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Network topology inference

I So far dealt with modeling and inference of observed network graphs

⇒ Q: If a portion of G is unobserved, can we infer it from data?

I Discussed construction of representations G (V ,E ) for network mapping

⇒ Largely informal methodology, lacking an element of validation

I Formulate instead as statistical inference task, i.e. given
I Measurements xi of attributes at some or all vertices i ∈ V
I Indicators yij of edge status for some vertex pairs {i , j} ∈ V (2)

I A collection G of candidate graphs G

Goal: infer the topology of the network graph G (V ,E )

I Three canonical network topology inference problems

(i) Link prediction
(ii) Association network inference
(iii) Tomographic network topology inference
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Link prediction
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Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Link prediction 

I Suppose we observe vertex attributes x = [x1, . . . , xNv ]>; and

I Edge status is only observed for some subset of pairs V
(2)
obs ⊂ V (2)

I Goal: predict edge status for all other pairs, i.e., V
(2)
miss = V (2) \ V (2)

obs
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Association network inference

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Association network 
inference 

I Suppose we only observe vertex attributes x = [x1, . . . , xNv ]>; and

I Assume (i , j) defined by nontrivial ‘level of association’ among xi , xj

I Goal: predict edge status for all vertex pairs V (2)
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Tomographic network topology inference

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Tomographic 
inference 

I Suppose we only observe xi for vertices i ⊂ V in the ‘perimeter’ of G

I Goal: predict edge and vertex status in the ‘interior’ of G
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Link prediction

I Let G (V ,E ) be a random graph, with adjacency matrix Y ∈ {0, 1}Nv×Nv

⇒ Yobs and Ymiss denote entries in V
(2)
obs and V

(2)
miss

Link prediction

Predict entries in Ymiss , given observations Yobs = yobs and possibly
various vertex attributes X = x ∈ RNv

I Edge status information may be missing due to:

⇒ Difficulty in observation, issues of sampling

⇒ Edge is not yet present, wish to predict future status

I Given a model for X and (Yobs ,Ymiss), jointly predict Ymiss based on

P
(
Ymiss

∣∣Yobs = yobs ,X = x
)

⇒ More manageable to predict the variables Ymiss
ij individually
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Informal scoring methods

I Idea: compute score s(i , j) for missing ‘potential edges’ {i , j} ∈ V
(2)
miss

⇒ Predicted edges returned by retaining the top n∗ scores

I Scores designed to assess certain local structural properties of G obs

⇒ Distance-based, inspired by the small-world principle

s(i , j) = −distG obs (i , j)

⇒ Neighborhood-based, e.g., the number of common neighbors

s(i , j) = |N obs
i ∩N obs

j | or s(i , j) =
|N obs

i ∩N obs
j |

|N obs
i ∪N obs

j |

⇒ Favor loosely-connected common neighbors [Adamic-Adar’03]

s(i , j) =
∑

k∈N obs
i ∩N obs

j

1

log |N obs
k |
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Tests on co-authorship networks

I Results from a link prediction study in [Liben Nowell-Kleinberg’03]
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Classification methods

I Idea: use training data yobs and x to build a binary classifier

⇒ Classifier is in turn used to predict the entries in Ymiss

I Logistic regression classifiers most popular, based on the model

log

[
Pβ(Yij = 1

∣∣Zij = z)

Pβ(Yij = 0
∣∣Zij = z)

]
= β>z, where

(i) β ∈ RK is a vector of regression coefficients; and

(ii) Zij is a vector of explanatory variables indexed by {i , j}

Zij = [g1(Yobs
(−ij),X), . . . , gK (Yobs

(−ij),X)]>

I Functions gk(·) encode useful predictive information in yobs
(−ij) and x

Ex: vertex attributes, score functions, network statistics in ERGMs
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Logistic regression classifier

I Train: Obtain MLE β̂ via iteratively-reweighted LS

I Test: Potential edges (i , j) declared present based on probabilities

Pβ̂(Yij = 1
∣∣Zij = z) =

exp
(
β̂
>

z
)

1 + exp
(
β̂
>

z
)

I Logistic regression assumes Yij conditionally independent given z

⇒ Seldom the case with relational network data

I Underlying mechanism of data missingness is important

⇒ Classification for link prediction reminiscent of cross-validation

⇒ Assumption that data are missing at random is fundamental
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Latent variable models

