S_m} &= 0 \text{ for some } S_m \in V^{(m)}_{\backslash \{i,j\}} \\ H_1: \rho_{ij|S_m} &\neq 0 \text{ for all } S_m \in V^{(m)}_{\backslash \{i,j\}} \end{aligned}$$

- Again, given measurements x_{i1}, \ldots, x_{in} for each $i \in V$ need to:
 - Select a test statistic
 - Construct an appropriate null distribution
 - Adjust for multiple testing

• Often consider a collection (over S_m) of smaller testing sub-problems

$$H_0':
ho_{ij|S_m} = 0$$
 versus $H_1':
ho_{ij|S_m} \neq 0$

Statistic: empirical partial correlations $\hat{\rho}_{ij|S_m}$, or Fisher's z-scores

$$z_{ij|S_m} = rac{1}{2} \log \left(rac{1 + \hat{
ho}_{ij|S_m}}{1 - \hat{
ho}_{ij|S_m}}
ight)$$

 \Rightarrow From asymptotic theory, under H_0' then $z_{ij|S_m} \sim \mathcal{N}(0, \frac{1}{n-m-3})$

Multiple tests for each {i, j} ∈ V⁽²⁾. How do we combine *p*-values?
 If p_{ij|Sm} is the *p*-value for testing H₀' versus H₁' for {i, j}, use

$$p_{ij}^{\max} = \max\left\{p_{ij|S_m}: S_m \in V^{(m)}_{\setminus\{i,j\}}
ight\}$$

FDR control possible from collection $\{p_{ij}^{\max}\}_{i,j}$ [Wille-Bühlmann'06]

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

- ► Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - \Rightarrow Creation of biochemical products, i.e., RNA or proteins
- Regulation of a gene refers to the control of its expression Ex: regulation exerted during transcription, copy of DNA to RNA
 - \Rightarrow Controlling genes are transcription factors (TFs)
 - \Rightarrow Controlled genes are termed targets
 - \Rightarrow Regulation type: activation or repression
- ► Regulatory interactions among genes basic to the workings of organisms ⇒ Inference of interactions → Finding TF/target gene pairs
- Such relational information summarized in gene-regulatory networks

- Relative levels of gene expression in the cell can be measured
 - \Rightarrow Genome-wide scale data obtained using microarray technologies

Experiments

- ▶ For each gene $i \in V$, measure an expression profile $\mathbf{x}_i \in \mathbb{R}^n$
 - Vector x_i has gene expression levels under n different conditions
 - Ex: change in pH, heat level, oxygen concentrations

Microarray data commonly used to infer gene regulatory interactions

► Use microarray data and correlation methods to infer TF/target pairs

Experiments

- **Dataset:** relative log expression RNA levels, for genes in E. coli
 - ▶ 4,345 genes measured under 445 different experimental conditions
- ► Ground truth: 153 TFs, and TF/target pairs from database RegulonDB

- ► Three correlation based methods to infer TF/target gene pairs
 - \Rightarrow Interactions declared if suitable *p*-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene **Method 2:** Partial correlation, controlling for shared effects of one (m = 1) other TF, across all 152 other TFs **Method 3:** Full partial correlation, simultaneously controlling for shared effects of all (m = 152) other TFs

- ▶ In all cases applied Fisher transformation to obtain *z*-scores
 ⇒ Asymptotic Gaussian distributions for *p*-values, with *n* = 445
- Compared inferred graphs to ground-truth network from RegulonDB

Performance comparisons

- ▶ ROC and Precision/Recall curves for Methods 1, 2, and 3
 - \Rightarrow Precision: fraction of predicted links that are true
 - \Rightarrow Recall: fraction of true links that are correctly predicted

Method 1 performs worst, but none is stellar

 \Rightarrow Correlation not strong indicator of regulation in this data

All methods share a region of high precision, but a very small recall
 ⇒ Limitations in number/diversity of profiles [Faith et al'07]

In biology, often interest is in predicting new interactions

▶ 11 interactions found for TF *Irp*, 10 experimentally confirmed (dotted)

 \Rightarrow 5 interacting target genes were new (magenta, red, cyan)

 \Rightarrow 4 present in RegulonDB (magenta, cyan), but not as *lrp* targets

► Suppose variables ${X_i}_{i \in V}$ have multivariate Gaussian distribution

 \Rightarrow Consider $\rho_{ij|V \setminus \{i,j\}}$ conditioning on all other vertices $(m = N_v - 2)$

