

### Prediction for Processes on Network Graphs

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

April 10, 2023



Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function



- Motivation: study complex systems of elements and their interactions
  - So far studied network graphs as representations of these systems
- Often some quantity associated with each of the elements is of interest
- Quantities may be influenced by the interactions among elements
  - 1) Behaviors and beliefs influenced by social interactions
  - 2) Functional roles of proteins influenced by their sequence similarity
  - 3) Spread of epidemics influenced by proximity of individuals
- Can think of these quantities as random processes defined on graphs
  - ▶ Static  $\{X_i\}_{i \in V}$  and dynamic processes  $\{X_i(t)\}_{i \in V}$  for  $t \in \mathbb{N}$  or  $\mathbb{R}_+$



▶ Consider prediction of a static process  $\mathbf{X} := \{X_i\}_{i \in V}$  on a graph

Process may be truly static, or a snapshot of a dynamic process

#### Static network process prediction

Predict  $X_i$ , given observations of the adjacency matrix  $\mathbf{A} = \mathbf{a}$  and of all attributes  $\mathbf{X}^{(-i)} = \mathbf{x}^{(-i)}$  but  $X_i$ .

▶ Idea: exploit the network graph structure in A for prediction

▶ For binary  $X_i \in \{0, 1\}$ , say, simple nearest-neighbor method predicts

$$\hat{X}_i = \mathbb{I}\left\{\frac{\sum_{j \in \mathcal{N}_i} x_j}{|\mathcal{N}_i|} > \tau\right\}$$

 $\Rightarrow$  Average of the observed process in the neighborhood of *i*  $\Rightarrow$  Called 'guilt-by-association' or graph-smoothing method

# Example: predicting law practice



▶ Network *G*<sup>obs</sup> of working relationships among lawyers [Lazega'01]

▶ Nodes are  $N_v = 36$  partners, edges indicate partners worked together



▶ Data includes various node-level attributes  $\{X_i\}_{i \in V}$  including

 $\Rightarrow$  Type of practice, i.e., litigation (red) and corporate (cyan)

Suspect lawyers collaborate more with peers in same legal practice

 $\Rightarrow$  Knowledge of collaboration useful in predicting type of practice



• Q: In predicting practice  $X_i$ , how useful is the value of one neighbor?

 $\Rightarrow$  Breakdown of 115 edges based on practice of incident lawyers

|            | Litigation | Corporate |
|------------|------------|-----------|
| Litigation | 29         | 43        |
| Corporate  | 43         | 43        |

- Looking at the rows in this table
  - Litigation lawyers collaborators are 40% litigation, 60% corporate
  - Collaborations of corporate lawyers are evenly split

 $\Rightarrow$  Suggests using a single neighbor has little predictive power

▶ But 60% (29+43=72) of edges join lawyers with common practice

 $\Rightarrow$  Suggests on aggregate knowledge of collaboration informative

# Example: predicting law practice (cont.)



Incorporate information of all collaborators as in nearest-neighbors
 Let X<sub>i</sub> = 0 if lawyer *i* practices litigation, and X<sub>i</sub> = 1 for corporate



Nearest-neighbor prediction rule

$$\hat{X}_i = \mathbb{I}\left\{rac{\sum_{j\in\mathcal{N}_i} x_j}{|\mathcal{N}_i|} > 0.5
ight\}$$

⇒ Infers correctly 13 of the 16 corporate lawyers (i.e., 81%) ⇒ Infers correctly 16 of the 18 litigation lawyers (i.e., 89%) ⇒ Overall error rate is just under 15%



- Still, model-based methods have certain potential advantages:
  - a) Probabilistically rigorous predictive statements;
  - b) Formal inference for model parameters; and
  - c) Natural mechanisms for handling missing data
- ▶ Model the process  $\mathbf{X} := \{X_i\}_{i \in V}$  given an observed graph  $\mathbf{A} = \mathbf{a}$ 
  - ⇒ Markov random field (MRF) models
  - $\Rightarrow$  Kernel-regression models using graph kernels



Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function



• Consider a graph G(V, E) with given adjacency matrix **A** 

 $\Rightarrow$  Collection of discrete RVs  $\mathbf{X} = [X_1, \dots, X_{N_v}]^{\top}$  defined on V

▶ Def: process X is a Markov random field (MRF) on G if

$$\mathsf{P}\left(X_{i}=x_{i} \mid \mathbf{X}^{(-i)}=\mathbf{x}^{(-i)}\right)=\mathsf{P}\left(X_{i}=x_{i} \mid \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right), \ i \in V$$

•  $X_i$  conditionally independent of other  $X_k$ , given neighbors values

- 'Spatial' Markov property, generalizing Markov chains in time
- G defines neighborhoods N<sub>i</sub>, hence dependencies
- Roots in statistical mechanics, Ising model of ferromagnetism [Ising '25]
   MRFs used extensively in spatial statistics and image analysis
- Definition requires a technical condition P(X = x) > 0, for all x



▶ MRFs equivalent to Gibbs random fields X, having joint distribution

$$\mathsf{P}\left(\mathbf{X}=\mathbf{x}\right) = \left(\frac{1}{\kappa}\right) \exp\{U(\mathbf{x})\}$$

⇒ Energy function  $U(\cdot)$ , partition function  $\kappa = \sum_{\mathbf{x}} \exp\{U(\mathbf{x})\}$ ⇒ Equivalence follows from the Hammersley-Clifford theorem

• Energy function decomposable over the maximal cliques in G

$$U(\mathbf{x}) = \sum_{c \in \mathcal{C}} U_c(\mathbf{x})$$

⇒ Defined clique potentials  $U_c(\cdot)$ , set C of maximal cliques in G► Can show P  $(X_i | \mathbf{X}^{(-i)})$  depends only on cliques involving vertex i

### Example: auto-logistic MRFs



- May specify MRFs through choice of clique potentials  $U_c(\cdot)$
- Ex: Class of auto models are defined through the constraints:
   (i) Only cliques c ∈ C of size one and two have U<sub>c</sub> ≠ 0
  - (ii) Probabilities P ( $X_i | \mathbf{X}_{N_i}$ ) have an exponential family form

▶ For binary RVs  $X_i \in \{0,1\}$ , the energy function takes the form

$$U(\mathbf{x}) = \sum_{i \in V} \alpha_i x_i + \sum_{(i,j) \in E} \beta_{ij} x_i x_j$$

Resulting MRF is known as auto-logistic model, because

$$\mathsf{P}\left(X_{i}=1 \,\middle|\, \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right) = \frac{\exp\{\alpha_{i}+\sum_{j\in\mathcal{N}_{i}}\beta_{ij}x_{j}\}}{1+\exp\{\alpha_{i}+\sum_{j\in\mathcal{N}_{i}}\beta_{jj}x_{j}\}}$$

⇒ Logistic regression of  $x_i$  on its neighboring  $x_j$ 's ⇒ Ising model a special case, when G is a regular lattice



- Typical to assume that parameters  $\alpha_i$  and  $\beta_{ij}$  are homogeneous
- ▶ Ex: Specifying  $\alpha_i = \alpha$  and  $\beta_{ij} = \beta$  yields conditional log-odds

$$\log\left[\frac{\mathsf{P}\left(X_{i}=1 \mid \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right)}{\mathsf{P}\left(X_{i}=0 \mid \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right)}\right] = \alpha + \beta \sum_{j \in \mathcal{N}_{i}} x_{j}$$