I In addition to a lineal predictor β>z, latent models describe Yij

⇒ As a function of vertex-specific latent variables ui and uj

Homophily Stochastic equivalence 

I Latent models are flexible to capture underlying social mechanisms

Ex: homophily (transitivity) and stochastic equivalence (groups)
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Latent class and distance models

I Latent distance model: node i has unobserved position Ui ∈ Rd

I Positions Ui in latent space assumed i.i.d. e.g., Gaussian distributed
I Model cond. probability of edge Yij as function of β>z− ‖ui − uj‖2

I Homophily: Nearby nodes in latent space more likely to link

I Latent class model: node i belongs to unobserved class Ui ∈ {1, . . . , k}
I Classes Ui assumed i.i.d. e.g., multinomial distributed
I Model cond. probability of edge Yij as function of β>z− θui ,uj
I Stochastic equivalence: Nodes in same class equally likely to link

P. D. Hoff, “Modeling homophily and stochastic equivalence in symmetric

relational data,” NeurIPS, 2008

Network Science Analytics Network Topology Inference 14



Logistic regression with latent variables

I Let M ∈ RNv×Nv be an unknown, random, and symmetric matrix

M = U>ΛU + E, where

(i) U = [u1, . . . , uNv ] is a random orthonormal matrix of latent variables;
(ii) Λ is a random diagonal matrix; and
(iii) E is a symmetric matrix of i.i.d. noise entries εij

I Latent eigenmodel subsumes the class and distance variants [Hoff’08]

⇒ Notice that Mij = u>i Λuj + εij

I The logistic regression model with latent variables is

log

[
Pβ(Yij = 1

∣∣Zij = z,Mij = m)

Pβ(Yij = 0
∣∣Zij = z,Mij = m)

]
= β>z + m

I Yij still assumed conditionally independent given Zij and Mij

⇒ But they are conditionally dependent given only Zij
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Bayesian link prediction

I Specify distributions for U,Λ,E to make statistical link predictions
I Bayesian inference natural ⇒ Specify a prior for β as well

I To predict those entries in Ymiss , threshold the posterior mean

E




exp
(
β>Zij + Mij

)

1 + exp
(
β>Zij + Mij

)
∣∣Yobs = yobs ,Zij = z




I Use MCMC algorithms to approximate the posterior distribution
I Gaussian distributions attractive for their conjugacy properties

I Higher complexity than MLE for standard logistic regression

⇒ Need to generate draws for N2
v unobserved variables {Uij}

⇒ Major cost reduction with reduced rank(U) = k � Nv models
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Lawyer collaboration network

I Network G obs of working relationships among lawyers [Lazega’01]
I Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

I Data includes various node-level attributes:
I Seniority (node labels indicate rank ordering)
I Office location (triangle, square or pentagon)
I Type of practice, i.e., litigation (red) and corporate (cyan)
I Gender (three partners are female labeled 27, 29 and 34)

I Goal: predict cooperation among social actors in an organization
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Methods to predict lawyer collaboration

I Define the following set of explanatory variables:

Z
(1)
ij = seniorityi + seniorityj , Z

(2)
ij = practicei + practicej

Z
(3)
ij = I

{
practicei = practicej

}
, Z

(4)
ij = I

{
genderi = genderj

}

Z
(5)
ij = I {officei = officej}, Z

(6)
ij = |N obs

i ∩N obs
j |

Method 1: standard logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij

Method 2: standard logistic regression with Z
(1)
ij , . . . ,Z

(6)
ij

Method 3 informal scoring method with s(i , j) = Z
(6)
ij

Method 4: logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij and latent eigenmodel

I Five-fold cross-validation over the set of 36(36− 1)/2 = 630 vertex pairs

⇒ For each fold, 630/5 = 126 pairs in Ymiss and the rest in Yobs
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Receiver operating characteristic

I Receiver operating characteristic curves show predictive performance
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Fig. 7.2 ROC curves summarizing the capabilities to predict collaborative working relationships
in the lawyer dataset of Section 6.5.4, for method 1 (red), based on logistic regression, with the
explanatory variables Z(1) through Z(5), method 2 (blue), which is method 1 augmented with the
variable Z(6), method 3 (brown), an informal scoring method based on scores s(i, j) = Z(6)

i j , and
method 4 (yellow), the method of Hoff [200,201], using the same variables as in method 1.

