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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G (V ,E ): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Roadmap

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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Graph signal processing (GSP)

I Graph G with adjacency matrix A

⇒ Aij = proximity between i and j

I Signal x ∈ RNv on top of the graph

⇒ xi = signal value at node i
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I Graph Signal Processing → Exploit structure encoded in A to process x

I Q: Graph signals common and interesting as networks are?

I Q: Why do we expect the graph structure to be useful in processing x?

A. Ortega et al, “Graph signal processing: Overview, challenges, and

applications,” Proc. IEEE, 2018
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce
I Aij = Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas Services Finance
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I Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
I Administrative services (AS), Professional services (MP)
I Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
I Only interactions stronger than a threshold are shown
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce
I Aij = Output of sector i that becomes input to sector j (62 sectors)

I A few sectors have widespread
strong influence (services,
finance, energy)

I Some sectors have strong
indirect influences (oil)

I The heavy last row is final
consumption

I This is an interesting network ⇒ Signals on this graph are as well
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Disaggregated GDP of the United States

I Signal x = output per sector = disaggregated GDP

⇒ Network structure used to, e.g., reduce GDP estimation noise

I Signal is as interesting as the network itself. Arguably more
I Same is true for brain connectivity and fMRI brain signals, ...
I Gene regulatory networks and gene expression levels, ...
I Online social networks and information cascades, ...
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Importance of signal structure in time

I Signal and Information Processing is about exploiting signal structure

I Discrete time described by cyclic graph

⇒ Time n follows time n − 1

⇒ Signal value xn similar to xn−1

I Formalized with the notion of frequency

1

2

3

4

5

6

x1

x2

x3

x4

x5

x6

I Cyclic structure ⇒ Fourier transform ⇒ x̃ = FHx

(
Fkn =

e j2πkn/Nv

√
Nv

)
I Fourier transform ⇒ Projection on eigenvector space of cycle
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Covariances and principal components

I Random signal with mean E [x] = 0 and covariance Cx = E
[
xxH

]
⇒ Eigenvector decomposition Cx = VΛVH

I Covariance matrix A = Cx is a graph

⇒ Not a very good graph, but still

I Precision matrix C−1
x a common graph too

⇒ Conditional dependencies of Gaussian x
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I Covariance matrix structure ⇒ Principal components (PCA) ⇒ x̃ = VHx

I PCA transform ⇒ Projection on eigenvector space of (inverse) covariance

I Q: Can we extend these principles to general graphs and signals?
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Graph Fourier Transform

I Adjacency A, Laplacian L, or, generically graph shift S = VΛV−1

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

I The Graph Fourier Transform (GFT) of x is defined as

x̃ = V−1x

I While the inverse GFT (iGFT) of x̃ is defined as

x = Vx̃

⇒ Eigenvectors V = [v1, . . . , vNv ] are the frequency basis (atoms)

I Additional structure

⇒ If S is normal, then V−1 = VH and x̃k = vH
k x =< vk , x >

⇒ Parseval holds, ‖x‖2 = ‖x̃‖2

I GFT ⇒ Projection on eigenvector space of graph shift operator S
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Frequency modes of the Laplacian

I Total variation of signal x with respect to L

TV(x) = x>Lx =
Nv∑

i,j=1,j>i

Aij(xi − xj)
2

⇒ Smoothness measure on the graph G (Dirichlet energy)

I For Laplacian eigenvectors V = [v1, . . . , vNv ] ⇒ TV(vk) = λk

⇒ Can view 0 = λ1 < · · · ≤ λNv as frequencies

I Ex: gene network, Nv =10, k =1, k =2, k =9
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Is this a reasonable transform?