Theorem

Under the Gaussian assumption, vertices $i, j \in V$ have partial correlation

$$\rho_{ij|V\setminus\{i,j\}}=0$$

if and only if X_i and X_j are conditionally independent given $\{X_k\}_{k \in V \setminus \{i,j\}}$

Def: the conditional independence graph G(V, E) has edge set

$$\boldsymbol{E} = \left\{ (i,j) \in \boldsymbol{V}^{(2)} : \rho_{ij|\boldsymbol{V} \setminus \{i,j\}} \neq \boldsymbol{0} \right\}$$

 \Rightarrow A special and popular case of partial correlation networks

Also known as Gaussian Markov random field (GMRF)

- Let **Σ** be the covariance matrix of $\mathbf{X} = [X_1, \dots, X_{N_v}]^T$ Def: the concentration matrix is $\mathbf{\Omega} = \mathbf{\Sigma}^{-1}$ with entries ω_{ii}
- ▶ Key result: For GGMs, the partial correlations can be expressed as

$$\rho_{ij|V\setminus\{i,j\}} = -\frac{\omega_{ij}}{\sqrt{\omega_{ii}\omega_{jj}}}$$

 \Rightarrow Non-zero entries in $\mathbf{\Omega}$ \Leftrightarrow Edges in the graph G

Inferring G from data in this context known as covariance selection
 ⇒ Classical methods are 'network-agnostic,' and effectively test

$$H_0: \rho_{ij|V\setminus\{i,j\}} = 0$$
 versus $H_1: \rho_{ij|V\setminus\{i,j\}} \neq 0$

 \Rightarrow Often not scalable, and $n \ll N_v$ so estimation of $\hat{\Sigma}$ challenging

A. Dempster, "Covariance selection," Biometrics, vol. 28, 1974

▶ Sparsity-regularized maximum-likelihood estimator of Ω [Yuan-Lin'07]

$$\hat{\boldsymbol{\Omega}} \in \arg \max_{\boldsymbol{\Omega} \succeq \boldsymbol{0}} \left\{ \log \det \boldsymbol{\Omega} - \mathsf{trace}(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Omega}) - \lambda \| \boldsymbol{\Omega} \|_1 \right\}$$

⇒ Effective when $n \ll N_v$, encourages interpretable models ⇒ Scalable solvers using coordinate-descent [Friedman et al'08]

• Performance guarantee: Graphical lasso with $\lambda = 2\sqrt{\frac{\log N_v}{n}}$ satisfies

$$\| \hat{\mathbf{\Omega}} - \mathbf{\Omega}_0 \|_2 \leq \sqrt{rac{d_{\mathsf{max}}^2 \log N_{\mathsf{v}}}{n}} \quad ext{ w.h.p}$$

 \Rightarrow Ground-truth $\mathbf{\Omega}_{0}$, maximum nodal degree d_{max}

Support consistency for $n = O(d_{\max}^2 \log N_v)$ [Ravikumar et al'11]

- ▶ Idea: separately estimate neighborhoods $N_i := \{j : (i, j) \in E\}, i \in V$
- ▶ Conditional mean of X_i given $\mathbf{X}_{(-i)} = [X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_{N_v}]^\top$ is

$$\mathbb{E}\left[X_{i} \mid \mathbf{X}_{(-i)} = \mathbf{x}_{(-i)}\right] = \boldsymbol{\beta}_{(-i)}^{\top} \mathbf{x}_{(-i)}$$

• Entries of $\beta_{(-i)}$ expressible in terms of those in $\Omega = \Sigma^{-1}$, namely

$$\beta_{(-i),j} = -\frac{\omega_{ij}}{\omega_{ii}}$$

 $\Rightarrow \text{Non-zero } \beta_{(-i),j} \Leftrightarrow \text{Non-zero } \omega_{ij} \text{ in } \mathbf{\Omega} \Leftrightarrow \text{Edge } (i,j) \text{ in } G$ $\Rightarrow \text{ In other words, } \text{supp}(\beta_{(-i)}) := \{j : \beta_{(-i),j} \neq 0\} \equiv \mathcal{N}_i$

▶ Suggests inference of *G* via least-squares (LS) regression, to estimate

$$oldsymbol{eta}_{(-i)} = rg\min_{oldsymbol{ heta}} \mathbb{E}\left[(X_i - oldsymbol{ heta}^ op \mathbf{X}_{(-i)})^2
ight]$$

- Consider minimizing a quadratic function of θ as in LS or ridge
- ▶ Q: What is the effect of an ℓ_1 -norm constraint, i.e., $\|\theta\|_1 = \sum_i |\theta_i| \le \tau$?