Method 1 

Random 

Method 4 

Method 3 
Method 2 

I Method 1 performs worst ⇒ Agnostic to network structure

I Informal Method 3 yields slightly worst performance than 2 and 4
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Association network inference

I Given a collection of Nv elements represented as vertices v ∈ V
I Let xi ∈ Rm be a vector of observed vertex attributes, for all i ∈ V

I User-defined similarity sim(i , j) = f (xi , xj) specifies edges (i , j) ∈ E
I Q: What if sim values themselves (i.e., edge status) not observable?

Association network inference

Infer non-trivial sim values from vertex observations {x1, . . . , xNv }

I Various choices to be made, hence multiple possible approaches
I Choice of sim: correlation, partial correlation, mutual information
I Choice of inference: hypothesis testing, regression, ad hoc
I Choice of parameters: testing thresholds, tuning regularization
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Correlation networks

I Let Xi ∈ R be an RV of interest corresponding to i ∈ V

I Pearson product-moment correlation as sim between vertex pairs

sim(i , j) := ρij =
cov[Xi ,Xj ]√

var [Xi ] var [Xj ]
, i , j ∈ V

I Def: the correlation network graph G (V ,E ) has edge set

E =
{

(i , j) ∈ V (2) : ρij 6= 0
}

I Association network inference⇔ Inference of non-zero correlations

I Inference of E typically approached as a testing problem

H0 : ρij = 0 versus H1 : ρij 6= 0
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Test statistics

I Let xi1, . . . , xin be observations of zero-mean Xi , for each i ∈ V

⇒ Common choice of test statistic are empirical correlations

ρ̂ij =
σ̂ij√
σ̂ii σ̂jj

, where Σ̂ = [σ̂ij ] =
X>X

n − 1

I Convenient alternative statistic is Fisher’s transformation

zij =
1

2
log

(
1 + ρ̂ij
1− ρ̂ij

)
, i , j ∈ V

⇒ Under H0, zij ∼ N (0, 1
n−3 ) ⇒ Simple to assess significance

I Reject H0 at significance level α, i.e., assign edge (i , j) if |zij | > zα/2√
n−3

Error rate control: PH0 (false edge) = PH0

(
|zij | >

zα/2√
n − 3

)
= α
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Networks and multiple testing

I Interesting testing challenges emerge with large-scale networks

⇒ Suppose we test all
(
Nv

2

)
vertex pairs, each at level α

I Even if the true G is the empty graph, i.e., E = ∅
⇒ We expect to declare

(
Nv

2

)
α spurious edges just by chance!

⇒ For a large graph, this number can be considerable

I Ex: For G of order Nv = 100 and individual tests at level α = 0.05

⇒ Expected number of spurious edges is 4950× 0.05 ≈ 250

I This predicament known as the multiple testing problem in statistics
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Correction for multiple testing

I Idea: Control errors at the level of collection of tests, not individually

I False discovery rate (FDR) control, i.e., for given level γ ensure

FDR = E
[
Rfalse

R

∣∣R > 0

]
P (R > 0) ≤ γ

I R is the total number of edges detected; and
I Rfalse is the total number of false edges detected

I Method of FDR control at level γ [Benjamini-Hochberg’94]

Step 1: Sort p-values for all N =
(
Nv

2

)
tests, yields p(1) ≤ . . . ≤ p(N)

Step 2: Reject H0, i.e., declare all those edges for which

p(k) ≤
(
k

N

)
γ
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Partial correlations

I Use correlations carefully: ‘correlation does not imply causation’
I Vertices i , j ∈ V may have high ρij because they influence each other

I But ρij could be high if both i , j influenced by a third vertex k ∈ V

⇒ Correlation networks may declare edges due to latent variables

I Partial correlations better capture direct influence among vertices
I For i , j ∈ V consider latent vertices Sm = {k1, . . . , km} ⊂ V \ {i , j}

I Partial correlation of Xi and Xj , adjusting for XSm = [Xk1 , . . . ,Xkm ]> is

ρij|Sm
=

cov[Xi ,Xj

∣∣XSm ]√
var
[
Xi

∣∣XSm

]
var
[
Xj

∣∣XSm

] , i , j ∈ V

I Q: How do we obtain these partial correlations?
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Computing partial correlations

I Given XSm = [Xk1 , . . . ,Xkm ]>, the partial correlation of Xi and Xj is

ρij|Sm
=

cov[Xi ,Xj

∣∣XSm ]√
var
[
Xi

∣∣XSm

]
var
[
Xj

∣∣XSm

] =
σij|Sm√

σii|Sm
σjj|Sm

I Here σii|Sm
, σjj|Sm

and σij|Sm
are diagonal and off-diagonal elements of

Σ11|2 := Σ11 −Σ12Σ−1
22 Σ21 ∈ R2×2

I Matrices Σ11, Σ22 and Σ21 = Σ>12 are blocks of the covariance matrix

cov

[
W1

W2

]
=

(
Σ11 Σ12

Σ21 Σ22

)
, where W1 = [Xi ,Xj ]