I Particularized to cyclic graphs ⇒ GFT ≡ Fourier transform

I Also for covariance graphs ⇒ GFT ≡ PCA transform

I But really, this is an empirical question. GFT of disaggregated GDP

I Spectral domain representation characterized by a few coefficients

⇒ Notion of bandlimitedness: x =
∑K

k=1 x̃kvk

⇒ Sampling, compression, filtering, pattern recognition
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Graph frequency analysis of brain signals

I GFT of brain signals during a visual-motor learning task [Huang et al’16]

⇒ Decomposed into low, medium and high frequency components

10

Fig. 6. Distribution of decomposed signals for the 6 week experiment. (a) Absolute magnitudes for all brain regions with respect to xL – brain signals varing smoothly
across the network – averaged across all sample points for each individual and across all participants at the first scan session of the 6 week dataset. (b) With respect
to xM and (c) with respect to xH – signals fluctuating vibrantly across the brain. (d), (e), and (f) are averaged xL,xM and xH at the last scan session of the 6 week
dataset, respectively. Only regions with absolute magnitudes higher than a fixed threshold is colored.

Fig. 7. Distribution of decomposed signals for the 3 day experiment. (a), (b), and (c) are xL,xM and xH averaged across all sample points for each subject and across
participants in the 3 day experiment, respectively. Regions with absolute value less than a threshold are not colored.

xM and xH. At the macro or large timescale, we average the
decomposed signals xL for all sample points within each scanning
session with different sequence type, and evaluate the variance
of the magnitudes of the averaged signals across all the scanning
sessions and sequence types [40], [41]. For the 6 week experiment,
there are 4 scanning sessions and 3 different sequence types, so
the variance is with respect to 12 points. For the 3 day experiment,
there are 3 scanning sessions and only 1 sequence type, and
therefore the variance is for 3 points. As for the micro or minute-
scale, we average the decomposed signals xL for all sample points
within each minute, and evaluate the variance of the magnitudes of
the averaged signals across all minute windows for each scanning

session with different sequence types. The evaluated variance is
then averaged across all participants of the experiment of interest.

Figure 8 displays the variance of the decomposed signals
xL,xM and xH at two different temporal scales of the two
experiments. For the 6 week dataset, 3 session-sequence com-
binations, with number proportional to the level of exposure of
participants to the sequence (1-MIN refers to MIN sequence at
session 1, 5 denotes MIN sequence at session 4, 9 entails EXT
sequence at session 3) are selected out of the 12 combinations in
total for a cleaner illustration, but all the other session-sequence
combinations exhibit similar properties. Following the definition
of frequency decomposition as in (14), it is expected for the low
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I Brain: Complex system where regularity coexists with disorder [Sporns’11]

⇒ Signal energy mostly in the low and high frequencies

⇒ In brain regions akin to the visual and sensorimotor cortices
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What is this class about?

I Learning graphs from nodal observations

I Key in neuroscience

⇒ Functional network from fMRI signals

I Most GSP works: how known graph S affects signals and filters

I Here, reverse path: how to use GSP to infer the graph topology?
I Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al’19], . . .
I Smooth signals [Dong et al’15], [Kalofolias’16], [Sardellitti et al’17], . . .
I Graph filtering models [Shafipour et al’17], [Thanou et al’17], . . .
I Stationary signals [Pasdeloup et al’15], [Segarra et al’16], . . .
I Directed graphs [Mei-Moura’15], [Shen et al’16], . . .
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Connecting the dots

44 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2019   | 1053-5888/19©2019IEEE

The construction of a meaningful graph topology plays a 
crucial role in the effective representation, processing, 
analysis, and visualization of structured data. When a nat-

ural choice of the graph is not readily available from the data 
sets, it is thus desirable to infer or learn a graph topology from 
the data. In this article, we survey solutions to the problem of 
graph learning, including classical viewpoints from statistics 
and physics, and more recent approaches that adopt a graph 
signal processing (GSP) perspective. We further emphasize 
the conceptual similarities and differences between classical 
and GSP-based graph-inference methods and highlight the 
potential advantage of the latter in a number of theoretical and 
practical scenarios. We conclude with several open issues and 
challenges that are keys to the design of future signal pro-
cessing and machine-learning algorithms for learning graphs 
from data.