 \Rightarrow Level sets touch constrain set in a kink \rightarrow Sparse solution

Lasso estimator enables estimation and variable selection [Tibshirani'94]

$$\hat{\boldsymbol{ heta}}_{\textit{Lasso}} = \arg\min_{\boldsymbol{ heta}} \sum_{i=1}^n (y_i - \mathbf{x}_i^{ op} \boldsymbol{ heta})^2, \, \, ext{s. to} \, \| \boldsymbol{ heta} \|_1 \leq au$$

• Cycle over vertices $i \in V$ and estimate $\hat{\mathcal{N}}_i = \operatorname{supp}(\hat{\boldsymbol{\beta}}_{(-i)})$, where

$$\hat{\boldsymbol{\beta}}_{(-i)} \in \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{N_{v}-1}} \left\{ \sum_{p=1}^{n} (x_{pi} - \mathbf{x}_{p, \setminus i}^{\top} \boldsymbol{\beta})^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \right\}$$

\Rightarrow Separable lasso problems per vertex

- ▶ No guarantee that $\hat{\beta}_{(-i),j} \neq 0$ implies $\hat{\beta}_{(-j),i} \neq 0$ and vice versa
 - Combine information in $\hat{\mathcal{N}}_i$ and $\hat{\mathcal{N}}_j$ to enforce symmetry
 - ▶ OR rule: $(i,j) \in E$ if $\beta_{(-i),j} \neq 0$ or $\beta_{(-j),i} \neq 0$. Likewise, AND rule
- Support consistency for either rule [Meinshausen-Bühlmann'06]
 - Suitable choice of λ , sparsity of $\mathbf{\Omega}_0$, and sample complexity $n \ll N_{
 u}$

▶ Inference of GGMs with edges
$$E = \{(i, j) \in V^{(2)} : \rho_{ij|V \setminus \{i, j\}} \neq 0\}$$

Association network inference:

Parallelizable neighborhood-based regression (NBR)

- \Rightarrow Conditional likelihood per vertex $i \in V$, disregards $\mathbf{\Omega} \succeq \mathbf{0}$
- \Rightarrow Tends to be computationally faster

Graphical Lasso minimizes a (regularized) global likelihood

$$\mathcal{L}(\Omega) = \mathsf{log}\,\mathsf{det}\,\Omega - \mathsf{trace}(\hat{\Sigma}\Omega)$$

 \Rightarrow Tends to be (statistically) more efficient

▶ NBR method tractable even for discrete or mixed graphical models ⇒ lsing-model selection for $\mathbf{X} \in \{-1, +1\}^{N_{\nu}}$

P. Ravikumar et al, "High-dimensional Ising model selection using ℓ_1 -regularized logistic regression," Ann. Statist., 2010

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

In imaging, tomography refers to imaging by sections (e.g., MRI)
 Reconstruction algorithms relate 'external data' to internal structure
 Goal: create images of internal aspects of the human body

Tomographic network topology inference

Predict edge and vertex status in the 'interior' of G, given only observations x_i for vertices $i \in V$ in the 'exterior' of G

- Most difficult case of topology inference. An ill-posed inverse problem ⇒ Inverse problem: invert mapping from 'internal' to 'external'
 - \Rightarrow III-posed: the mapping is many-to-one
- Most work has dealt with inference of tree topologies
 - Ex: computer network topologies, phylogenetic tree, media cascades

Trees

Def: an undirected tree $T = (V_T, E_T)$ is a connected acyclic graph

► Nomenclature:

- **•** Rooted tree: tree with a single vertex $r \in V_T$ singled out
- Leaves: subset of vertices $L \subset V_T$ of degree one
- Internal vertices: those vertices in $V_T \setminus \{\{r\} \cup L\}$
- Binary tree: root and internal vertices have at most two children

Tomographic inference of tree topologies

• Given *n* i.i.d. measurements of RVs $\{X_1, \ldots, X_{N_L}\}$ on N_L vertices

• Consider the family \mathcal{T}_{N_L} of binary trees with N_L labeled leaves \Rightarrow If we know r then all trees in \mathcal{T}_{N_I} will be rooted at r

Tomographic tree topology inference

Find a tree $\hat{T} \in \mathcal{T}_{N_L}$ that 'best' explains the data $\{\mathbf{x}_1, \dots, \mathbf{x}_{N_L}\}$