> and W2 = XSm
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Partial correlation networks

I Various ways to use partial correlations to define edges in G

Ex: Xi ,Xj correlated regardless of what m vertices we condition upon

E =
{

(i , j) ∈ V (2) : ρij|Sm
6= 0, for all Sm ∈ V

(m)
\{i,j}

}

I Inference of potential edge (i , j) as a testing problem

H0 : ρij|Sm
= 0 for some Sm ∈ V

(m)
\{i,j}

H1 : ρij|Sm
6= 0 for all Sm ∈ V

(m)
\{i,j}

I Again, given measurements xi1, . . . , xin for each i ∈ V need to:
I Select a test statistic
I Construct an appropriate null distribution
I Adjust for multiple testing
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Testing partial correlations

I Often consider a collection (over Sm) of smaller testing sub-problems

H ′0 : ρij|Sm
= 0 versus H ′1 : ρij|Sm

6= 0

I Statistic: empirical partial correlations ρ̂ij|Sm
, or Fisher’s z-scores

zij|Sm
=

1

2
log

(
1 + ρ̂ij|Sm

1− ρ̂ij|Sm

)

⇒ From asymptotic theory, under H ′0 then zij|Sm
∼ N (0, 1

n−m−3 )

I Multiple tests for each {i , j} ∈ V (2). How do we combine p-values?
I If pij|Sm is the p-value for testing H ′0 versus H ′1 for {i , j}, use

pmax
ij = max

{
pij|Sm : Sm ∈ V

(m)
\{i,j}

}
I FDR control possible from collection {pmax

ij }i,j [Wille-Bühlmann’06]
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Case study: Gene-regulatory interactions

I Genes are segments of DNA encoding information about cell functions

I Such information used in the expression of genes

⇒ Creation of biochemical products, i.e., RNA or proteins

I Regulation of a gene refers to the control of its expression

Ex: regulation exerted during transcription, copy of DNA to RNA

⇒ Controlling genes are transcription factors (TFs)

⇒ Controlled genes are termed targets

⇒ Regulation type: activation or repression

I Regulatory interactions among genes basic to the workings of organisms

⇒ Inference of interactions → Finding TF/target gene pairs

I Such relational information summarized in gene-regulatory networks

Network Science Analytics Network Topology Inference 32



Microarray data

I Relative levels of gene expression in the cell can be measured

⇒ Genome-wide scale data obtained using microarray technologies

Experiments 

G
en

es
 

I For each gene i ∈ V , measure an expression profile xi ∈ Rn

I Vector xi has gene expression levels under n different conditions
I Ex: change in pH, heat level, oxygen concentrations

I Microarray data commonly used to infer gene regulatory interactions
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Regulatory interactions in E. coli

I Use microarray data and correlation methods to infer TF/target pairs

5

Experiments

G
en
es

Fig. 7.5 Image representation of 445 microarray expression profiles collected for E. coli, under
various conditions, for the 153 genes that are listed as known transcription factors in the Regu-
lonDB database. Larger negative values are indicated with darker shades of blue, and larger positive
values, in yellow to orange. Shades of green indicate values comparatively close to zero.

I Dataset: relative log expression RNA levels, for genes in E. coli
I 4,345 genes measured under 445 different experimental conditions

I Ground truth: 153 TFs, and TF/target pairs from database RegulonDB
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Methods to infer TF/target gene pairs

I Three correlation based methods to infer TF/target gene pairs

⇒ Interactions declared if suitable p-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene

Method 2: Partial correlation, controlling for shared effects of one
(m = 1) other TF, across all 152 other TFs

Method 3: Full partial correlation, simultaneously controlling for
shared effects of all (m = 152) other TFs

I In all cases applied Fisher transformation to obtain z-scores

⇒ Asymptotic Gaussian distributions for p-values, with n = 445

I Compared inferred graphs to ground-truth network from RegulonDB

Network Science Analytics Network Topology Inference 35



Performance comparisons

I ROC and Precision/Recall curves for Methods 1, 2, and 3

⇒ Precision: fraction of predicted links that are true

⇒ Recall: fraction of true links that are correctly predicted
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Fig. 7.6 ROC curves (left) and Precision/Recall curves (right) evaluating performance of the cor-
relation (yellow), partial correlation (red), and full partial correlation (blue) methods of network
inference described in the text.

