Graph Signal Processing

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.hajim.rochester.edu/ece/sites/gmateos/

April 2, 2023
Network as graph $G(V, E)$: encode pairwise relationships

Desiderata: Process, analyze and learn from network data [Kolaczyk’09]
 ⇒ Use G to study graph signals, data associated with nodes in V

Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
Roadmap

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
Graph signal processing (GSP)

- **Graph** G with adjacency matrix A
 \[A_{ij} = \text{proximity between } i \text{ and } j \]
- **Signal** $x \in \mathbb{R}^{N_v}$ on top of the graph
 \[x_i = \text{signal value at node } i \]

- **Graph Signal Processing** \rightarrow Exploit structure encoded in A to process x
- **Q:** Graph signals common and interesting as networks are?
- **Q:** Why do we expect the graph structure to be useful in processing x?

A. Ortega et al, “Graph signal processing: Overview, challenges, and applications,” *Proc. IEEE*, 2018
Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
 - \(A_{ij} = \) Output of sector \(i \) that becomes input to sector \(j \) (62 sectors)

- Oil and Gas
 - Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)

- Services
 - Administrative services (AS), Professional services (MP)
 - Credit intermediation (FR), Securities (SC), Real estate (RA), Insurance (IC)

- Finance
 - Only interactions stronger than a threshold are shown
Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
 - $A_{ij} =$ Output of sector i that becomes input to sector j (62 sectors)

- A few sectors have widespread strong influence (services, finance, energy)
- Some sectors have strong indirect influences (oil)
- The heavy last row is final consumption

- This is an interesting network ⇒ Signals on this graph are as well
Disaggregated GDP of the United States

- Signal \(x = \) output per sector = disaggregated GDP
 - Network structure used to, e.g., reduce GDP estimation noise

- Signal is as interesting as the network itself. Arguably more
 - Same is true for brain connectivity and fMRI brain signals, ...
 - Gene regulatory networks and gene expression levels, ...
 - Online social networks and information cascades, ...
Importance of signal structure in time

- Signal and Information Processing is about exploiting signal structure.

- Discrete time described by cyclic graph
 - Time n follows time $n-1$
 - Signal value x_n similar to x_{n-1}

- Formalized with the notion of frequency

- Cyclic structure \Rightarrow Fourier transform \Rightarrow $\tilde{x} = F^H x$

- **Fourier transform** \Rightarrow Projection on eigenvector space of cycle
Random signal with mean $\mathbb{E} [\mathbf{x}] = 0$ and covariance $\mathbf{C}_x = \mathbb{E} [\mathbf{x} \mathbf{x}^H]$

\Rightarrow Eigenvector decomposition $\mathbf{C}_x = \mathbf{V} \Lambda \mathbf{V}^H$

Covariance matrix $\mathbf{A} = \mathbf{C}_x$ is a graph

\Rightarrow Not a very good graph, but still

Precision matrix \mathbf{C}_x^{-1} a common graph too

\Rightarrow Conditional dependencies of Gaussian \mathbf{x}

Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$

PCA transform \Rightarrow Projection on eigenvector space of (inverse) covariance

Q: Can we extend these principles to general graphs and signals?
Graph Fourier Transform

- Adjacency A, Laplacian L, or, generically graph shift $S = \mathbf{V} \Lambda \mathbf{V}^{-1}$

 $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin E$ (captures local structure in G)

- The Graph Fourier Transform (GFT) of \mathbf{x} is defined as

 \[\tilde{\mathbf{x}} = \mathbf{V}^{-1} \mathbf{x} \]

- While the inverse GFT (iGFT) of $\tilde{\mathbf{x}}$ is defined as

 \[\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}} \]

 \Rightarrow Eigenvectors $\mathbf{V} = [\mathbf{v}_1, \ldots, \mathbf{v}_{N_v}]$ are the frequency basis (atoms)