Often of interest to infer a set of branch weights as well

- Ex: Consider inference of computer network topologies, e.g., Internet
- Multicast packets sent from a node (r) to multiple destinations (L)
 - \Rightarrow Probes forwarded at routing devices, could be lost en route

► For leaves $\ell \in L$, consider the indicator $X_{\ell} = \mathbb{I} \{ \ell \text{ received the probe} \}$ \Rightarrow Send *n* multicast probes to yield data $\{ \mathbf{x}_{\ell} \in \{0,1\}^n \}_{\ell \in L}$

Multicast probes: structure

- ▶ Think of leaf RVs $\{X_1, \ldots, X_{N_L}\}$ as samples of a process $\{X_j\}_{j \in V_T}$
- Useful notation to describe process' structure
 - **Def:** closest common ancestor a(U) to a set of leaves $U \subseteq L$
 - Def: set d(j) of all immediate descendants of internal vertex j

Multicast tree enforces hereditary constraints

$$\Rightarrow X_{a(U)} = 0 \text{ implies } X_j = 0 \text{ for all } j \in U$$

$$\Rightarrow \text{ If } X_j = 1 \text{ for at least one } j \in d(k), \text{ then } X_k = 1$$

- Hierarchical clustering groups N_L objects based on (dis)similarity
 - \Rightarrow Entire hierarchy of nested partitions obtained \rightarrow dendrogram

► Natural tool for tomographic inference of tree topologies $\Rightarrow N_L$ leaves as 'objects', dendrogram as the inferred tree \hat{T}

► Tailor a (dis)similarity to the tomographic inference problem at hand

Shared packet loss rate indicative of close leaves in a multicast tree

- Two types of shared loss between a pair of leaves $j, k \in L$
 - **True:** loss of packets in the path common to vertices *j* and *k*
 - ▶ **False:** losses on paths after the closest common ancestor *a*({*j*, *k*})
- ► Net shared loss rate includes both effects ⇒ misleading similarity ⇒ Can obtain true shared loss rates via simple packet-loss model
- N. G. Duffield et al, "Multicast topology inference from measured end-to-end loss," *IEEE Trans. Info. Theory*, vol. 48, pp. 26-45, 2002

- ▶ Recall the cascade process $\{X_j\}_{j \in V_T}$ induced by multicast probing
- Specify a Markov model down the tree
 - Root r: set $X_r = 1$
 - ▶ Internal vertex k: if $X_k = 0$, then $X_j = 0$ for all $j \in d(k)$. Otherwise,

$$P(X_j = 1 | X_k = 1) = 1 - P(X_j = 0 | X_k = 1) = \alpha_j, \ j \in d(k)$$

 \Rightarrow Probes successfully transmitted through link (k,j) w.p. α_j

Probe successfully transmited from r to k w.p.

$$\mathsf{P}\left(X_{k}=1 \mid X_{r}=1\right) := A(k) = \prod_{j \succ k} \alpha_{j}$$

 $\Rightarrow j \succ k$ denotes ancestral vertices of k in path from r

True shared loss rate for two leaf vertices $j, k \in L$ is $1 - A(a(\{j, k\}))$

Estimating shared loss rates

- Let L(k) be the set of leaves that are descendants of k
 - Probability that at least one descendant leaf of k received a packet

$$\gamma(k) = \mathsf{P}\left(\bigcup_{j \in L(k)} \{X_j = 1\}\right)$$

▶ Key: Using probabilistic arguments, can establish the relation

$$1 - \frac{\gamma(k)}{A(k)} = \prod_{j \in d(k)} \left[1 - \frac{\gamma(j)}{A(k)} \right]$$

 \Rightarrow Given values $\{\gamma(k)\}_{k \in V_T}$, can solve for the $\{A(k)\}_{k \in V_T}$

▶ But $\{\gamma(k)\}_{k \in V_T}$ unknown! Use leaf measurements to form estimates

$$\hat{\gamma}(k) = \frac{1}{n} \sum_{i=1}^{n} \max_{j \in L(k)} (x_{ji})$$

- Greedy, agglomerative algorithm based on shared loss similarities
 - **S1:** Estimate packet losses $\hat{\gamma}(j)$ at the leaves $j \in L$
 - **S2:** Estimate shared loss $1 \hat{A}(a(\{j, k\}))$ for all pairs $j, k \in L$

Estimate:
$$\hat{\gamma}(a(\{j,k\})) = \frac{1}{n} \sum_{i=1}^{n} \max_{s \in \{j,k\}} (x_{si}), \ j,k \in L$$