I Method 1 performs worst, but none is stellar

⇒ Correlation not strong indicator of regulation in this data

I All methods share a region of high precision, but a very small recall

⇒ Limitations in number/diversity of profiles [Faith et al’07]
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Predicting new TF/target gene pairs

I In biology, often interest is in predicting new interactions
7
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Fig. 7.7 Gene targets predicted by the correlation method for the transcription factor lrp, at 60%
precision. Patterns and colors of arcs are described in the text.I 11 interactions found for TF lrp, 10 experimentally confirmed (dotted)

⇒ 5 interacting target genes were new (magenta, red, cyan)

⇒ 4 present in RegulonDB (magenta, cyan), but not as lrp targets
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Gaussian graphical model networks

I Suppose variables {Xi}i∈V have multivariate Gaussian distribution

⇒ Consider ρij|V\{i,j} conditioning on all other vertices (m = Nv − 2)

Theorem
Under the Gaussian assumption, vertices i , j ∈ V have partial correlation

ρij|V\{i,j} = 0

if and only if Xi and Xj are conditionally independent given {Xk}k∈V\{i,j}
I Def: the conditional independence graph G (V ,E ) has edge set

E =
{

(i , j) ∈ V (2) : ρij|V\{i,j} 6= 0
}

⇒ A special and popular case of partial correlation networks

I Also known as Gaussian Markov random field (GMRF)
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Covariance selection

I Let Σ be the covariance matrix of X = [X1, . . . ,XNv ]T

Def: the concentration matrix is Ω = Σ−1 with entries ωij

I Key result: For GGMs, the partial correlations can be expressed as

ρij|V\{i,j} = − ωij√
ωiiωjj

⇒ Non-zero entries in Ω⇔ Edges in the graph G

I Inferring G from data in this context known as covariance selection

⇒ Classical methods are ‘network-agnostic,’ and effectively test

H0 : ρij|V\{i,j} = 0 versus H1 : ρij|V\{i,j} 6= 0

⇒ Often not scalable, and n� Nv so estimation of Σ̂ challenging

A. Dempster, “Covariance selection,” Biometrics, vol. 28, 1974
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Graphical Lasso

I Sparsity-regularized maximum-likelihood estimator of Ω [Yuan-Lin’07]

Ω̂ ∈ arg max
Ω�0

{
log det Ω− trace(Σ̂Ω)− λ‖Ω‖1

}

⇒ Effective when n� Nv , encourages interpretable models

⇒ Scalable solvers using coordinate-descent [Friedman et al’08]

I Performance guarantee: Graphical lasso with λ = 2
√

log Nv

n satisfies

‖Ω̂−Ω0‖2 ≤
√

d2
max logNv

n
w.h.p.

⇒ Ground-truth Ω0, maximum nodal degree dmax

I Support consistency for n = O(d2
max logNv ) [Ravikumar et al’11]
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Covariance selection meets linear regression

I Idea: separately estimate neighborhoods Ni := {j : (i , j) ∈ E}, i ∈ V
I Conditional mean of Xi given X(−i) = [X1, . . . ,Xi−1,Xi+1, . . . ,XNv ]> is

E
[
Xi

∣∣X(−i) = x(−i)
]

= β>(−i)x(−i)

I Entries of β(−i) expressible in terms of those in Ω = Σ−1, namely

β(−i),j = −ωij

ωii

⇒ Non-zero β(−i),j ⇔ Non-zero ωij in Ω⇔ Edge (i , j) in G

⇒ In other words, supp(β(−i)) := {j : β(−i),j 6= 0} ≡ Ni

I Suggests inference of G via least-squares (LS) regression, to estimate

β(−i) = arg min
θ

E
[
(Xi − θ>X(−i))

2
]
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Sparsity and the `1 norm

I Consider minimizing a quadratic function of θ as in LS or ridge

I Q: What is the effect of an `1-norm constraint, i.e., ‖θ‖1 =
∑

i |θi | ≤ τ?

