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Dynamic network processes

» Most systems studied from a network-based perspective are dynamic

= Most processes on network graphs are dynamic processes

Example

Cascade of failures in the electrical power grid

Diffusion of knowledge and spread of rumors

Spread of a virus among a population of humans or computers
Synchronization of behavior as neurons fire in the brain
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Interactions of species such as prey-predator dynamics

v

Dynamic process on a network graph is {X;(t)}icv for t € N or R}

» Both deterministic and stochastic models commonly adopted
» Ex: differential equations or time-indexed random (Markov) processes



Epidemics

» Epidemics are phenomena prevalent in excess to the expected

» Encountered with contagious diseases due to biological pathogens
» Ex: malaria, bubonic plague, AIDS, influenza

> Biological issues mixed with social ones. Spread patterns depend on:
= Pathogen e.g., contagiousness, severity, infectious period

= Network structures within the affected population

» Quantitative epidemic modeling concerned with three basic issues:
(i) Understanding the mechanisms by which epidemics spread;
(ii) Predicting the future course of epidemics; and
(iii) Gaining the ability to control the spread of epidemics



Contact networks

» Def: In a contact network the people (vertices) are connected if
they come into contact so that the disease can spread among them

v

Natural to represent this structure as a network graph G(V, E)
= Vertices i € V represent elements of the population

= Edges (/,j) € E indicate contact between elements i and j

v

Contact does not indicate actual infection, only the possibility of it

v

Topology of the contact network varies depending on the disease

> Dense when highly contagious e.g., airborne transmission via coughs
> Sparser connectivity in e.g., sexually transmitted diseases

Often difficult to measure the structure of contact networks

v



Branching processes

v

The branching process (BP) is the simplest model for a contagion

v

BP model considers different waves, i.e., discrete-time instants

> First wave: one infective enters the population, meets k other friends
» Wave n: each person of wave n — 1 meets k different new friends

v

Suppose the disease is transmitted to friends independently w.p. p

v

Contact network naturally represented by a k-ary tree



Relevant questions

» Q: What is the behavior of an epidemic under the BP model?
= From sample paths of the BP, can have severe or mild diseases
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» Interesting questions we can answer under this simple model

» Q1: Does the epidemic eventually die out?
» Q2: Is the infected number of individuals infinite?
> Q3: If it dies out, how long does it take until it goes extinct?

» Dichotomy: the epidemic dies out for finite n or goes on forever



Reproductive number

» Def: The reproductive number Ry is the expected number of new
infected cases with the disease caused by a single individual

» BP: number of infected friends of each individual is a Bino(k, p) RV
= Ry = kp, independent of the particular individual

Theorem
Consider a branching process with parameters k and p

a) If Ry <1, the disease dies out after finite number of waves w.p. 1

b) If Ry > 1, w.p. g* > 0 the disease persists for infinitely many waves

» Two basic kinds of public health measures to yield Ry < 1
= Reduce k by quarantining people; and

= Reduce p by encouraging better sanitary practices



Proof of a)

Easier if we consider the number of infected individuals. Define:

v

> Y(n) as the number of infected individuals at wave n
> J, as the number of individuals in wave n, i.e., J, = k"
> Xi(n) =1{iis infected}, fori=1,...,J,

Based on the definitions, it follows that Y(n) = Z,-J; Xi(n). Hence

v

Jn

Jn
E[Y(n)] =Y E[Xi(n)]=> P (iis infected)
i=1

i=1

v

Wave n node infected if all ancestors infected: P (i is infected) = p"

Jn
=E[Y(n)] = Z P (i is infected) = k"p" = R}
i=1

v

For Ry < 1 it follows that lim E[Y(n)] =0
n— o0



Proof of a) (cont.)

v

Recall that for a nonnegative RV X with E[X] < oo, constant a2 > 0

= Markov's inequality states — P (X > a) < EX]

- a

v

Application of Markov's inequality to Y (n) with a = 1 yields

P(Y(n)>1)<E[Y(n)] »0asn— 0
O
Let Y be the total number of infected individuals. What is E[Y]?

v

BV =Y E[V()] = YR =5

n=0

v

Calculating the expected duration of the disease is more involved

= Leverage standard tools since {Y(n)}32, is a Markov chain



Proof of b)

v

Define the probability g, = P (disease survives after n waves)

v

By Markovianity of the BP, for any node i in the first wave we have

P (disease survives after n — 1 more waves | Xi(1) = 1) = Qp_1

v

Since the root has k children, disease goes extinct by wave n w.p.
P (disease extinct by wave n) =1 — g, = (1 — pg,_1)*
= Recursion g, =1 — (1 — pg,_1)* holds for n=0,1,...
» Claim regarding the recursion’s fixed point g* as n — oo, i.e.,
g =1—(1-pg*)*

= If Ry <1, then the only solution in [0,1] is g* =0
= If Ry > 1, there is also a nonzero solution in [0, 1]



Proof of b) (cont.)