- Additional structure

 \Rightarrow If S is normal, then $\mathbf{V}^{-1} = \mathbf{V}^H$ and $\tilde{x}_k = \mathbf{v}_k^H \mathbf{x} = < \mathbf{v}_k, \mathbf{x}>$

 \Rightarrow Parseval holds, $\|\mathbf{x}\|^2 = \|\tilde{\mathbf{x}}\|^2$

- GFT \Rightarrow Projection on eigenvector space of graph shift operator S
Frequency modes of the Laplacian

- **Total variation** of signal x with respect to L

\[
TV(x) = x^TLx = \sum_{i,j=1, j>i}^{N_v} A_{ij}(x_i - x_j)^2
\]

⇒ Smoothness measure on the graph G (Dirichlet energy)

- For Laplacian eigenvectors $V = [v_1, \ldots, v_{N_v}] \Rightarrow TV(v_k) = \lambda_k$

⇒ Can view $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{N_v}$ as frequencies

- **Ex:** gene network, $N_v = 10$, $k = 1$, $k = 2$, $k = 9$
Is this a reasonable transform?

- Particularized to cyclic graphs \(\Rightarrow \) GFT \(\equiv \) Fourier transform
- Also for covariance graphs \(\Rightarrow \) GFT \(\equiv \) PCA transform
- But really, this is an empirical question. GFT of disaggregated GDP

- Spectral domain representation characterized by a few coefficients
 \(\Rightarrow \) Notion of bandlimitedness: \(x = \sum_{k=1}^{K} \tilde{x}_k v_k \)
 \(\Rightarrow \) Sampling, compression, filtering, pattern recognition
Graph frequency analysis of brain signals

- GFT of brain signals during a visual-motor learning task [Huang et al’16]
 - Decomposed into low, medium and high frequency components

- Brain: Complex system where regularity coexists with disorder [Sporns’11]
 - Signal energy mostly in the low and high frequencies
 - In brain regions akin to the visual and sensorimotor cortices
What is this class about?

▶ Learning graphs from nodal observations
▶ Key in neuroscience

⇒ Functional network from fMRI signals

▶ Most GSP works: how known graph S affects signals and filters
▶ Here, reverse path: how to use **GSP to infer the graph topology**?
 ▶ Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al’19], . . .
 ▶ Smooth signals [Dong et al’15], [Kalofolias’16], [Sardellitti et al’17], . . .
 ▶ Graph filtering models [Shafipour et al’17], [Thanou et al’17], . . .
 ▶ Stationary signals [Pasdeloup et al’15], [Segarra et al’16], . . .
 ▶ Directed graphs [Mei-Moura’15], [Shen et al’16], . . .
Recent tutorials on learning graphs from data (with a GSP flavor)

IEEE Signal Processing Magazine and Proceedings of the IEEE
Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
Problem formulation

Rationale

▶ Seek graphs on which data admit certain regularities
 ▶ Nearest-neighbor prediction (a.k.a. graph smoothing)
 ▶ Semi-supervised learning
 ▶ Efficient information-processing transforms

▶ Many real-world graph signals are smooth
 ▶ Graphs based on similarities among vertex attributes
 ▶ Network formation driven by homophily, proximity in latent space

Problem statement

Given observations $\mathcal{X} := \{x_p\}_{p=1}^P$, identify a graph G such that signals in \mathcal{X} are smooth on G.

▶ Criterion: Dirichlet energy on the graph G with Laplacian L

$$TV(x) = x^T L x$$
Example: Predicting protein function

- Baker’s yeast data, formally known as *Saccharomyces cerevisiae*
 - **Graph**: 134 vertices (proteins) and 241 edges (protein interactions)

![Network of interactions among proteins known to be responsible for cell communication in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling cascades, a specific form of communication in the cell. The remaining proteins are indicated in blue.](image)

- **Signal**: functional annotation *intracellular signaling cascade (ICSC)*
 - Signal transduction, how cells react to the environment
 - \(x_i = 1 \) if protein \(i \) annotated ICSC (yellow), \(x_i = 0 \) otherwise (blue)
Example: Predicting law practice