⇒ Level sets touch constrain set in a kink → Sparse solution

I Lasso estimator enables estimation and variable selection [Tibshirani’94]

θ̂Lasso = arg min
θ

n∑

i=1

(yi − x>i θ)2, s. to ‖θ‖1 ≤ τ
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Neighborhood-based sparse regression

I Cycle over vertices i ∈ V and estimate N̂i = supp(β̂(−i)), where

β̂(−i) ∈ arg min
β∈RNv−1

{
n∑

p=1

(xpi − x>p,\iβ)2 + λ‖β‖1

}

⇒ Separable lasso problems per vertex

I No guarantee that β̂(−i),j 6= 0 implies β̂(−j),i 6= 0 and vice versa

I Combine information in N̂i and N̂j to enforce symmetry
I OR rule: (i , j) ∈ E if β(−i),j 6= 0 or β(−j),i 6= 0. Likewise, AND rule

I Support consistency for either rule [Meinshausen-Bühlmann’06]
I Suitable choice of λ, sparsity of Ω0, and sample complexity n � Nv
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Summary of logical roadmap

I Inference of GGMs with edges E =
{

(i , j) ∈ V (2) : ρij|V\{i,j} 6= 0
}

Find pairs          for which ⇢ij|V \{i,j} 6= 0{i, j}

Find non-zero entries              in the 
concentration matrix 

!ij 6= 0
⌦ = ⌃�1

Find non-zero regression coefficients in 
 
               

�(�i) = arg min
✓

E
h
(Xi � ✓>X(�i))

2
i

Association network inference: 

Covariance selection: 

Variable selection in  
linear regression: 

⇢ij|V \{i,j} = � !ijp
!ii!ij

�(�i),j = �!ij

!ii
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Comparative summary

I Parallelizable neighborhood-based regression (NBR)

⇒ Conditional likelihood per vertex i ∈ V , disregards Ω � 0

⇒ Tends to be computationally faster

I Graphical Lasso minimizes a (regularized) global likelihood

L(Ω) = log det Ω− trace(Σ̂Ω)

⇒ Tends to be (statistically) more efficient

I NBR method tractable even for discrete or mixed graphical models

⇒ Ising-model selection for X ∈ {−1,+1}Nv

P. Ravikumar et al, “High-dimensional Ising model selection using

`1-regularized logistic regression,” Ann. Statist., 2010

Network Science Analytics Network Topology Inference 45



Tomographic inference

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
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Tomographic network topology inference

I In imaging, tomography refers to imaging by sections (e.g., MRI)
I Reconstruction algorithms relate ‘external data’ to internal structure

Goal: create images of internal aspects of the human body

Tomographic network topology inference

Predict edge and vertex status in the ‘interior’ of G , given only ob-
servations xi for vertices i ∈ V in the ‘exterior’ of G

I Most difficult case of topology inference. An ill-posed inverse problem

⇒ Inverse problem: invert mapping from ‘internal’ to ‘external’

⇒ Ill-posed: the mapping is many-to-one

I Most work has dealt with inference of tree topologies

Ex: computer network topologies, phylogenetic tree, media cascades
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Trees

I Def: an undirected tree T = (VT ,ET ) is a connected acyclic graph8

Fig. 7.8 Schematic representation of a binary tree in association with the tomographic network
inference problem. Measurements are available at the leaves 1,2,3,4, and 5, in yellow. The internal
vertices, i1, i2, and i3, in green, and possibly the root r, in blue, are unknown, as are the branches
joining the various vertices.

I Nomenclature:
I Rooted tree: tree with a single vertex r ∈ VT singled out
I Leaves: subset of vertices L ⊂ VT of degree one
I Internal vertices: those vertices in VT \ {{r} ∪ L}
I Binary tree: root and internal vertices have at most two children
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Tomographic inference of tree topologies

I Given n i.i.d. measurements of RVs {X1, . . . ,XNL
} on NL vertices8

Fig. 7.8 Schematic representation of a binary tree in association with the tomographic network
inference problem. Measurements are available at the leaves 1,2,3,4, and 5, in yellow. The internal
vertices, i1, i2, and i3, in green, and possibly the root r, in blue, are unknown, as are the branches
joining the various vertices.

I Consider the family TNL
of binary trees with NL labeled leaves

⇒ If we know r then all trees in TNL
will be rooted at r

Tomographic tree topology inference

Find a tree T̂ ∈ TNL
that ‘best’ explains the data {x1, . . . , xNL

}

I Often of interest to infer a set of branch weights as well
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Multicast probes: measurements

I Ex: Consider inference of computer network topologies, e.g., Internet

I Multicast packets sent from a node (r) to multiple destinations (L)

⇒ Probes forwarded at routing devices, could be lost en route10
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Fig. 7.10 Computer network topologies from the experiment of Castro, Coates, and Nowak [79].
Top: Groundtruth topology, based on traceroute measurements. Middle: Inferred topology,
based on ‘sandwich’ probe measurements, using a hierarchical clustering algorithm. Bottom: In-
ferred topology, based on the same measurements, using a complexity penalized maximum likeli-
hood method. Figures courtesy of Rui Castro.