 $\Rightarrow$  Linear in the number of neighbors *j* of *i* with  $X_j = 1$ 

• Ex: Specifying  $\alpha_i = \alpha + |\mathcal{N}_i|\beta_2$  and  $\beta_{ij} = \beta_1 - \beta_2$  yields

$$\log\left[\frac{\mathsf{P}\left(X_{i}=1 \mid \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right)}{\mathsf{P}\left(X_{i}=0 \mid \mathbf{X}_{\mathcal{N}_{i}}=\mathbf{x}_{\mathcal{N}_{i}}\right)}\right] = \alpha + \beta_{1} \sum_{j \in \mathcal{N}_{i}} x_{j} + \beta_{2} \sum_{j \in \mathcal{N}_{i}} (1-x_{j})$$

 $\Rightarrow$  Linear also in the number of neighbors j of i with  $X_j = 0$ 



- MRFs with continuous RVs: replace PMFs/sums with pdfs/integrals ⇒ Gaussian distribution common for analytical tractability
- ► Ex: auto-Gaussian model specifies Gaussian  $X_i | \mathbf{X}_{N_i} = \mathbf{x}_{N_i}$ , with

$$\mathbb{E}\left[X_{i} \mid \mathbf{X}_{\mathcal{N}_{i}} = \mathbf{x}_{\mathcal{N}_{i}}\right] = \alpha_{i} + \sum_{j \in \mathcal{N}_{i}} \beta_{ij}(x_{j} - \alpha_{j})$$
  
var  $\left[X_{i} \mid \mathbf{X}_{\mathcal{N}_{i}} = \mathbf{x}_{\mathcal{N}_{i}}\right] = \sigma^{2}$ 

 $\Rightarrow$  Values X<sub>i</sub> modeled as weighted combinations of i's neighbors

- ► Let  $\boldsymbol{\mu} = [\alpha_1, \dots, \alpha_{N_v}]^{\top}$  and  $\boldsymbol{\Sigma} = \sigma^2 (\mathbf{I} \mathbf{B})^{-1}$ , where  $\mathbf{B} = [\beta_{ij}]$ ⇒ Under  $\beta_{ii} = 0$  and  $\beta_{ij} = \beta_{ji} \rightarrow \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- ► Homogeneity assumptions can be imposed, simplifying expressions ⇒ Further set  $\alpha_i = \alpha$  and  $\beta_{ij} = \beta \rightarrow \mathbf{X} \sim \mathcal{N}(\alpha \mathbf{1}, \sigma^2 (\mathbf{I} - \beta \mathbf{A})^{-1})$



- ▶ In studying process  $\mathbf{X} = \{X_i\}_{i \in V}$  of interest to predict some or all of  $\mathbf{X}$
- MRF models we have seen for this purpose are of the form

$$\mathsf{P}_{\theta}(\mathbf{X} = \mathbf{x}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\{U(\mathbf{x}; \boldsymbol{\theta})\}$$

 $\Rightarrow$  Parameter  $\theta$  low-dimensional, e.g.,  $\theta = [\alpha, \beta]$  in auto-models

- Predictions can be generated based on the distribution P<sub>θ</sub>(·)
  ⇒ Knowledge of θ is necessary, and typically θ is unknown
- Unlike nearest-neighbors prediction, MRFs requires inference of  $\theta$  first



- Estimation of  $\theta$  most naturally approached via maximum-likelihood
- Even though the log-likelihood function takes a simple form

$$\ell(\theta) = \log \mathsf{P}_{\theta}(\mathsf{X} = \mathsf{x}) = U(\mathsf{x}; \theta) - \log \kappa(\theta)$$

 $\Rightarrow$  Computing  $\kappa(\theta) = \sum_{\mathbf{x}} \exp\{U(\mathbf{x}; \theta)\}$  often intractable

Popular alternative is maximum pseudo-likelihood, i.e., maximize

$$\sum_{i \in V} \log \mathsf{P}_{\theta} \left( X_i = x_i \, \big| \, \mathbf{X}^{(-i)} = \mathbf{x}^{(-i)} \right)$$

⇒ Ignores dependencies beyond the neighborhood of each  $X_i$ ⇒ Probabilities depend on clique potentials  $U_c$ , not on  $\kappa(\theta)$ 