- Working relationships among lawyers [Lazega’01]
 - **Graph:** 36 partners, edges indicate partners worked together

![Network Diagram]

- **Signal:** various node-level attributes $\mathbf{x} = \{x_i\}_{i \in V}$ including
 - Type of practice, i.e., litigation (red) and corporate (cyan)
- Suspect lawyers collaborate more with peers in same legal practice
 - Knowledge of collaboration useful in predicting type of practice
Consider an unknown graph G with Laplacian $L = \mathbf{V} \Lambda \mathbf{V}^\top$

\Rightarrow Adopt GFT basis \mathbf{V} as signal representation matrix

Factor analysis model for the observed graph signal

$x = \mathbf{V} \chi + \epsilon$

\Rightarrow Latent variables $\chi \sim \mathcal{N}(0, \Lambda^\dagger)$ (\approx GFT coefficients)

\Rightarrow Isotropic error term $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Smoothness: prior encourages low-pass bandlimited x

\Rightarrow Small eigenvalues of L (low freq.) \rightarrow High-power factor loadings

Maximum a posteriori (MAP) estimator of the latent variables χ

$$\hat{\chi}_{\text{MAP}} = \arg \min_{\chi} \left\{ \| x - V\chi \|^2 + \alpha \chi^\top \Lambda \chi \right\}$$

\Rightarrow Parameterized by the unknown V and Λ

Define predictor $y := V\chi$, regularizer expressible as

$$\chi^\top \Lambda \chi = y^\top V \Lambda V^\top y = y^\top Ly = TV(y)$$

\Rightarrow Laplacian-based TV denoiser of x, smoothness prior on y

\Rightarrow Kernel-ridge regression with unknown $K := L^\dagger$ (graph filter)

Idea: jointly search for L and denoised representation $y = V\chi$

$$\min_{L,y} \left\{ \| x - y \|^2 + \alpha y^\top Ly \right\}$$
Given signals $\mathcal{X} := \{x_p\}_{p=1}^P$ in $X = [x_1, \ldots, x_P] \in \mathbb{R}^{N_v \times P}$, solve

$$\min_{L, Y} \left\{ \|X - Y\|_F^2 + \alpha \text{trace} (Y^\top LY) + \frac{\beta}{2} \|L\|_F^2 \right\}$$

s. to $\text{trace}(L) = N_v$, $L 1 = 0$, $L_{ij} = L_{ji} \leq 0$, $i \neq j$

⇒ **Objective function:** Fidelity + smoothness + edge sparsity
⇒ Not jointly convex in L and Y, but bi-convex

Algorithmic approach:
alternating minimization (AM), $O(N_v^3)$ cost

(S1) Fixed Y: solve for L via interior-point method, ADMM (more soon)
(S2) Fixed L: low-pass, graph filter-based smoother of the signals in X

$$Y = (I + \alpha L)^{-1}X$$
Impact of regularizers on sparsity and accuracy

- Generate multiple signals on a synthetic Erdős-Rényi graph
 ⇒ Recover the graph for different values of α and β

- More edges promoted by increasing β and decreasing α
- In the low noise regime, the ratio β/α determines behavior
Example: Temperature graph in Switzerland

- $N_v = 89$ stations measuring monthly temperature averages (1981-2010)
 \(\Rightarrow \) Learn a graph G on which the temperatures vary smoothly

- Geographical distance not a good idea \(\Rightarrow \) different altitudes

Recover altitude partition from spectral clustering on G

- Red (high stations) and blue (low stations) clusters
- K-means applied directly to the temperatures (right) fails
Signal smoothness meets edge sparsity

- Recall $X = [x_1, \ldots, x_P] \in \mathbb{R}^{N_v \times P}$, let $\bar{x}_i^\top \in \mathbb{R}^{1 \times P}$ denote its i-th row
 \Rightarrow Euclidean distance matrix $Z \in \mathbb{R}^{N_v \times N_v}$, where $Z_{ij} := \|\bar{x}_i - \bar{x}_j\|^2$