I For leaves ` ∈ L, consider the indicator X` = I {` received the probe}
⇒ Send n multicast probes to yield data {x` ∈ {0, 1}n}`∈L
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Multicast probes: structure

I Think of leaf RVs {X1, . . . ,XNL
} as samples of a process {Xj}j∈VT

I Useful notation to describe process’ structure
I Def: closest common ancestor a(U) to a set of leaves U ⊆ L
I Def: set d(j) of all immediate descendants of internal vertex j10
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Top: Groundtruth topology, based on traceroute measurements. Middle: Inferred topology,
based on ‘sandwich’ probe measurements, using a hierarchical clustering algorithm. Bottom: In-
ferred topology, based on the same measurements, using a complexity penalized maximum likeli-
hood method. Figures courtesy of Rui Castro.

I Multicast tree enforces hereditary constraints

⇒ Xa(U) = 0 implies Xj = 0 for all j ∈ U

⇒ If Xj = 1 for at least one j ∈ d(k), then Xk = 1

Network Science Analytics Network Topology Inference 51



Hierarchical clustering-based methods

I Hierarchical clustering groups NL objects based on (dis)similarity

⇒ Entire hierarchy of nested partitions obtained → dendrogram
10
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ferred topology, based on the same measurements, using a complexity penalized maximum likeli-
hood method. Figures courtesy of Rui Castro.

I Natural tool for tomographic inference of tree topologies

⇒ NL leaves as ‘objects’, dendrogram as the inferred tree T̂

I Tailor a (dis)similarity to the tomographic inference problem at hand
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Multicast probes: dissimilarity

I Shared packet loss rate indicative of close leaves in a multicast tree

I Two types of shared loss between a pair of leaves j , k ∈ L
I True: loss of packets in the path common to vertices j and k
I False: losses on paths after the closest common ancestor a({j , k})

I Net shared loss rate includes both effects ⇒ misleading similarity

⇒ Can obtain true shared loss rates via simple packet-loss model

I N. G. Duffield et al, “Multicast topology inference from measured
end-to-end loss,” IEEE Trans. Info. Theory, vol. 48, pp. 26-45, 2002
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Multicast probes: packet-loss model

I Recall the cascade process {Xj}j∈VT
induced by multicast probing

I Specify a Markov model down the tree
I Root r : set Xr = 1
I Internal vertex k: if Xk = 0, then Xj = 0 for all j ∈ d(k). Otherwise,

P
(
Xj = 1

∣∣Xk = 1
)

= 1− P
(
Xj = 0

∣∣Xk = 1
)

= αj , j ∈ d(k)

⇒ Probes successfully transmitted through link (k, j) w.p. αj

I Probe successfully transmited from r to k w.p.

P
(
Xk = 1

∣∣Xr = 1
)

:= A(k) =
∏

j�k
αj

⇒ j � k denotes ancestral vertices of k in path from r

I True shared loss rate for two leaf vertices j , k ∈ L is 1− A(a({j , k}))

Network Science Analytics Network Topology Inference 54



Estimating shared loss rates

I Let L(k) be the set of leaves that are descendants of k
I Probability that at least one descendant leaf of k received a packet

γ(k) = P

 ⋃
j∈L(k)

{Xj = 1}


I Key: Using probabilistic arguments, can establish the relation

1− γ(k)

A(k)
=
∏

j∈d(k)

[
1− γ(j)

A(k)

]

⇒ Given values {γ(k)}k∈VT
, can solve for the {A(k)}k∈VT

I But {γ(k)}k∈VT
unknown! Use leaf measurements to form estimates

γ̂(k) =
1

n

n∑

i=1

max
j∈L(k)

(xji )
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Agglomerative hierarchical clustering algorithm

I Greedy, agglomerative algorithm based on shared loss similarities

S1: Estimate packet losses γ̂(j) at the leaves j ∈ L

S2: Estimate shared loss 1− Â(a({j , k})) for all pairs j , k ∈ L

Estimate: γ̂(a({j , k})) =
1

n

n∑

i=1

max
s∈{j,k}

(xsi ), j , k ∈ L

Solve: 1− γ̂(a({j , k}))