- Given a value of θ, consider predicting some or all of X from P<sub>θ</sub>(·) ⇒ Computing P<sub>θ</sub>(·) hard, can draw from it using a Gibbs sampler
- ▶ Gibbs sampler exploits P<sub>θ</sub> (X<sub>i</sub> | X<sup>(-i)</sup> = x<sup>(-i)</sup>) in simple closed form
   ▶ New value X<sub>(k)</sub> obtained from X<sub>(k-1)</sub> = x<sub>(k-1)</sub> by drawing

$$\begin{aligned} X_{1,(k)} \quad \text{from} \quad \mathsf{P}_{\theta} \left( X_1 \, \big| \, \mathbf{X}^{(-1)} = \mathbf{x}_{(k-1)}^{(-1)} \right) \\ \vdots \\ X_{N_{\nu},(k)} \quad \text{from} \quad \mathsf{P}_{\theta} \left( X_{N_{\nu}} \, \big| \, \mathbf{X}^{(-N_{\nu})} = \mathbf{x}_{(k-1)}^{(-N_{\nu})} \right) \end{aligned}$$

 $\Rightarrow$  Generated sequence  $\bm{X}_{(1)}, \bm{X}_{(2)}, \ldots$  forms a Markov chain

• Under appropriate conditions, stationary distribution equals  $\mathsf{P}_{\theta}(\cdot)$ 



Given large sample from P<sub>θ</sub>(·), predict X using empirical distributions Ex: for binary X use empirical marginal frequencies to predict X<sub>i</sub>, i.e.,

$$\hat{X}_i = \mathbb{I}\left\{rac{1}{n}\sum_{k=m+1}^{m+n}X_{i,(k)} > 0.5
ight\}$$
 for large  $m, n$ 

► Suppose we observe some elements  $\mathbf{X}^{obs} = \mathbf{x}^{obs}$ , and wish to predict  $\mathbf{X}^{miss}$ ⇒ Draw from the relevant  $\mathsf{P}_{\theta} \left( \mathbf{X}^{miss} \mid \mathbf{X}^{obs} = \mathbf{x}^{obs} \right)$  as

$$X_{i,(k)} \text{ from } \mathsf{P}_{\theta}\left(X_{i} \mid \mathbf{X}^{obs} = \mathbf{x}^{obs}, \mathbf{X}^{(-i),miss} = \mathbf{x}_{(k-1)}^{(-i),miss}\right)$$

 $\Rightarrow$  Prediction from empirical distributions analogous

▶ Prior inference of  $\theta$  based on limited data  $\mathbf{X}^{obs} = \mathbf{x}^{obs}$  non-trivial



Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function



- MRFs specify precise dependency structures in X, given the graph G
- Q1: Can we just learn a function relating the vertices to their attributes?
   A1: Yes! A regression-based approach on G is in order
- Methods such as LS regression relate data in Euclidean space
- Q2: Can these methods be tuned to accommodate graph-indexed data?
  - A2: Yes! Kernel methods consisting of:
    - 1) Generalized predictor variables (i.e., encoded using a kernel)
    - 2) Regression of a response to these predictors using ridge regression
- Key innovation here is the construction of graph kernels



► Let G(V, E) be a graph and  $\mathbf{X} = \{X_i\}_{i \in V}$  a vertex attribute process ⇒ Suppose we observe  $X_i = x_i$  for  $i \in V^{obs} \subset V$ , with  $n = |V^{obs}|$ 

#### **Regression on graphs**

Learn  $\hat{h}: V \mapsto \mathbb{R}$  describing how attributes vary across vertices.

