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Nearest neighbors

Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function
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Processes on network graphs

▶ Motivation: study complex systems of elements and their interactions
▶ So far studied network graphs as representations of these systems

▶ Often some quantity associated with each of the elements is of interest

▶ Quantities may be influenced by the interactions among elements

1) Behaviors and beliefs influenced by social interactions
2) Functional roles of proteins influenced by their sequence similarity
3) Spread of epidemics influenced by proximity of individuals

▶ Can think of these quantities as random processes defined on graphs
▶ Static {Xi}i∈V and dynamic processes {Xi (t)}i∈V for t ∈ N or R+
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Nearest-neighbor prediction

▶ Consider prediction of a static process X := {Xi}i∈V on a graph
▶ Process may be truly static, or a snapshot of a dynamic process

Static network process prediction

Predict Xi , given observations of the adjacency matrix A = a and
of all attributes X(−i) = x(−i) but Xi .

▶ Idea: exploit the network graph structure in A for prediction

▶ For binary Xi ∈ {0, 1}, say, simple nearest-neighbor method predicts

X̂i = I
{∑

j∈Ni
xj

|Ni |
> τ

}
⇒ Average of the observed process in the neighborhood of i

⇒ Called ‘guilt-by-association’ or graph-smoothing method
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Example: predicting law practice

▶ Network G obs of working relationships among lawyers [Lazega’01]
▶ Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

▶ Data includes various node-level attributes {Xi}i∈V including

⇒ Type of practice, i.e., litigation (red) and corporate (cyan)

▶ Suspect lawyers collaborate more with peers in same legal practice

⇒ Knowledge of collaboration useful in predicting type of practice
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Example: predicting law practice (cont.)

▶ Q: In predicting practice Xi , how useful is the value of one neighbor?

⇒ Breakdown of 115 edges based on practice of incident lawyers

Litigation Corporate

Litigation 29 43
Corporate 43 43

▶ Looking at the rows in this table
▶ Litigation lawyers collaborators are 40% litigation, 60% corporate
▶ Collaborations of corporate lawyers are evenly split

⇒ Suggests using a single neighbor has little predictive power

▶ But 60% (29+43=72) of edges join lawyers with common practice

⇒ Suggests on aggregate knowledge of collaboration informative
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Example: predicting law practice (cont.)

▶ Incorporate information of all collaborators as in nearest-neighbors
▶ Let Xi = 0 if lawyer i practices litigation, and Xi = 1 for corporate
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Fig. 8.1 Histograms of the fraction of corporate collaborators among lawyers in the network of
Figure 6.7, separated according to the practice of each lawyer (top: litigation; bottom: corporate).

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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▶ Nearest-neighbor prediction rule

X̂i = I
{∑

j∈Ni
xj

|Ni |
> 0.5

}
⇒ Infers correctly 13 of the 16 corporate lawyers (i.e., 81%)

⇒ Infers correctly 16 of the 18 litigation lawyers (i.e., 89%)

⇒ Overall error rate is just under 15%
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Modeling static network processes

▶ Nearest-neighbor methods may seem rather informal and simple

⇒ But competitive with more formal, model-based approaches

▶ Still, model-based methods have certain potential advantages:

a) Probabilistically rigorous predictive statements;

b) Formal inference for model parameters; and

c) Natural mechanisms for handling missing data

▶ Model the process X := {Xi}i∈V given an observed graph A = a

⇒ Markov random field (MRF) models

⇒ Kernel-regression models using graph kernels
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Markov random fields

Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function
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Markov random field models

▶ Consider a graph G (V ,E ) with given adjacency matrix A

⇒ Collection of discrete RVs X = [X1, . . . ,XNv ]
⊤ defined on V

▶ Def: process X is a Markov random field (MRF) on G if

P
(
Xi = xi

∣∣X(−i) = x(−i)
)
= P

(
Xi = xi

∣∣XNi = xNi

)
, i ∈ V

▶ Xi conditionally independent of other Xk , given neighbors values
▶ ‘Spatial’ Markov property, generalizing Markov chains in time
▶ G defines neighborhoods Ni , hence dependencies

