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> Network as graph G(V/, E): encode pairwise relationships

» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
= Use G to study graph signals, data associated with nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Roadmap

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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Graph signal processing (GSP)

X2 X4
» Graph G with adjacency matrix A o °
= Aj = proximity between / and j Xl
» Signal x € R™ on top of the graph
= x; = signal value at node / o °

X3 X5

» Graph Signal Processing — Exploit structure encoded in A to process x
» Q: Graph signals common and interesting as networks are?

» Q: Why do we expect the graph structure to be useful in processing x?
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Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce
> Aj; = Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas Services Finance

Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
Administrative services (AS), Professional services (MP)

Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
Only interactions stronger than a threshold are shown

vvyyvyy
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Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce
> Aj; = Output of sector i that becomes input to sector j (62 sectors)
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04 » A few sectors have widespread
strong influence (services,
finance, energy)

» Some sectors have strong
o indirect influences (oil)

Economic Sectors

002 » The heavy last row is final
consumption
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» This is an interesting network =- Signals on this graph are as well
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Disaggregated GDP of the United States

» Signal x = output per sector = disaggregated GDP
= Network structure used to, e.g., reduce GDP estimation noise
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» Signal is as interesting as the network itself. Arguably more

» Same is true for brain connectivity and fMRI brain signals, ...
» Gene regulatory networks and gene expression levels, ...
» Online social networks and information cascades, ...
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Importance of signal structure in time

» Signal and Information Processing is about exploiting signal structure
-
» Discrete time described by cyclic graph X6 X2
= Time n follows time n — 1
= Signal value x, similar to x,_1 M M
» Formalized with the notion of frequency ° °
O
» Cyclic structure = Fourier transform = % = F/x
» Fourier transform = Projection on eigenvector space of cycle

Network Science Analytics Graph Signal Processing



Covariances and principal components

> Random signal with mean E [x] = 0 and covariance C, = E [xx"]

= Eigenvector decomposition C, = VAV"

» Covariance matrix A = C, is a graph
= Not a very good graph, but still

» Precision matrix C;* a common graph too
= Conditional dependencies of Gaussian x

> Covariance matrix structure = Principal components (PCA) = % = V/x
» PCA transform =- Projection on eigenvector space of (inverse) covariance

> Q: Can we extend these principles to general graphs and signals?

Network Science Analytics Graph Signal Processing



Graph Fourier Transform

» Adjacency A, Laplacian L, or, generically graph shift S = VAV !
= S =0for i #j and (i,j) & E (captures local structure in G)

» The Graph Fourier Transform (GFT) of x is defined as
x=V'x
» While the inverse GFT (iGFT) of X is defined as
x = VX

= Eigenvectors V = [vy, ..., vy,] are the frequency basis (atoms)

» Additional structure
= If S is normal, then V=1 = V" and %, = v}’x =< vj,x >

= Parseval holds, ||x||? = ||%||?

» GFT = Projection on eigenvector space of graph shift operator S
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Frequency modes of the Laplacian

» Total variation of signal x with respect to L

Ny
TV(x) =x"Lx = Z Aji(xi — x)?
LJ=1j>0
= Smoothness measure on the graph G

» For Laplacian eigenvectors V = [vy,...,vy,] = TV(vk) = A«
= Can view 0 = A1 < --- < Ay, as frequencies

> Ex: gene network, N, =10, k=1, k=2, k=9
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Is this a reasonable transform?

» Particularized to cyclic graphs = GFT = Fourier transform
» Also for covariance graphs = GFT = PCA transform

> But really, this is an empirical question. GFT of disaggregated GDP
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» Spectral domain representation characterized by a few coefficients
= Notion of bandlimitedness: x = Zle XKV

= Sampling, compression, filtering, pattern recognition
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Graph frequency analysis of brain signals

» GFT of brain signals during a visual-motor learning task [Huang et al'16]

= Decomposed into low, medium and high frequency components

> Brain: Complex system where regularity coexists with disorder [Sporns'11]
= Signal energy mostly in the low and high frequencies

= In brain regions akin to the visual and sensorimotor cortices
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What is this class about?

» Learning graphs from nodal observations

» Key in neuroscience

= Functional network from fMRI signals

» Most GSP works: how known graph S affects signals and filters

> Here, reverse path: how to use GSP to infer the graph topology?

» Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al'19], ...
Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
Graph filtering models [Shafipour et al'17], [Thanou et al'17], ...
Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...