- ► Graph-indexed data not Euclidean ⇒ kernel regression methods
- ▶ **Def:** A function  $K : V \times V \mapsto \mathbb{R}$  is a called a kernel if for each  $m = 1, ..., N_v$  and subset of vertices  $\{i_1, ..., i_m\} \subseteq V$ , matrix

 $\mathbf{K}^{(m)} = [\mathcal{K}(i_j, i_{j'})] \in \mathbb{R}^{m imes m}$  is symmetric and positive semi-definite

- Think of kernels as functions that produce similarity matrices
  - $\Rightarrow$  Kernel regression builds predictors from such similarities
  - $\Rightarrow$  Need to also decide on the space  ${\mathcal H}$  where to search for  $\hat{h}$



Since V is finite, represent functions h on V as vectors h ∈ ℝ<sup>N<sub>ν</sub></sup>
 ⇒ Form K<sup>(N<sub>ν</sub>)</sup> ∈ ℝ<sup>N<sub>ν</sub>×N<sub>ν</sub></sup> by evaluating K in all pairs (i, j) ∈ V<sup>(2)</sup>
 ⇒ Suppose K<sup>(N<sub>ν</sub>)</sup> admits an eigendecomposition

$$\mathbf{K}^{(N_{v})} = \mathbf{\Phi} \mathbf{\Delta} \mathbf{\Phi}^{\top}$$

Kernel regression

Given kernel K and data  $\mathbf{x}^{obs}$ , kernel regression seeks  $\hat{\mathbf{h}}$  from the class

$$\mathcal{H}_{\mathcal{K}} = \{\mathbf{h} \in \mathbb{R}^{N_{v}} : \mathbf{h} = \mathbf{\Phi} oldsymbol{eta} ext{ and } oldsymbol{eta}^{ op} \mathbf{\Delta}^{-1} oldsymbol{eta} < \infty \}$$

*H<sub>K</sub>* is the reproducing-kernel Hilbert space induced by *K* ⇒ Members h ∈ *H<sub>K</sub>* are linear combinations of eigenvectors of K<sup>(N<sub>v</sub>)</sup>

 $\Rightarrow \text{Constrained to finite norm } \|\mathbf{h}\|_{\mathcal{H}} = \|\mathbf{\Phi}\beta\|_{\mathcal{H}} := \beta^{\top} \mathbf{\Delta}^{-1}\beta < \infty$ 



- $\blacktriangleright$  Choose appropriate  $\hat{h} \in \mathcal{H}_{\mathcal{K}}$  using penalized kernel regression
- ▶ Q: Appropriate? Data fidelity and small norm (i.e., low complexity)

- Convex loss  $C(\cdot, \cdot)$  encourages goodness of fit to  $\mathbf{x}^{obs}$
- The term  $\|\mathbf{h}\|_{\mathcal{H}} = \boldsymbol{\beta}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{\beta}$  penalizes excessive complexity
- Tuning parameter  $\lambda$  trades off data fidelity and complexity
- Generalized ridge-regression with columns of  $\Phi$  as predictors
  - $\Rightarrow$  Eigenvectors with small eigenvalues penalized more harshly



- Need to compute the entire Φ to find the regression function ĥ
   ⇒ Complex to evaluate K for all vertex pairs V<sup>(2)</sup> and find Φ
- ► Consider instead evaluating K in  $V \times V^{obs}$ , yielding  $\mathbf{K}^{(N_v,n)} \in \mathbb{R}^{N_v \times n}$  $\Rightarrow$  The Representer theorem asserts that  $\hat{\mathbf{h}}$  equivalently given by

$$\hat{\mathbf{h}} = \mathbf{K}^{(N_{v},n)} \hat{\alpha}, \text{ where } \hat{\alpha} = \arg\min_{\boldsymbol{\alpha}} \left[ \sum_{i \in V^{obs}} C(x_{i}, [\mathbf{K}^{(n)} \boldsymbol{\alpha}]_{i}) + \lambda \boldsymbol{\alpha}^{\top} \mathbf{K}^{(n)} \boldsymbol{\alpha} \right]$$

Just need to evaluate K in V<sup>obs</sup> × V<sup>obs</sup> to form K<sup>(n)</sup>
 ⇒ Complexity scales with the number of observations n, not N<sub>v</sub>