▶ Roots in statistical mechanics, Ising model of ferromagnetism [Ising ’25]

⇒ MRFs used extensively in spatial statistics and image analysis

▶ Definition requires a technical condition P (X = x) > 0, for all x
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MRFs and Gibbs random fields

▶ MRFs equivalent to Gibbs random fields X, having joint distribution

P (X = x) =

(
1

κ

)
exp{U(x)}

⇒ Energy function U(·), partition function κ =
∑

x exp{U(x)}
⇒ Equivalence follows from the Hammersley-Clifford theorem

▶ Energy function decomposable over the maximal cliques in G

U(x) =
∑
c∈C

Uc(x)

⇒ Defined clique potentials Uc(·), set C of maximal cliques in G

▶ Can show P
(
Xi

∣∣X(−i)
)
depends only on cliques involving vertex i
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Example: auto-logistic MRFs

▶ May specify MRFs through choice of clique potentials Uc(·)
▶ Ex: Class of auto models are defined through the constraints:

(i) Only cliques c ∈ C of size one and two have Uc ̸= 0
(ii) Probabilities P

(
Xi

∣∣XNi

)
have an exponential family form

▶ For binary RVs Xi ∈ {0, 1}, the energy function takes the form

U(x) =
∑
i∈V

αixi +
∑

(i,j)∈E

βijxixj

▶ Resulting MRF is known as auto-logistic model, because

P
(
Xi = 1

∣∣XNi = xNi

)
=

exp{αi +
∑

j∈Ni
βijxj}

1 + exp{αi +
∑

j∈Ni
βijxj}

⇒ Logistic regression of xi on its neighboring xj ’s

⇒ Ising model a special case, when G is a regular lattice
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Homogeneity assumptions

▶ Typical to assume that parameters αi and βij are homogeneous

▶ Ex: Specifying αi = α and βij = β yields conditional log-odds

log

[
P
(
Xi = 1

∣∣XNi = xNi

)
P
(
Xi = 0

∣∣XNi = xNi

)] = α+ β
∑
j∈Ni

xj

⇒ Linear in the number of neighbors j of i with Xj = 1

▶ Ex: Specifying αi = α+ |Ni |β2 and βij = β1 − β2 yields

log

[
P
(
Xi = 1

∣∣XNi = xNi

)
P
(
Xi = 0

∣∣XNi = xNi

)] = α+ β1

∑
j∈Ni

xj + β2

∑
j∈Ni

(1− xj)

⇒ Linear also in the number of neighbors j of i with Xj = 0

Network Science Analytics Prediction for Processes on Network Graphs 13



MRFs for continuous random variables

▶ MRFs with continuous RVs: replace PMFs/sums with pdfs/integrals

⇒ Gaussian distribution common for analytical tractability

▶ Ex: auto-Gaussian model specifies Gaussian Xi

∣∣XNi = xNi , with

E
[
Xi

∣∣XNi = xNi

]
= αi +

∑
j∈Ni

βij(xj − αj)

var
[
Xi

∣∣XNi = xNi

]
= σ2

⇒ Values Xi modeled as weighted combinations of i ’s neighbors

▶ Let µ = [α1, . . . , αNv ]
⊤ and Σ = σ2(I− B)−1, where B = [βij ]

⇒ Under βii = 0 and βij = βji → X ∼ N (µ,Σ)

▶ Homogeneity assumptions can be imposed, simplifying expressions

⇒ Further set αi = α and βij = β → X ∼ N (α1, σ2(I− βA)−1)
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Inference and prediction for MRFs

▶ In studying process X = {Xi}i∈V of interest to predict some or all of X

▶ MRF models we have seen for this purpose are of the form

Pθ(X = x) =

(
1

κ(θ)