Directed graphs [Mei-Moura'15], [Shen et al'16], ...

vyvyy
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Connecting the dots

—m
T, F AN Topology Identification and
Learning Over Graphs:
bonnecting E 7 4 Accounting for Nonlinearities
5 - .
the Dots' > 8 & Learning 5, and Dynamics
ey "X Graphs ’f‘«f;@
4 fromData '

» Recent tutorials on learning graphs from data (with a GSP flavor)
> |EEE Signal Processing Magazine and Proceedings of the IEEE
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Learning graphs from smooth signals

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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Problem formulation

Rationale

» Seek graphs on which data admit certain regularities
» Nearest-neighbor prediction
» Semi-supervised learning
> Efficient information-processing transforms

» Many real-world graph signals are smooth
» Graphs based on similarities among vertex attributes
» Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X := {xp},’;l, identify a graph G such that
signals in X’ are smooth on G.

» Criterion: Dirichlet energy on the graph G with Laplacian L

TV(x) = x' Lx
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Example: Predicting protein function

> Baker's yeast data, formally known as Saccharomyces cerevisiae
» Graph: 134 vertices (proteins) and 241 edges (protein interactions)

» Signal: functional annotation intracellular signaling cascade (ICSC)

> Signal transduction, how cells react to the environment
»> x; = 1 if protein i annotated ICSC ( ), xi = 0 otherwise (blue)
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Example: Predicting law practice

» Working relationships among lawyers [Lazega'01]
» Graph: 36 partners, edges indicate partners worked together

Ep

@

» Signal: various node-level attributes x = {x; };cv including

= Type of practice, i.e., litigation (red) and corporate (cyan)

> Suspect lawyers collaborate more with peers in same legal practice

= Knowledge of collaboration useful in predicting type of practice
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Laplacian-based factor analysis model

» Consider an unknown graph G with Laplacian L = VAV
= Adopt GFT basis V as signal representation matrix

» Factor analysis model for the observed graph signal
x=Vx+e

= Latent variables x ~ A/(0,AT)
= lsotropic error term € ~ N (0, o?)

» Smoothness: prior encourages low-pass bandlimited x
= Small eigenvalues of L (low freq.) — High-power factor loadings
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Inference as denoising via graph kernel regression

» Maximum a posteriori (MAP) estimator of the latent variables x
Xmap = arg mXin {IIx = VxII* + ax " Ax}
= Parameterized by the unknown V and A
» Define predictor y := Vx, regularizer expressible as
x"Ax =y VAVTy =yTLy = TV(y)

= Laplacian-based TV denoiser of x, smoothness prior on y

= Kernel-ridge regression with unknown K := LT (graph filter)

» Idea: jointly search for L and denoised representation y = Vx

min {[|x - ylI> + ay 'Ly}
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Formulation and algorithm

> Given signals X := {x,}7_; in X = [xy,...,xp] € RM*P, solve

- vy T B2
Tl\?{|x Y||# + atrace (Y LY)+2||L|F}

s

s.to trace(L)=N,, L1 =0, L;=L; <0, i#j

= Objective function: Fidelity + smoothness + edge sparsity
= Not jointly convex in L and Y, but bi-convex
» Algorithmic approach: alternating minimization (AM), O(N3) cost

(S1) Fixed Y: solve for L via interior-point method, ADMM
(S2) Fixed L: low-pass, graph filter-based smoother of the signals in X

Y =(I+aL) !X
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Impact of regularizers on sparsity and accuracy

» Generate multiple signals on a synthetic Erdés-Rényi graph
= Recover the graph for different values of « and 8
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Number of edges in learned graph

% e logion

log,of logyof

» More edges promoted by increasing S and decreasing «

» In the low noise regime, the ratio 8/« determines behavior
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Example: Temperature graph in Switzerland

> NN, = 89 stations measuring monthly temperature averages (1981-2010)
= Learn a graph G on which the temperatures vary smoothly

» Geographical distance not a good idea = different altitudes

Konstanz
°
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» Recover altitude partition from spectral clustering on G
= Red (high stations) and blue (low stations) clusters
> K-means applied directly to the temperatures (right) fails
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Signal smoothness meets edge sparsity

» Recall X = [xq,...,xp] € RV>*P et xT € RY*P denote its i-th row

= Euclidean distance matrix Z € RY*™ where Z; := ||x; — X;||?
» Neat trick: link between smoothness and sparsity

P
1
D TV(x,) = trace(X LX) = SIA0Z]:
p=1

= Sparse E when data come from a smooth manifold
= Favor candidate edges (i, j) associated with small Z;
» Shows that edge sparsity on top of smoothness is redundant

» Parameterize graph learning problems in terms of A (instead of L)

=- Advantageous since constraints on A are decoupled
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Scalable topology identification framework

> General purpose model for learning graphs [Kalofolias'16]

o {14021, — a1 log(A1) + Z A}
s to diag(A) =0, Aj=A; >0, %]

= Logarithmic barrier forces positive degrees

= Penalize large edge-weights to control sparsity
» Primal-dual solver amenable to parallelization, O(/N2) cost

» Laplacian-based factor analysis encore. Tackle (S1) as

i {18021~ log(t (1A = 1)+ 5 (1aL)7 + [al7)}

s. to diag(A) =0, Aj =A;>0,i#j
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Example: Learning the graph of USPS digits