Introduction
Modern data analysis and processing tasks typically involve 
large sets of structured data, where the structure carries criti-
cal information about the nature of the data. One can find nu-
merous examples of such data sets in a wide diversity of ap-
plication domains, including transportation networks, social 
networks, computer networks, and brain networks. Typically, 

graphs are used as mathematical tools to describe the struc-
ture of such data. They provide a flexible way of  representing 
the relationship between data entities. In the past decade, 
numerous signal processing and machine-learning algorithms 
have been introduced for analyzing structured data on a priori 
known graphs [1]– [3]. However, there are often settings where 
the graph is not readily available, and the structure of the data 
has to be estimated to permit the effective representation, pro-
cessing, analysis, or visualization of the data. In this case, a 
crucial task is to infer a graph topology that describes the char-
acteristics of the data observations, hence capturing the under-
lying relationship between these entities.

Consider an example in brain signal analysis: suppose we 
are given blood-oxygen-level-dependent (BOLD) signals, i.e., 
time series extracted from functional magnetic resonance 
imaging data that reflect the activities of different regions of 
the brain. An area of significant interest in neuroscience is the 
inference of functional connectivity, i.e., to capture the relation-
ship between brain regions that correlate or synchronize given a 
certain condition of a patient, which may help reveal underpin-
nings of some neurodegenerative diseases (see Figure 1). This 
leads to the problem of inferring a graph structure, given the 
multivariate BOLD time series data.

Formally, the problem of graph learning is the following: 
given M  observations on N  variables or data entities rep-
resented in a data matrix ,X RN M! #  and given some prior 
knowledge (e.g., distribution, data model, and so on) about 
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ABSTRACT | Identifying graph topologies as well as processes 

evolving over graphs emerge in various applications involving 

gene-regulatory, brain, power, and social networks, to name 

a few. Key graph-aware learning tasks include regression, 

classification, subspace clustering, anomaly identification, 

interpolation, extrapolation, and dimensionality reduction. 

Scalable approaches to deal with such high-dimensional tasks 

experience a paradigm shift to address the unique modeling and 

computational challenges associated with data-driven sciences. 

Albeit simple and tractable, linear time-invariant models are 

limited since they are incapable of handling generally evolving 

topologies, as well as nonlinear and dynamic dependencies 

between nodal processes. To this end, the main goal of this paper 

is to outline overarching advances, and develop a principled 

framework to capture nonlinearities through kernels, which are 

judiciously chosen from a preselected dictionary to optimally 

fit the data. The framework encompasses and leverages (non)

linear counterparts of partial correlation and partial Granger 

causality, as well as (non)linear structural equations and vector 

autoregressions, along with attributes such as low rank, sparsity, 

and smoothness to capture even directional dependencies with 

abrupt change points, as well as time-evolving processes over 

possibly time-evolving topologies. The overarching approach 

inherits the versatility and generality of kernel-based methods, 

Digital Object Identifier: 10.1109/JPROC.2018.2804318

and lends itself to batch and computationally affordable 

online learning algorithms, which include novel Kalman filters 

over graphs. Real data experiments highlight the impact of 

the nonlinear and dynamic models on consumer and financial 

networks, as well as gene-regulatory and functional connectivity 

brain networks, where connectivity patterns revealed exhibit 

discernible differences relative to existing approaches.

KEYWORDS | Kernel-based models; network topology 

inference; nonlinear modeling; time-varying networks

I. IN TRODUCTION

The science of networks and networked interactions has 

recently emerged as a major catalyst for understanding 

the behavior of complex systems [28], [67], [90], [109]. 

Such systems are typically described by graphs, and can 

be man-made or natural. For example, human interac-

tion over the web commonly occurs over social networks 

such as Facebook and Twitter, while sophisticated brain 

functions are the result of complex physical interactions 

among neurons; see, e.g., [95] and references therein. 

Other complex networks show up in diverse fields includ-

ing financial markets, genomics, proteomics, power grids, 
and transportation systems, to name a few.