» To establish the claim, define f(x) =1 — (1 — px)*. Properties:

» f(x) is increasing and continuous
» f(x) is differentiable with f'(x) = Ro(1 — px)*~!
» £(0) =0, f(1) < 1 and f/(0) = Ro

1

» If Ry > 1 then f/(0) > 1 and y = f(x) intersects the line y = x
= A solution g* exists in the open interval (0,1) O



Closing remarks on BP model

v

Simple BP model suffices to capture basic effects of the epidemic

v

The spread of the disease depends on both

> Properties of the pathogen via p
> Properties of the contact network via k

v

Dichotomous behavior depending on the reproductive number Ry

» When Ry < 1 the disease is not able to replenish itself
» When Ry > 1 the outbreak is constantly trending upward

v

‘Knife-edge’ behavior around Ry = 1 implies high sensitivity
» Even when Ry > 1, the probability g* of persistence is less than one
» Ultracontagious diseases can ‘get unlucky’ and die out early on

v

Up next: more general models applicable to any contact network

= Reproductive number Ry still important for intuition
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SIR model

v

Most used epidemic model is the susceptible-infected-removed (SIR) model

v

Stochastic formulation of simplest case with no contact network
= Will extend later for the case of arbitrary graph G(V, E)

v

Consider a closed population of N 4 1 elements. At any time t € R
> Ns(t) elements are susceptible to infection (called ‘susceptibles’)
> N;(t) elements are infected (called ‘infectives’)
> Ng(t) elements are recovered and immune (or ‘removed’)

v

Given Ns(t) and N,(t), can determine Ng(t) due to the constraint
Ns(t) 4+ Ni(t) + N(t) =N +1

= {Ns(t), Ni(t), Nr(t)}£2, is a continuous-time random process
= Need to specify the probabilistic law for their evolution



A simple epidemic model

v

Populations of Ns(t) = S susceptibles and N;(t) = | infectives
» Two possible reactions (events)

= Infection: S+/ — 2/

= Recovery: I —0
> Susceptible infected by infective on chance encounter
= [ = Rate of encounters between susceptible and infective
= S susceptibles and [ infectives = S/ = rate of first reaction
» Each infective recovers (and is removed) at rate ~
= Population of | infectives =- 7/ = rate of second reaction
» Model assumption: ‘homogenous mixing’ among population members

= All pairs of members equally likely to interact with one another



State transition probabilities

» Consider the bivariate state [Ns(t), N;(t)] "

= Process starts with one infective and N susceptibles, i.e.,
N;(0) =1, Ns(0) = N, and Ng(0) =0
> Process evolves according to instantaneous transition probabilities

Infection with rate 3:
P(Ns(t+6t)=s—1,Ni(t+6t)=i+1]|Ns(t)=s, Ni(t) =1i)~ Bsiot
Recovery with rate ~:

P (Ns(t+dt) =s,Ni(t+6t) =i— 1| Ns(t) =s, Ni(t) = i) = 7iét
Unchanged state:

P (Ns(t+6t) =s, Ni(t+6t) = i| Ns(t) = s, Ni(t) = i) =~ 1—(Bs+7)iét



Continuous-time Markov chain

» Process {Ns(t), Ni(t)}2°, is a continuous-time Markov chain (CTMC)

» Equivalently implies that given N,(t) =i, Ns(t) = s, then the CTMC
= Transitions from state (s, i) after time T ~ exp((8s + ¥)i)
= Infection: to state (s — 1,7+ 1) w.p. 8si/[(8s + )]
= Recovery: to state (s,i — 1) w.p. vi/[(8s +7)i]

» This formulation of the model facilitates the simulation of realizations

\ - - Susceptibles
\ — Infectives

' Removed

Proportion of Population

Time



Transition-probability functions

» CTMC evolution given by matrix of transition-probability functions
Psi(t) =P (Ns(t) =s, Ni(t) = i | Ns(0) = N, N;(0) = 1)
= Full description of the epidemic process under the SIR model

» Transition probability functions satisfy the differential equations

an,tl(f) = — (BN +~)Pna(t)