» 1001 images of the 10 digits, but highly imbalanced (2.6i2)

= 10 classes via graph recovery plus spectral clustering

» Compare two methods based on smoothness and k-NN graph
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» Performance more robust to graph density

= Likely attributable to non-singleton nodes
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Graph learning via edge subset selection

» Idea: parameterize the unknown topology via an edge indicator vector

» Complete graph on Ny nodes, having M := (Aév) edges
= Incidence matrix B := [by,...,by] € RVW*M

> Laplacian of a candidate graph G(V, E)

M
L(w) = wmbmb,,
m=1

= Binary edge indicator vector w := [wi,...,wy]' € {0,1}M
= Offers an explicit handle on the number of edges |wl|o = |E]|

Problem: Given observations X := {xp}gzl, learn an unweighted graph

G(V, E) such that signals in X are smooth on G and |E| = K.
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Cardinality-constrained Boolean optimization

» Natural formulation is to solve the non-convex problem

min trace(X"L(w)X), s. to =K
Lmin | trace(XTL(w)X) Jelo

» Solution obtained through a simple rank-ordering procedure
> Compute edge scores ¢ := trace(X ' (bnb,,)X)
P> Set w, = 1 for those K edges having the smallest scores

» More pragmatic AWGN setting where x, =y, +€,, p=1,...,P

i X —Y|? t YTL(w)Y ot =K
v,wr&'&w{” lE + atrace( (W)Y)}, s to [wllo

= Tackle via AM or semidefinite relaxation (SDR)
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Comparative summary

» Noteworthy features of the edge subset selection approach

v Direct control on edge sparsity

v/ Simple algorithm in the noise-free case

v Devoid of Laplacian feasibility constraints
X Does not guarantee connectivity of G

X No room for optimizing edge weights

> Scalable framework in [Kalofolias'16] also quite flexible
min (A0 2] + g(A))
s. to  diag(A) =0, Aj=A;>0,i#j

= Subsumes the factor-analysis model [Dong et al'16]

e
= Recovers Gaussian kernel weights Aj; := exp (—”X’Ui;f”) for

g(A) =02 Aj(log(Ay) — 1)

iJ
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Case study

Graph signal processing: Motivation and fundamentals

Learning graphs from observations of smooth signals

Case study: Discriminative graph learning for emotion recognition
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y: Classification of network data

» Labeled graph signals X, := {xff)}g;l from C different classes
= Signals in each class possess a very distinctive structure

» As.: Class ¢ signals are smooth w.r.t. unknown G.(V, E;)

» Multiple linear subspace model
= Signals spanned by few Laplacian modes (GFT components)
= Like susbpace clustering [Vidal'11], but with supervision

Problem statement

Given training signals X = UCC:1 X, learn discriminative graphs A
under smoothness priors to classify test signals via GFT projections.
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Discriminative graph learning

» Discriminative graph learning per class ¢

C
min { [Aco Zels — 01" log(Acl) + 2 [AcE— D Ao Zul,
i k#c

s. to diag(Ac) =0, [Aj =[Aji >0, i#j

= Capture the underlying graph topology (class ¢ structure)
= Discriminability to boost classification performance

> Q: Given graphs {A.}C_;, how do we classify a test signal x?

» Pass x through a filter-bank with C low-pass filters (LPFs)

% =diag(h)V/x = é= argmax { ||%r.c[*}
c
= LPF frequency response ﬁ, learned class-c GFT basis \AIC
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Emotion recognition from EEG records

» Discriminative graph learning for emotion recognition from EEG signals

» DEAP dataset = 32 subjects watch music videos (40 trials each)

> Asked to rate videos: valence, arousal, like/dislike, dominance
» Focus on valence labels: low (1-5 rating) and high (6-10 rating)
» Signals acquired from N, = 32 EEG channels

» We perform a subject-specific valence classification task
= Learn C = 2 graphs and project onto the 8 smoothest modes

= Report leave-one (trial)-out classification accuracy

» Mean classification accuracy over subjects is 92.73%
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Valence classification
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» Connectivity increases with emotion intensity (frontal lobe links)

High valence

Low valence

> Asymmetric frontal activity apparent from the 8 smoothest modes
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Glossary

Graph signal

Graph signal processing
Fourier transform

Covariance matrix

Principal component analysis
Graph shift operator

Graph Fourier transform
Topology identification
Smooth signal

Dirichlet energy

VVYyVVVVYyVVYVYYVYY

Factor analysis model
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Alternating minimization
Euclidean distance matrix
Edge subset selection
Gaussian kernel graph
Multiple subspace model
Subspace clustering
Discriminative graphs
Low-pass graph filter
Emotion recognition

EEG signals

Valence classification
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