 Because ĥ = K<sup>(N<sub>v</sub>,n)</sup> α̂, can predict value in i ∈ V<sup>miss</sup> via

$$\hat{h}_i = \sum_{j \in V^{obs}} \hat{\alpha}_j K(i, j)$$



- Let the  $X_i$  be continuous and the loss quadratic, i.e.,  $C(x, a) = (x a)^2$
- The optimization problem defining  $\hat{\alpha}$  thus specializes to

$$\min_{\boldsymbol{\alpha}} \left[ \| \mathbf{x}^{obs} - \mathbf{K}^{(n)} \boldsymbol{\alpha} \|_{2}^{2} + \lambda \boldsymbol{\alpha}^{\top} \mathbf{K}^{(n)} \boldsymbol{\alpha} \right]$$

 $\Rightarrow$  Particular method known as kernel ridge regression. Intuition?

▶ Define  $\theta := (\mathbf{K}^{(n)})^{1/2} \alpha$  and  $\mathbf{M} := (\mathbf{K}^{(n)})^{1/2}$ . An equivalent problem is

$$\min_{\boldsymbol{\theta}} \left[ \| \mathbf{x}^{obs} - \mathbf{M} \boldsymbol{\theta} \|_2^2 + \lambda \boldsymbol{\theta}^\top \boldsymbol{\theta} \right]$$

Standard ridge regression with solution  $\hat{\theta} = (\mathbf{M}^{\top}\mathbf{M} + \lambda \mathbf{I})^{-1}\mathbf{M}^{\top}\mathbf{x}^{obs}$  $\Rightarrow$  The kernel regression function is  $\hat{\mathbf{h}} = \mathbf{K}^{(N_v,n)}(\mathbf{K}^{(n)})^{-1/2}\hat{\theta}$ 

### Example: Kernel logistic regression



- ▶ Let binary  $X_i \in \{-1, 1\}$  indicate class membership, for two classes
- ► A natural choice in this context is the logistic loss, given by

$$C(x,a) = \ln\left(1 + e^{-xa}\right)$$

 $\Rightarrow \text{Corresponds to the negative log-likelihood of a Bernoulli RV}$  $\blacktriangleright \text{ Kernel logistic regression selects } \hat{\alpha} \text{ via the optimization problem}$ 

$$\min_{\boldsymbol{\alpha}} \left[ \sum_{i \in V^{obs}} \ln \left( 1 + e^{-x_i [\mathbf{K}^{(n)} \boldsymbol{\alpha}]_i} \right) + \lambda \boldsymbol{\alpha}^\top \mathbf{K}^{(n)} \boldsymbol{\alpha} \right]$$

⇒ No closed-form solution for  $\hat{\alpha}$ , need iterative algorithms ► Given  $\hat{\mathbf{h}} = \mathbf{K}^{(N_v,n)}\hat{\alpha}$ , prediction of  $X_i$  for  $i \in V^{miss}$  based on

$$\hat{\mathsf{P}}\left(\mathsf{X}_{i}=1\,\big|\,\mathbf{X}^{obs}=\mathbf{x}^{obs}
ight)=rac{e^{\hat{h}_{i}}}{1+e^{\hat{h}_{i}}}$$



- In designing a kernel K on a graph G, desired properties are:
   P1) K<sup>(N<sub>v</sub>)</sup> is symmetric and positive semi-definite
   P2) K captures suspected similarity among vertices in V
- Presumption: proximity of vertices in G already indicative of similarity
   Most kernels proposed are related to the topology of G
- ► Ex: the Laplacian kernel is  $\mathbf{K}^{(N_v)} := \mathbf{L}^{\dagger}$ , where  $^{\dagger}$  denotes pseudo-inverse  $\Rightarrow$  Penalty term  $\|\mathbf{h}\|_{\mathcal{H}} = \boldsymbol{\beta}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{\beta}$  takes the form

$$\beta^{\top} \mathbf{\Delta}^{-1} \beta = \beta^{\top} \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{\Delta}^{-1} \mathbf{\Phi}^{\top} \mathbf{\Phi} \beta$$
$$= \mathbf{h}^{\top} \mathbf{K}^{\dagger} \mathbf{h} = \mathbf{h}^{\top} \mathbf{L} \mathbf{h}$$
$$= \sum_{(i,j) \in \mathcal{E}} (h_i - h_j)^2$$