)
exp{U(x;θ)}

⇒ Parameter θ low-dimensional, e.g., θ = [α, β] in auto-models

▶ Predictions can be generated based on the distribution Pθ(·)
⇒ Knowledge of θ is necessary, and typically θ is unknown

▶ Unlike nearest-neighbors prediction, MRFs requires inference of θ first
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Inference for MRFs

▶ Estimation of θ most naturally approached via maximum-likelihood

▶ Even though the log-likelihood function takes a simple form

ℓ(θ) = log Pθ(X = x) = U(x;θ)− log κ(θ)

⇒ Computing κ(θ) =
∑

x exp{U(x;θ)} often intractable

▶ Popular alternative is maximum pseudo-likelihood, i.e., maximize∑
i∈V

log Pθ

(
Xi = xi

∣∣X(−i) = x(−i)
)

⇒ Ignores dependencies beyond the neighborhood of each Xi

⇒ Probabilities depend on clique potentials Uc , not on κ(θ)
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Gibbs sampler

▶ Given a value of θ, consider predicting some or all of X from Pθ(·)
⇒ Computing Pθ(·) hard, can draw from it using a Gibbs sampler

▶ Gibbs sampler exploits Pθ

(
Xi

∣∣X(−i) = x(−i)
)
in simple closed form

▶ New value X(k) obtained from X(k−1) = x(k−1) by drawing

X1,(k) from Pθ

(
X1

∣∣X(−1) = x(−1)
(k−1)

)
...

XNv ,(k) from Pθ

(
XNv

∣∣X(−Nv ) = x(−Nv )
(k−1)

)
⇒ Generated sequence X(1),X(2), . . . forms a Markov chain

▶ Under appropriate conditions, stationary distribution equals Pθ(·)
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Prediction with MRFs

▶ Given large sample from Pθ(·), predict X using empirical distributions

Ex: for binary X use empirical marginal frequencies to predict Xi , i.e.,

X̂i = I

{
1

n

m+n∑
k=m+1

Xi,(k) > 0.5

}
for large m, n

▶ Suppose we observe some elements Xobs = xobs , and wish to predict Xmiss

⇒ Draw from the relevant Pθ

(
Xmiss

∣∣Xobs = xobs
)
as

Xi,(k) from Pθ

(
Xi

∣∣Xobs = xobs ,X(−i),miss = x
(−i),miss
(k−1)

)
⇒ Prediction from empirical distributions analogous

▶ Prior inference of θ based on limited data Xobs = xobs non-trivial
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Kernel-based regression

Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function
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Kernel methods

▶ MRFs specify precise dependency structures in X, given the graph G

▶ Q1: Can we just learn a function relating the vertices to their attributes?

A1: Yes! A regression-based approach on G is in order

▶ Methods such as LS regression relate data in Euclidean space

▶ Q2: Can these methods be tuned to accommodate graph-indexed data?

A2: Yes! Kernel methods consisting of:

1) Generalized predictor variables (i.e., encoded using a kernel)
2) Regression of a response to these predictors using ridge regression

▶ Key innovation here is the construction of graph kernels
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Kernel regression on graphs

▶ Let G (V ,E ) be a graph and X = {Xi}i∈V a vertex attribute process

⇒ Suppose we observe Xi = xi for i ∈ V obs ⊂ V , with n = |V obs |

Regression on graphs

Learn ĥ : V 7→ R describing how attributes vary across vertices.

▶ Graph-indexed data not Euclidean ⇒ kernel regression methods

▶ Def: A function K : V × V 7→ R is a called a kernel if for each
m = 1, . . . ,Nv and subset of vertices {i1, . . . , im} ⊆ V , matrix

K(m) = [K (ij , ij′)] ∈ Rm×m is symmetric and positive semi-definite

▶ Think of kernels as functions that produce similarity matrices

⇒ Kernel regression builds predictors from such similarities

⇒ Need to also decide on the space H where to search for ĥ
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Reproducing-kernel Hilbert spaces

▶ Since V is finite, represent functions h on V as vectors h ∈ RNv

⇒ Form K(Nv ) ∈ RNv×Nv by evaluating K in all pairs (i , j) ∈ V (2)