Solve: $1 - \frac{\hat{\gamma}(a(\{j,k\}))}{\hat{A}(a(\{j,k\}))} = \prod_{i \in \{j,k\}} \left[1 - \frac{\hat{\gamma}(i)}{\hat{A}(a(\{j,k\}))} \right]$

- **S3:** Merge pair $\{j^*, k^*\} = \arg \max_{j,k} [1 \hat{A}(a(\{j, k\}))]$ **S4:** Exchange $\{j^*, k^*\}$ for $a(\{j^*, k^*\})$ in *L* and go back to S2
- Can establish theoretical consistency guarantees for recovering T

- ► Probability models of leaf RVs {X_ℓ}_{ℓ∈L} used for defining (dis)similarities
 ⇒ But having such models f(x | T) also enables ML inference
- ▶ If the *n* observations $\{\mathbf{x}_i\}_{i=1}^n$ are independent, the likelihood is

$$\mathcal{L}_n(T) = \prod_{i=1}^n f(\mathbf{x}_i \mid T)$$

Models often include other parameters θ (e.g., the α_j) beyond T ⇒ In this case L_n(T) is an integrated likelihood, namely

$$\mathcal{L}_n(T) = \prod_{i=1}^n \int_{\theta \in \Theta} f(\mathbf{x}_i \mid T, \theta) f(\theta \mid T) d\theta$$

Integrals may be computationally challenging. The ML estimate is

$$\hat{T}_{ML} = \arg \max_{T \in T_{N_L}} \mathcal{L}_n(T)$$

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification

Sandwich probing

- Consider network tree topology inference via end-to-end probing
 - ▶ Packet drops rare (i.e., drop rate < 2%) ⇒ Shared loss rates ineffective
- Alternative measuring time-delay differences: sandwich probes
 - Send small probe to i, then large probe to j, other small probe to i last
 - Measure time-delay difference (TDD) between small packets

If paths overlap, large probe induces high delay in the second small one
 ⇒ Large TDD values indicative of close leaves in the tree topology

Sent sandwich probes every 50 ms to random pairs j, k ∈ L
 ⇒ Total of 9,567 measured delay differences over 8 minutes

For each pair $j, k \in L$, let x_{ik} be the average TDD

 \Rightarrow The Central Limit Theorem suggests $x_{jk} \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$

 \Rightarrow Independence of the x_{jk} reasonable by experimental setup

- ► Hierarchical clustering with likelihood-based similarity measure
- Let $\ell_{ij}(\mu) = \log f(x_{ij}|\mu)$ be the Gaussian log-likelihood (σ_{ij}^2 known)
- Initialize a set of vertices S with the leaves, i.e., S = L
 Def: similarity among leaves is estimated mean TDD

$$\hat{\mu}_{ij} = \hat{\mu}_{ji} = rg\max_{\mu} \left[\ell_{ij}(\mu) + \ell_{ji}(\mu)
ight], \;\; i,j \in L$$

- Merge $\{i^*, j^*\} = \arg \max_{i,j} \hat{\mu}_{ij}$. Exchange $\{i^*, j^*\}$ for $a(\{i^*, j^*\})$ in S
- Algorithm then iterates until |S| = 1, by merging after calculating

$$\hat{\mu}_{kl} = \hat{\mu}_{lk} = \arg \max_{\mu} \sum_{m \in L(k)} \sum_{p \in L(l)} \left[\ell_{mp}(\mu) + \ell_{pm}(\mu) \right], \ k, l \in S$$

 \Rightarrow Recall L(k) is the set of leaves descended by k

Inferred topology

Ground-truth topology obtained via traceroute probing

- \Rightarrow traceroute replies often 'turned-off' for security
- \Rightarrow Tomographic topology inference approaches relevant!

- ► ALT-inferred topology binary by construction ⇒ introduces artifacts
- R. Castro et al, "Likelihood-based hierarchical clustering," IEEE Trans. Signal Process., vol. 52, pp. 2308-2321, 2004

- Topology inference
- Link prediction
- Scoring methods
- Logistic regression
- Missing data
- Latent variable models
- Latent eigenmodel
- Association networks
- Correlation networks
- Pearson correlation
- Fisher's transformation
- Multiple testing

- False discovery rate
- Gene-regulatory networks
- Microarray data
- Partial correlation
- Gaussian graphical models
- Concentration matrix
- Variable selection
- Network tomography
- Muticast probing
- Shared packet loss
- Sandwich probing
- Time-delay difference