• Kernel regression seeks smooth  $\hat{\mathbf{h}}$  with respect to the topoology of G



- Laplacian kernel K = L<sup>†</sup> encodes similarity among vertices through A
   ⇒ Can encode similarity through paths, powers of A and L
- ▶ Popular choice incorporating all powers of L is the diffusion kernel

$$\mathbf{K} = e^{-\zeta \mathbf{L}} := \sum_{m=0}^{\infty} \frac{(-\zeta)^m}{m!} \mathbf{L}^m$$

- Decay factor 0 < ζ < 1 controls similarity assigned to longer paths</li>
   Defined in terms of the matrix exponential e<sup>-ζL</sup>
- $\blacktriangleright$  Treating K as a function of  $\zeta$  yields the differential equation

$$\frac{\partial \mathbf{K}}{\partial \zeta} = -\mathbf{L}\mathbf{K}$$

 $\Rightarrow$  Parallels the heat equation in physics, motivating its name



- ► Let  $\mathbf{L} = \mathbf{\Phi} \mathbf{\Gamma} \mathbf{\Phi}^{\top}$ , with  $\mathbf{\Gamma} = [\gamma_1, \dots, \gamma_{N_v}]^{\top}$  and  $\mathbf{\Phi} = [\phi_1, \dots, \phi_{N_v}]$
- Laplacian and diffusion kernels within class of regularization kernels

$$\mathbf{K} = \sum_{i=1}^{N_{v}} r^{-1}(\gamma_{i}) \phi_{i} \phi_{i}^{ op}$$

 $\Rightarrow$  K is the inverse of the regularized Laplacian  $r(L) := \Phi r(\Gamma) \Phi^{\top}$ 

- Regularization function  $r(\cdot) \ge 0$  is increasing, including:
  - Ex: Identity function  $r(\gamma) = \gamma$
  - Ex: Exponential function  $r(\gamma) = \exp(\zeta \gamma)$
  - Ex: Linear inverse function  $r(\gamma) = (1 \frac{\gamma}{\gamma_{\max}})^{-1}$
- ► All **K** have identical eigenvectors, just vary the eigenvalues  $r^{-1}(\gamma_i)$ ⇒ Same predictors in the kernel regression, different penalty



• Network of lawyer collaboration, connected component with  $N_{\nu} = 34$ 



- Left figure shows eigenvalues γ<sub>1</sub>,..., γ<sub>34</sub> of L, recall γ<sub>1</sub> = 0
   Right figure shows values of r<sup>-1</sup>(γ<sub>i</sub>), for i = 2,..., 34
- ▶ Regularizers: identity, exponential, and linear inverse functions
   ⇒ First two damp most eigenvalues, only few φ<sub>i</sub> affect K
   ⇒ Small decay in the last, all φ<sub>i</sub> play a substantial role in K

# Visual representation of eigenvectors



- ► Visual representation of 8 'smallest' eigenvectors  $\phi_i$ , i = 2, ..., 9
  - Vertex size proportional to the component in  $\phi_i$ , color indicates sign



Early eigenvectors have entries relatively more uniform in size and color
 ⇒ Eigenvectors become less 'smooth' with increasing eigenvalue



Nearest-neighbor prediction

Markov random fields

Kernel regression on graphs

Case study: Predicting protein function



- Proteins integral to complex biochemical processes within organisms
   Understanding their function is critical in biology and medicine
- But ~ 70% of genes code for proteins with unknown function
   ⇒ Prediction of protein function a task of great importance
- Methodologies explored so far:
  - (i) Traditional experiment-intensive approaches
  - (ii) Methods based on sequence-similarity, protein structure
  - (iii) Network-based methods
- Networks of protein-protein interactions natural in the latter