Despite their popularity, single-layer networks may fall 

short in describing complex systems. For instance, mode-

ling interactions between two individuals using a single edge 

weight can be an oversimplification of reality. Generalizing 
their single-layer counterparts, multilayer networks allow 

nodes to belong to different groups, termed layers [10], [66]. 
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February 2, 2018. Date of current version April 24, 2018. This work was supported by the 

National Science Foundation (NSF) under Grants 1514056, 1500713, 1711471, and NIH 
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The authors are with the Department of Electrical and Computer Engineering and the 
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Topology Identification and 
Learning Over Graphs: 
Accounting for Nonlinearities 
and Dynamics
This article focuses on the problem of learning graphs from data, in particular, to 
capture the nonlinear and dynamic dependencies.

By  G e o r G i o s  B .  G i a n n a k i s ,  Fe l l o w  IEEE ,  Ya n n i n G  s h e n ,  St u d e nt  Me m b e r  IEEE ,  
a nd GeorGios Va sil eios k a r a nikol a s, Student Member IEEE

I Recent tutorials on learning graphs from data (with a GSP flavor)
I IEEE Signal Processing Magazine and Proceedings of the IEEE
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Learning graphs from smooth signals

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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Problem formulation

Rationale
I Seek graphs on which data admit certain regularities

I Nearest-neighbor prediction (a.k.a. graph smoothing)
I Semi-supervised learning
I Efficient information-processing transforms

I Many real-world graph signals are smooth
I Graphs based on similarities among vertex attributes
I Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X := {xp}Pp=1, identify a graph G such that
signals in X are smooth on G .

I Criterion: Dirichlet energy on the graph G with Laplacian L

TV(x) = x>Lx

Network Science Analytics Graph Signal Processing 17



Example: Predicting protein function

I Baker’s yeast data, formally known as Saccharomyces cerevisiae
I Graph: 134 vertices (proteins) and 241 edges (protein interactions)

4

Fig. 8.4 Network of interactions among proteins known to be responsible for cell communication
in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling
cascades, a specific form of communication in the cell. The remaining proteins are indicated in
blue.

I Signal: functional annotation intracellular signaling cascade (ICSC)
I Signal transduction, how cells react to the environment
I xi = 1 if protein i annotated ICSC (yellow), xi = 0 otherwise (blue)
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Example: Predicting law practice

I Working relationships among lawyers [Lazega’01]
I Graph: 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

I Signal: various node-level attributes x = {xi}i∈V including

⇒ Type of practice, i.e., litigation (red) and corporate (cyan)

I Suspect lawyers collaborate more with peers in same legal practice

⇒ Knowledge of collaboration useful in predicting type of practice
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Laplacian-based factor analysis model

I Consider an unknown graph G with Laplacian L = VΛV>

⇒ Adopt GFT basis V as signal representation matrix

I Factor analysis model for the observed graph signal

x = Vχ+ ε

⇒ Latent variables χ ∼ N (0,Λ†) (≈ GFT coefficients)

⇒ Isotropic error term ε ∼ N (0, σ2I)

I Smoothness: prior encourages low-pass bandlimited x

⇒ Small eigenvalues of L (low freq.) → High-power factor loadings

X. Dong et al, “Learning Laplacian matrix in smooth graph signal

representations,” IEEE Trans. Signal Process., 2016
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Inference as denoising via graph kernel regression

I Maximum a posteriori (MAP) estimator of the latent variables χ

χ̂MAP = arg min
χ

{
‖x− Vχ‖2 + αχ>Λχ

}
⇒ Parameterized by the unknown V and Λ

I Define predictor y := Vχ, regularizer expressible as

χ>Λχ = y>VΛV>y = y>Ly = TV(y)

⇒ Laplacian-based TV denoiser of x, smoothness prior on y

⇒ Kernel-ridge regression with unknown K := L† (graph filter)

I Idea: jointly search for L and denoised representation y = Vχ

min
L,y

{
‖x− y‖2 + αy>Ly

}
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Formulation and algorithm

I Given signals X := {xp}Pp=1 in X = [x1, . . . , xP ] ∈ RNv×P , solve

min
L,Y

{
‖X− Y‖2

F + αtrace
(
Y>LY

)
+
β

2
‖L‖2

F

}
s. to trace(L) = Nv , L1 = 0, Lij = Lji ≤ 0, i 6= j

⇒ Objective function: Fidelity + smoothness + edge sparsity

⇒ Not jointly convex in L and Y, but bi-convex

I Algorithmic approach: alternating minimization (AM), O(N3
v ) cost

(S1) Fixed Y: solve for L via interior-point method, ADMM (more soon)
(S2) Fixed L: low-pass, graph filter-based smoother of the signals in X