Â(a({j , k}))
=

∏

i∈{j,k}

[
1− γ̂(i)

Â(a({j , k}))

]

S3: Merge pair {j∗, k∗} = arg maxj,k [1− Â(a({j , k}))]

S4: Exchange {j∗, k∗} for a({j∗, k∗}) in L and go back to S2

I Can establish theoretical consistency guarantees for recovering T

Network Science Analytics Network Topology Inference 56



Likelihood-based methods

I Probability models of leaf RVs {X`}`∈L used for defining (dis)similarities

⇒ But having such models f (x
∣∣T ) also enables ML inference

I If the n observations {xi}ni=1 are independent, the likelihood is

Ln(T ) =
n∏

i=1

f (xi
∣∣T )

I Models often include other parameters θ (e.g., the αj) beyond T

⇒ In this case Ln(T ) is an integrated likelihood, namely

Ln(T ) =
n∏

i=1

∫

θ∈Θ

f (xi
∣∣T ,θ)f (θ

∣∣T )dθ

I Integrals may be computationally challenging. The ML estimate is

T̂ML = arg max
T∈TNL

Ln(T )
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Case study

Network topology inference problems

Link prediction

Case study: Predicting lawyer collaboration

Inference of association networks

Case study: Inferring genetic regulatory interactions

Tomographic network topology inference

Case study: Computer network topology identification
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Sandwich probing

I Consider network tree topology inference via end-to-end probing
I Packet drops rare (i.e., drop rate < 2%) ⇒ Shared loss rates ineffective

I Alternative measuring time-delay differences: sandwich probes
I Send small probe to i , then large probe to j , other small probe to i last
I Measure time-delay difference (TDD) between small packets
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1: Send     to MSU1 
2: Send           to MSU2 
3: Send     to MSU1 

1: Send     to MSU1 
2: Send           to Berkeley 
3: Send     to MSU1 

I If paths overlap, large probe induces high delay in the second small one

⇒ Large TDD values indicative of close leaves in the tree topology
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Modeling delay differences

I Sent sandwich probes every 50 ms to random pairs j , k ∈ L

⇒ Total of 9, 567 measured delay differences over 8 minutes
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Fig. 7.9 Image representation of pairwise delay differences in the data of Coates et al. [95], with
increasing darker red corresponding to lower values, and increasingly brighter yellow, to higher
values.

I For each pair j , k ∈ L, let xjk be the average TDD

⇒ The Central Limit Theorem suggests xjk ∼ N (µjk , σ
2
jk)

⇒ Independence of the xjk reasonable by experimental setup
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Agglomerative likelihood tree (ALT) algorithm

I Hierarchical clustering with likelihood-based similarity measure

I Let `ij(µ) = log f (xij |µ) be the Gaussian log-likelihood (σ2
ij known)

I Initialize a set of vertices S with the leaves, i.e., S = L

Def: similarity among leaves is estimated mean TDD

µ̂ij = µ̂ji = arg max
µ

[`ij(µ) + `ji (µ)] , i , j ∈ L

I Merge {i∗, j∗} = arg maxi,j µ̂ij . Exchange {i∗, j∗} for a({i∗, j∗}) in S

I Algorithm then iterates until |S | = 1, by merging after calculating

µ̂kl = µ̂lk = arg max
µ

∑

m∈L(k)

∑

p∈L(l)

[`mp(µ) + `pm(µ)] , k, l ∈ S

⇒ Recall L(k) is the set of leaves descended by k
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Inferred topology

I Ground-truth topology obtained via traceroute probing

⇒ traceroute replies often ‘turned-off’ for security

⇒ Tomographic topology inference approaches relevant!
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True Inferred 

I ALT-inferred topology binary by construction ⇒ introduces artifacts

I R. Castro et al, “Likelihood-based hierarchical clustering,” IEEE
Trans. Signal Process., vol. 52, pp. 2308-2321, 2004
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Glossary

I Topology inference

I Link prediction

I Scoring methods

I Logistic regression

I Missing data

I Latent variable models

I Latent eigenmodel

I Association networks

I Correlation networks

I Pearson correlation

I Fisher’s transformation

I Multiple testing

I False discovery rate

I Gene-regulatory networks

I Microarray data

I Partial correlation

I Gaussian graphical models

I Concentration matrix

I Variable selection

I Network tomography

I Muticast probing

I Shared packet loss

I Sandwich probing

I Time-delay difference
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