⇒ Suppose K(Nv ) admits an eigendecomposition

K(Nv ) = Φ∆Φ⊤

Kernel regression

Given kernel K and data xobs , kernel regression seeks ĥ from the class

HK = {h ∈ RNv : h = Φβ and β⊤∆−1β < ∞}

▶ HK is the reproducing-kernel Hilbert space induced by K

⇒ Members h ∈ HK are linear combinations of eigenvectors of K(Nv )

⇒ Constrained to finite norm ∥h∥H = ∥Φβ∥H := β⊤∆−1β < ∞
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Penalized regression in RKHS

▶ Choose appropriate ĥ ∈ HK using penalized kernel regression

▶ Q: Appropriate? Data fidelity and small norm (i.e., low complexity)

ĥ = Φβ̂, where β̂ = argmin
β

 ∑
i∈V obs

C (xi , [Φβ]i ) + λβ⊤∆−1β


▶ Convex loss C(·, ·) encourages goodness of fit to xobs

▶ The term ∥h∥H = β⊤∆−1β penalizes excessive complexity
▶ Tuning parameter λ trades off data fidelity and complexity

▶ Generalized ridge-regression with columns of Φ as predictors

⇒ Eigenvectors with small eigenvalues penalized more harshly
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Representer theorem

▶ Need to compute the entire Φ to find the regression function ĥ

⇒ Complex to evaluate K for all vertex pairs V (2) and find Φ

▶ Consider instead evaluating K in V × V obs , yielding K(Nv ,n) ∈ RNv×n

⇒ The Representer theorem asserts that ĥ equivalently given by

ĥ = K(Nv ,n)α̂, where α̂ = argmin
α

 ∑
i∈V obs

C (xi , [K
(n)α]i ) + λα⊤K(n)α


▶ Just need to evaluate K in V obs × V obs to form K(n)

⇒ Complexity scales with the number of observations n, not Nv

▶ Because ĥ = K(Nv ,n)α̂, can predict value in i ∈ Vmiss via

ĥi =
∑

j∈V obs

α̂jK (i , j)
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Example: Kernel ridge regression

▶ Let the Xi be continuous and the loss quadratic, i.e., C (x , a) = (x − a)2

▶ The optimization problem defining α̂ thus specializes to

min
α

[
∥xobs −K(n)α∥22 + λα⊤K(n)α

]
⇒ Particular method known as kernel ridge regression. Intuition?

▶ Define θ := (K(n))1/2α and M := (K(n))1/2. An equivalent problem is

min
θ

[
∥xobs −Mθ∥22 + λθ⊤θ

]
▶ Standard ridge regression with solution θ̂ = (M⊤M+ λI)−1M⊤xobs

⇒ The kernel regression function is ĥ = K(Nv ,n)(K(n))−1/2θ̂
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Example: Kernel logistic regression

▶ Let binary Xi ∈ {−1, 1} indicate class membership, for two classes

▶ A natural choice in this context is the logistic loss, given by

C (x , a) = ln
(
1 + e−xa

)
⇒ Corresponds to the negative log-likelihood of a Bernoulli RV

▶ Kernel logistic regression selects α̂ via the optimization problem

min
α

 ∑
i∈V obs

ln
(
1 + e−xi [K

(n)α]i
)
+ λα⊤K(n)α


⇒ No closed-form solution for α̂, need iterative algorithms

▶ Given ĥ = K(Nv ,n)α̂, prediction of Xi for i ∈ Vmiss based on

P̂
(
Xi = 1

∣∣Xobs = xobs
)
=

e ĥi

1 + e ĥi
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Designing kernels on graphs

▶ In designing a kernel K on a graph G , desired properties are:

P1) K(Nv ) is symmetric and positive semi-definite
P2) K captures suspected similarity among vertices in V