- **Neat trick**: link between smoothness and sparsity

 $\sum_{p=1}^{P} TV(x_p) = \text{trace}(X^\top LX) = \frac{1}{2} \|A \circ Z\|_1$

 \Rightarrow Sparse E when data come from a smooth manifold
 \Rightarrow Favor candidate edges (i, j) associated with small Z_{ij}

- Shows that edge sparsity on top of smoothness is redundant

- Parameterize graph learning problems in terms of A (instead of L)
 \Rightarrow Advantageous since constraints on A are decoupled

V. Kalofolias, “How to learn a graph from smooth signals,” *AISTATS*, 2016
Scalable topology identification framework

- General purpose model for learning graphs [Kalofolias’16]

$$\min_A \left\{ \| A \circ Z \|_1 - \alpha 1^\top \log(A 1) + \frac{\beta}{2} \| A \|_F^2 \right\}$$

s. to \(\text{diag}(A) = 0 \), \(A_{ij} = A_{ji} \geq 0 \), \(i \neq j \)

\(\Rightarrow \) Logarithmic barrier forces positive degrees
\(\Rightarrow \) Penalize large edge-weights to control sparsity

- Primal-dual solver amenable to parallelization, \(O(N_v^2) \) cost

- Laplacian-based factor analysis encore. Tackle (S1) as

$$\min_A \left\{ \| A \circ Z \|_1 - \log(\mathbb{I} \{\| A \|_1 = N_v\}) + \frac{\beta}{2} (\| A 1 \|^2 + \| A \|_F^2) \right\}$$

s. to \(\text{diag}(A) = 0 \), \(A_{ij} = A_{ji} \geq 0 \), \(i \neq j \)
Example: Learning the graph of USPS digits

- 1001 images of the 10 digits, but highly imbalanced ($2.6i^2$)
 ⇒ 10 classes via graph recovery plus spectral clustering

- Compare two methods based on smoothness and k-NN graph

- Performance more robust to graph density
 ⇒ Likely attributable to non-singleton nodes
Graph learning via edge subset selection

- **Idea:** parameterize the unknown topology via an edge indicator vector

- Complete graph on N_V nodes, having $M := \binom{N_V}{2}$ edges
 - Incidence matrix $B := [b_1, \ldots, b_M] \in \mathbb{R}^{N_V \times M}$

- Laplacian of a candidate graph $G(V, E)$
 \[
 L(\omega) = \sum_{m=1}^{M} \omega_m b_m b_m^T
 \]

 - Binary edge indicator vector $\omega := [\omega_1, \ldots, \omega_M]^T \in \{0, 1\}^M$
 - Offers an explicit handle on the number of edges $\|\omega\|_0 = |E|$

Problem: Given observations $\mathcal{X} := \{x_p\}_{p=1}^{P}$, learn an unweighted graph $G(V, E)$ such that signals in \mathcal{X} are smooth on G and $|E| = K$.
Natural formulation is to solve the non-convex problem

\[
\min_{\omega \in \{0,1\}^M} \text{trace}(X^T L(\omega)X), \quad \text{s. to } \|\omega\|_0 = K
\]

Solution obtained through a simple rank-ordering procedure

- Compute edge scores \(c_m := \text{trace}(X^T (b_m b_m^T)X) \)
- Set \(\omega_m = 1 \) for those \(K \) edges having the smallest scores

More pragmatic AWGN setting where \(x_p = y_p + \epsilon_p, \ p = 1, \ldots, P \)

\[
\min_{Y,\omega \in \{0,1\}^M} \left\{ \|X - Y\|_F^2 + \alpha \text{trace}(Y^T L(\omega)Y) \right\}, \quad \text{s. to } \|\omega\|_0 = K
\]

⇒ Tackle via AM or semidefinite relaxation (SDR)