Y = (I + αL)−1X
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Impact of regularizers on sparsity and accuracy

I Generate multiple signals on a synthetic Erdős-Rényi graph

⇒ Recover the graph for different values of α and β

I More edges promoted by increasing β and decreasing α

I In the low noise regime, the ratio β/α determines behavior

Network Science Analytics Graph Signal Processing 23



Example: Temperature graph in Switzerland

I Nv = 89 stations measuring monthly temperature averages (1981-2010)

⇒ Learn a graph G on which the temperatures vary smoothly

I Geographical distance not a good idea ⇒ different altitudes

I Recover altitude partition from spectral clustering on G

⇒ Red (high stations) and blue (low stations) clusters

I K-means applied directly to the temperatures (right) fails

Network Science Analytics Graph Signal Processing 24



Signal smoothness meets edge sparsity

I Recall X = [x1, . . . , xP ] ∈ RNv×P , let x̄>i ∈ R1×P denote its i-th row

⇒ Euclidean distance matrix Z ∈ RNv×Nv
+ , where Zij := ‖x̄i − x̄j‖2

I Neat trick: link between smoothness and sparsity

P∑
p=1

TV(xp) = trace(X>LX) =
1

2
‖A ◦ Z‖1

⇒ Sparse E when data come from a smooth manifold

⇒ Favor candidate edges (i , j) associated with small Zij

I Shows that edge sparsity on top of smoothness is redundant

I Parameterize graph learning problems in terms of A (instead of L)

⇒ Advantageous since constraints on A are decoupled

V. Kalofolias, “How to learn a graph from smooth signals,” AISTATS,

2016
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Scalable topology identification framework

I General purpose model for learning graphs [Kalofolias’16]

min
A

{
‖A ◦ Z‖1 − α1> log(A1) +

β

2
‖A‖2

F

}
s. to diag(A) = 0, Aij = Aji ≥ 0, i 6= j

⇒ Logarithmic barrier forces positive degrees

⇒ Penalize large edge-weights to control sparsity

I Primal-dual solver amenable to parallelization, O(N2
v ) cost

I Laplacian-based factor analysis encore. Tackle (S1) as

min
A

{
‖A ◦ Z‖1 − log(I {‖A‖1 = Nv}) +

β

2

(
‖A1‖2 + ‖A‖2

F

)}
s. to diag(A) = 0, Aij = Aji ≥ 0, i 6= j
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Example: Learning the graph of USPS digits

I 1001 images of the 10 digits, but highly imbalanced (2.6i2)

⇒ 10 classes via graph recovery plus spectral clustering

I Compare two methods based on smoothness and k-NN graph

I Performance more robust to graph density

⇒ Likely attributable to non-singleton nodes
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Graph learning via edge subset selection

I Idea: parameterize the unknown topology via an edge indicator vector

I Complete graph on NV nodes, having M :=
(
Nv

2

)
edges

⇒ Incidence matrix B := [b1, . . . ,bM ] ∈ RNv×M

I Laplacian of a candidate graph G (V ,E )

L(ω) =
M∑

m=1

ωmbmb>m

⇒ Binary edge indicator vector ω := [ω1, . . . , ωM ]> ∈ {0, 1}M

⇒ Offers an explicit handle on the number of edges ‖ω‖0 = |E |

Problem: Given observations X := {xp}Pp=1, learn an unweighted graph
G (V ,E ) such that signals in X are smooth on G and |E | = K .
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Cardinality-constrained Boolean optimization

I Natural formulation is to solve the non-convex problem

min
ω∈{0,1}M

trace(X>L(ω)X), s. to ‖ω‖0 = K

I Solution obtained through a simple rank-ordering procedure
I Compute edge scores cm := trace(X>(bmb>

m )X)
I Set ωm = 1 for those K edges having the smallest scores

I More pragmatic AWGN setting where xp = yp + εp, p = 1, . . . ,P

min
Y,ω∈{0,1}M

{
‖X− Y‖2

F + αtrace(Y>L(ω)Y)
}
, s. to ‖ω‖0 = K

⇒ Tackle via AM or semidefinite relaxation (SDR)