▶ Presumption: proximity of vertices in G already indicative of similarity

⇒ Most kernels proposed are related to the topology of G

▶ Ex: the Laplacian kernel is K(Nv ) := L†, where † denotes pseudo-inverse

⇒ Penalty term ∥h∥H = β⊤∆−1β takes the form

β⊤∆−1β = β⊤Φ⊤Φ∆−1Φ⊤Φβ

= h⊤K†h = h⊤Lh

=
∑

(i,j)∈E

(hi − hj)
2

▶ Kernel regression seeks smooth ĥ with respect to the topoology of G
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Diffusion kernels

▶ Laplacian kernel K = L† encodes similarity among vertices through A

⇒ Can encode similarity through paths, powers of A and L

▶ Popular choice incorporating all powers of L is the diffusion kernel

K = e−ζL :=
∞∑

m=0

(−ζ)m

m!
Lm

▶ Decay factor 0 < ζ < 1 controls similarity assigned to longer paths
▶ Defined in terms of the matrix exponential e−ζL

▶ Treating K as a function of ζ yields the differential equation

∂K

∂ζ
= −LK

⇒ Parallels the heat equation in physics, motivating its name
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Regularized Laplacian kernels

▶ Let L = ΦΓΦ⊤, with Γ = [γ1, . . . , γNv ]
⊤ and Φ = [ϕ1, . . . ,ϕNv

]

▶ Laplacian and diffusion kernels within class of regularization kernels

K =
Nv∑
i=1

r−1(γi )ϕiϕ
⊤
i

⇒ K is the inverse of the regularized Laplacian r(L) := Φr(Γ)Φ⊤

▶ Regularization function r(·) ≥ 0 is increasing, including:

Ex: Identity function r(γ) = γ

Ex: Exponential function r(γ) = exp(ζγ)

Ex: Linear inverse function r(γ) = (1− γ
γmax

)−1

▶ All K have identical eigenvectors, just vary the eigenvalues r−1(γi )

⇒ Same predictors in the kernel regression, different penalty
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Example: kernels in the lawyer collaboration graph

▶ Network of lawyer collaboration, connected component with Nv = 34
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Fig. 8.2 Left: Eigenvalues γi of the Laplacian L for the network of collaboration among lawyers.
Right: Regularized eigenvalues r−1(γi), using the identity (yellow), exponential (blue), and linear
inverse (green) functions r(·). (Note: Regularized eigenvalues have been normalized to facilitate
display.)

▶ Left figure shows eigenvalues γ1, . . . , γ34 of L, recall γ1 = 0
▶ Right figure shows values of r−1(γi ), for i = 2, . . . , 34

▶ Regularizers: identity, exponential, and linear inverse functions

⇒ First two damp most eigenvalues, only few ϕi affect K

⇒ Small decay in the last, all ϕi play a substantial role in K
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Visual representation of eigenvectors

▶ Visual representation of 8 ‘smallest’ eigenvectors ϕi , i = 2, . . . , 9
▶ Vertex size proportional to the component in ϕi , color indicates sign3

Fig. 8.3 Visual representation of the eigenvectors φi corresponding to the first nine (non-trivial)
smallest eigenvalues γi of L in the network of collaboration among lawyers. Top row: i = 2,3,4;
Middle row: i= 5,6,7; Bottom row: i= 8,9,10.
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smallest eigenvalues γi of L in the network of collaboration among lawyers. Top row: i = 2,3,4;
Middle row: i= 5,6,7; Bottom row: i= 8,9,10.

▶ Early eigenvectors have entries relatively more uniform in size and color

⇒ Eigenvectors become less ‘smooth’ with increasing eigenvalue
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Case study

Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function
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Predicting protein function

▶ Proteins integral to complex biochemical processes within organisms

⇒ Understanding their function is critical in biology and medicine

▶ But ∼ 70% of genes code for proteins with unknown function

⇒ Prediction of protein function a task of great importance

▶ Methodologies explored so far:

(i) Traditional experiment-intensive approaches
(ii) Methods based on sequence-similarity, protein structure
(iii) Network-based methods

▶ Networks of protein-protein interactions natural in the latter
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Protein-protein interaction network

▶ Baker’s yeast data, formally known as Saccharomyces cerevisiae
▶ Graph: 134 vertices (proteins) and 241 edges (protein interactions)

4

Fig. 8.4 Network of interactions among proteins known to be responsible for cell communication
in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling
cascades, a specific form of communication in the cell. The remaining proteins are indicated in
blue.