S. Chepuri et al, “Learning sparse graphs under smoothness prior,”
ICASSP, 2017
Comparative summary

- Noteworthy features of the edge subset selection approach
 - Direct control on edge sparsity
 - Simple algorithm in the noise-free case
 - Devoid of Laplacian feasibility constraints
 - Does not guarantee connectivity of G
 - No room for optimizing edge weights

- Scalable framework in [Kalofolias’16] also quite flexible

$$\min_A \{\|A \circ Z\|_1 + g(A)\}$$

s. to $\text{diag}(A) = 0, A_{ij} = A_{ji} \geq 0, i \neq j$

\Rightarrow Subsumes the factor-analysis model [Dong et al’16]

\Rightarrow Recovers Gaussian kernel weights $A_{ij} := \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$ for

$$g(A) = \sigma^2 \sum_{i,j} A_{ij}(\log(A_{ij}) - 1)$$
Case study

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
Labeled graph signals $\mathcal{X}_c := \{ x_p^{(c)} \}_{p=1}^{P_c}$ from C different classes

- Signals in each class possess a very distinctive structure

As.: Class c signals are smooth w.r.t. unknown $G_c(V, E_c)$

Multiple linear subspace model

- Signals spanned by few Laplacian modes (GFT components)
- Like subspace clustering [Vidal’11], but with supervision

Problem statement

Given training signals $\mathcal{X} = \bigcup_{c=1}^{C} \mathcal{X}_c$, learn discriminative graphs A_c under smoothness priors to classify test signals via GFT projections.
Discriminative graph learning

- Discriminative graph learning per class c

\[
\min_{A_c} \left\{ \|A_c \circ Z_c\|_1 - \alpha 1^\top \log(A_c 1) + \frac{\beta}{2} \|A_c\|_F^2 - \gamma \sum_{k \neq c} \|A_c \circ Z_k\|_1 \right\}
\]

s. to $\text{diag}(A_c) = 0$, $[A_c]_{ij} = [A_c]_{ji} \geq 0$, $i \neq j$

⇒ Capture the underlying graph topology (class c structure)
⇒ Discriminability to boost classification performance

- Q: Given graphs $\{\hat{A}_c\}_{c=1}^C$, how do we classify a test signal x?

- Pass x through a filter-bank with C low-pass filters (LPFs)

\[
\tilde{x}_{F,c} = \text{diag}(\tilde{h}) \hat{V}_c^\top x \quad \Rightarrow \quad \hat{c} = \arg\max_c \{ \|\tilde{x}_{F,c}\|^2 \}
\]

⇒ LPF frequency response \tilde{h}, learned class-c GFT basis \hat{V}_c
Discriminative graph learning for emotion recognition from EEG signals

DEAP dataset ⇒ 32 subjects watch music videos (40 trials each)
- Asked to rate videos: valence, arousal, like/dislike, dominance
- Focus on valence labels: low (1-5 rating) and high (6-10 rating)
- Signals acquired from $N_v = 32$ EEG channels

We perform a subject-specific valence classification task
- Learn $C = 2$ graphs and project onto the 8 smoothest modes
- Report leave-one (trial)-out classification accuracy

Mean classification accuracy over subjects is 92.73%

Valence classification

Q: What information do we glean from the class-conditional graphs?

- Connectivity increases with emotion intensity (frontal lobe links)

- Asymmetric frontal activity apparent from the 8 smoothest modes
Glossary

- Graph signal
- Graph signal processing
- Fourier transform
- Covariance matrix
- Principal component analysis
- Graph shift operator
- Graph Fourier transform
- Topology identification
- Smooth signal
- Dirichlet energy
- Factor analysis model
- Alternating minimization
- Euclidean distance matrix
- Edge subset selection
- Gaussian kernel graph
- Multiple subspace model
- Subspace clustering
- Discriminative graphs
- Low-pass graph filter
- Emotion recognition
- EEG signals
- Valence classification