S. Chepuri et al, “Learning sparse graphs under smoothness prior,”

ICASSP, 2017
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Comparative summary

I Noteworthy features of the edge subset selection approach

3 Direct control on edge sparsity
3 Simple algorithm in the noise-free case
3 Devoid of Laplacian feasibility constraints
7 Does not guarantee connectivity of G
7 No room for optimizing edge weights

I Scalable framework in [Kalofolias’16] also quite flexible

min
A
{‖A ◦ Z‖1 + g(A)}

s. to diag(A) = 0, Aij = Aji ≥ 0, i 6= j

⇒ Subsumes the factor-analysis model [Dong et al’16]

⇒ Recovers Gaussian kernel weights Aij := exp
(
−‖x̄i−x̄j‖2

σ2

)
for

g(A) = σ2
∑
i,j

Aij(log(Aij)− 1)
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Case study

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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Case study: Classification of network data

I Labeled graph signals Xc := {x(c)
p }Pc

p=1 from C different classes

⇒ Signals in each class possess a very distinctive structure

I As.: Class c signals are smooth w.r.t. unknown Gc(V ,Ec)

I Multiple linear subspace model

⇒ Signals spanned by few Laplacian modes (GFT components)

⇒ Like susbpace clustering [Vidal’11], but with supervision

Problem statement

Given training signals X =
⋃C

c=1 Xc , learn discriminative graphs Ac

under smoothness priors to classify test signals via GFT projections.
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Discriminative graph learning

I Discriminative graph learning per class c

min
Ac

‖Ac ◦ Zc‖1 − α1> log(Ac1) +
β

2
‖Ac‖2

F−γ
C∑

k 6=c

‖Ac ◦ Zk‖1


s. to diag(Ac) = 0, [Ac ]ij = [Ac ]ji ≥ 0, i 6= j

⇒ Capture the underlying graph topology (class c structure)

⇒ Discriminability to boost classification performance

I Q: Given graphs {Âc}Cc=1, how do we classify a test signal x?

I Pass x through a filter-bank with C low-pass filters (LPFs)

x̃F ,c = diag(h̃)V̂>c x ⇒ ĉ = argmax
c

{
‖x̃F ,c‖2

}
⇒ LPF frequency response h̃, learned class-c GFT basis V̂c

Network Science Analytics Graph Signal Processing 33



Emotion recognition from EEG records

I Discriminative graph learning for emotion recognition from EEG signals

I DEAP dataset ⇒ 32 subjects watch music videos (40 trials each)
I Asked to rate videos: valence, arousal, like/dislike, dominance
I Focus on valence labels: low (1-5 rating) and high (6-10 rating)
I Signals acquired from Nv = 32 EEG channels

I We perform a subject-specific valence classification task

⇒ Learn C = 2 graphs and project onto the 8 smoothest modes

⇒ Report leave-one (trial)-out classification accuracy

I Mean classification accuracy over subjects is 92.73%

S. S. Saboksayr et al, “Online discriminative graph learning from multi-class

smooth signals,” Signal Processing, 2022
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Valence classification

I Q: What information do we glean from the class-conditional graphs?
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I Connectivity increases with emotion intensity (frontal lobe links)

I Asymmetric frontal activity apparent from the 8 smoothest modes
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Glossary

I Graph signal

I Graph signal processing

I Fourier transform

I Covariance matrix

I Principal component analysis

I Graph shift operator

I Graph Fourier transform

I Topology identification

I Smooth signal

I Dirichlet energy

I Factor analysis model

I Alternating minimization

I Euclidean distance matrix

I Edge subset selection

I Gaussian kernel graph

I Multiple subspace model

I Subspace clustering

I Discriminative graphs

I Low-pass graph filter

I Emotion recognition

I EEG signals

I Valence classification
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