▶ Predict functional annotation intracellular signaling cascade (ICSC)

⇒ Signal transduction, how cells react to the environment

▶ Let X = {Xi}i∈V denote the vertex process of the annotation ICSC
▶ Xi = 1 if protein i annotated ICSC (yellow), Xi = 0 otherwise (blue)
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Methods to predict protein function

Method 1: nearest-neighbor (NN) prediction with varying threshold τ

Method 2: MRF with predictors counting nodes with and without ICSC
▶ Parameters (α, β1, β2) estimated via maximum pseudo-likelihood
▶ Drew 1,000 samples of vertex annotations using a Gibbs sampler
▶ Predictions based on empirical estimates of P

(
Xi = 1

∣∣Xobs = xobs
)

Method 3: kernel logistic regression (KLR) with K = L† and λ = 0.01

▶ In all cases predictions generated using 10-fold cross validation

⇒ 90% of the labels used to train the prediction methods

⇒ Remaining 10% used to test obtained predictors
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Nearest-neighbor prediction

▶ Empirical proportions of neighbors with and without ICSC

C
ou

nt
 

Proportion neighbors w/ ICSC Proportion neighbors w/o ICSC 

C
ou

nt
 

⇒ Classes less-well separated than for the lawyer data

▶ Recall nearest-neighbor prediction rule for τ = 0.5 is

X̂i = I
{∑

j∈Ni
xj

|Ni |
> 0.5

}
⇒ Yields a decent missclasification rate of roughly 23%
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Receiver operating characteristic

▶ ROC curves depict predictive performance
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Fig. 8.5 Receiver operating characteristic (ROC) curves summarizing the accuracy of the nearest
neighbor (black), Markov random field (red), and kernel logistic regression (green) methods, for
predicting proteins involved in intracellular signaling cascades (ICSC) based on protein interac-
tions. Also shown (blue) is the ROC curve for prediction with a kernel logistic regression using a
kernel combining information on protein interactions and sequence motifs.
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▶ All methods performed comparably. Area under the curve values:

NN - 0.80, MRF - 0.82, KLR - 0.83, KLR w/motifs - 0.85
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Closing remarks

▶ Not surprising that all three methods performed similarly

⇒ NN and MRF use same statistics
∑

j∈Ni
xj and

∑
j∈Ni

(1− xj)

⇒ NN equivalent to a form of graph partitioning [Blum-Chawla’01]

⇒ L key to many graph partitioning algorithms

▶ Simple NN prediction comparable to sophisticated classification methods

⇒ MRF and kernels flexible to incorporate information beyond G

▶ Ex: certain DNA sequence motifs useful for function prediction
▶ 114 out of 134 proteins associated with one or more of 154 motifs
▶ Encode associations in M ∈ {0, 1}134×154 , construct kernel K̄ = MM⊤

⇒ Improvement in performance with the combined kernel

K = 0.5× L† + 0.5×MM⊤
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Glossary

▶ Graph-indexed process

▶ Static process

▶ Dynamic process

▶ Nearest-neighbor prediction

▶ Model-based prediction

▶ Markov random fields

▶ Ising model

▶ Gibbs random fields

▶ Partition function

▶ Clique potentials

▶ Auto models

▶ Pseudo-likelihood

▶ Gibbs sampler

▶ Kernel function

▶ Kernel regression

▶ Representer theorem

▶ Kernel logistic regression

▶ Graph kernels

▶ Diffusion kernel

▶ Regularized Laplacian

▶ Protein function

▶ ROC curve

▶ Area under the curve

▶ Combined kernels
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