### Protein-protein interaction network



Baker's yeast data, formally known as *Saccharomyces cerevisiae* 

▶ Graph: 134 vertices (proteins) and 241 edges (protein interactions)



- Predict functional annotation intracellular signaling cascade (ICSC)
   ⇒ Signal transduction, how cells react to the environment
- Let X = {X<sub>i</sub>}<sub>i∈V</sub> denote the vertex process of the annotation ICSC
   X<sub>i</sub> = 1 if protein *i* annotated ICSC (yellow), X<sub>i</sub> = 0 otherwise (blue)



Method 1: nearest-neighbor (NN) prediction with varying threshold au

Method 2: MRF with predictors counting nodes with and without ICSC

- Parameters  $(\alpha, \beta_1, \beta_2)$  estimated via maximum pseudo-likelihood
- Drew 1,000 samples of vertex annotations using a Gibbs sampler
- ▶ Predictions based on empirical estimates of  $P(X_i = 1 | \mathbf{X}^{obs} = \mathbf{x}^{obs})$

**Method 3:** kernel logistic regression (KLR) with  $\mathbf{K} = \mathbf{L}^{\dagger}$  and  $\lambda = 0.01$ 

- ▶ In all cases predictions generated using 10-fold cross validation
  - $\Rightarrow$  90% of the labels used to train the prediction methods
  - $\Rightarrow$  Remaining 10% used to test obtained predictors



Empirical proportions of neighbors with and without ICSC



 $\Rightarrow$  Classes less-well separated than for the lawyer data

• Recall nearest-neighbor prediction rule for  $\tau = 0.5$  is

$$\hat{X}_i = \mathbb{I}\left\{rac{\sum_{j\in\mathcal{N}_i} x_j}{|\mathcal{N}_i|} > 0.5
ight\}$$

 $\Rightarrow$  Yields a decent missclasification rate of roughly 23%

### Receiver operating characteristic



ROC curves depict predictive performance



All methods performed comparably. Area under the curve values: NN - 0.80, MRF - 0.82, KLR - 0.83, KLR w/motifs - 0.85



Not surprising that all three methods performed similarly

- $\Rightarrow$  NN and MRF use same statistics  $\sum_{j \in \mathcal{N}_i} x_j$  and  $\sum_{j \in \mathcal{N}_i} (1 x_j)$
- $\Rightarrow$  NN equivalent to a form of graph partitioning [Blum-Chawla'01]

 $\Rightarrow$  L key to many graph partitioning algorithms

- Simple NN prediction comparable to sophisticated classification methods
   MRF and kernels flexible to incorporate information beyond G
- ► Ex: certain DNA sequence motifs useful for function prediction
  - 114 out of 134 proteins associated with one or more of 154 motifs
  - $\blacktriangleright$  Encode associations in  $\textbf{M} \in \{0,1\}^{134 \times 154}$  , construct kernel  $\bar{\textbf{K}} = \textbf{M}\textbf{M}^{\top}$

 $\Rightarrow$  Improvement in performance with the combined kernel

$$\mathbf{K} = 0.5 imes \mathbf{L}^{\dagger} + 0.5 imes \mathbf{M} \mathbf{M}^{ op}$$





- Graph-indexed process
- Static process
- Dynamic process
- Nearest-neighbor prediction
- Model-based prediction
- Markov random fields
- Ising model
- Gibbs random fields
- Partition function
- Clique potentials
- Auto models
- Pseudo-likelihood

- Gibbs sampler
- Kernel function
- Kernel regression
- Representer theorem
- Kernel logistic regression
- Graph kernels
- Diffusion kernel
- Regularized Laplacian
- Protein function
- ROC curve
- Area under the curve
- Combined kernels