OPE) _ (s + 1)~ 1)Prsria(t) — 185 +1)Poi(t) + (i + DPsa(t)

> Initial conditions Py,1(0) = 1 and Ps;(0) = 0 for all (s, ) # (N, 1)

» These are known as the Kolmogorov forward equations

= Exact analytical solution possible, but form is quite complicated



Reproductive number of the general SIR model

» Can still derive basic results without explicit formulas for Ps ;(t)

» For the general epidemic SIR model, the reproductive number is

_ N5
oy

Ro

= Threshold theorem holds as for the BP model [Whittle'55]

Theorem
Consider a generic SIR model with infection rate 8 and recovery rate

a) If Ry = NB/v < 1, the disease dies out after finite time
1

b) If Ro = NB/~v > 1, an epidemic occurs w.p. ¢* =1 — R

» Again, threshold theorems useful to design epidemic control procedures

Ex: reduce Ry to less than unity via vaccination, education, quarantine



Inference of model parameters

> In practice, quantities 8 and « (hence Ry) are unknown. Estimates?
> If {Ns(t), N;(t)}]_, observed in (0,7), ML rate estimates given by

NR(T)

Jo Ni(t)dt

N — Ns(7)

U= wmy T smia: T

— ML estimate of Ry then follows as Ry = Nj3/4
» Unfortunately, rarely are such complete measurements available

» Often only the final state of the epidemic is observed, i.e., Ng(7T)

= Impossible to estimate 5 and +y since they relate to time

» Can still use the method-of-moments to estimate Ry

p ~ —log(l — Nr(7)/N)
0~ Nr(7)/N
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Structured population models

» So far assumed ‘homogenous mixing' among population members

= All pairs of members equally likely to interact with one another

v

Admittedly simple and poor approximation to reality for some diseases

v

Interest has shifted towards structured population models (SPM)
= Assumed contact patterns take into account population structure

Ex: structure derives from spatial proximity, social contact, demographics

v

SPM introduce a non-trivial contact network G

= Homogeneous mixing assumption < Complete graph G = Ky,

v

Epidemic models on graphs study dynamic processes X(t) = {X;(t)}iev



Network-based SIR model

> Let G(V, E) be the contact network for a population of N, elements
= At t = 0, one vertex is infected and the rest are susceptible
» Susceptible infected by infective neighbor on chance encounter
= Infective has infectious contacts independently with each neighbor
= Time till contact is exponentially distributed with parameter 3
» Each infective recovers (and is removed) at rate ~
= Time till recovery is exponentially distributed with parameter ~
> Define the stochastic process X(t) = {X(t)}icv, where

0, if vertex i is susceptible at time t
Xi(t) =< 1, if vertex i is infected at time t
2, if vertex i is recovered at time t



State transition probabilities

» The process X(t) is a CTMC, with state vectors x € {0,1,2}%

» When state transitions from x to x’, a single vector entry changes

= If entry i changes, instantaneous transition probabilities are

BM;(x)dt, if ;=0and x/ =1
P(X(t—l—ét)zx"X(t)zx) = vt if ; =1and x/ =2
1— [BMi(x) +7]6t, ifx;=2and x{ =2

» Defined M;(x) as the number of infective neighbors of vertex i, i.e.,
Mi(x) == [{j : (i,J) € E,x; = 1}|
= Contact network G enters the model through M;(x), i € V

> Given X(t) can define the processes { Ns(t), N;(t), Ng(t)} by counting
Ex: number of susceptibles Ns(t) = Z,N:V1 I{X;(t) =0}



Effect of the contact network

» Simulated the CTMC for contact networks with N, = 1000 and d ~ 10

> Erdds-Rényi (blue), Barabdsi-Albert , Watts-Strogatz (red)
> Plot 100 sample paths of N,(t) and the average over 1000 epidemics
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» Curves E[N,(t)] have the same general form as when G = Ky,

> Different rates of growth and decay, effective duration of the epidemic
= Characeristics of the epidemic process are affected by the network



Reproductive number

> Suppose G drawn from G with fixed degree distribution {,}
=- Reproductive number for the SIR model can be shown to equal

e 2 (21,
0= ™ra
B4\ Eld]
» Probability that an infective transmits the disease before recovering
» Expected number of neighbors in G of a single infective (early on)

> Ex: Erdés-Rényi where G = G, , = Ro =~ BN,p/(B + 7)

> Ex: Power-law {fy} for which we can expect E [d?] > E[d]
= Increases Ry, easier for epidemics to occur than for Gy,

= Suffices to infect a small number of high-degree vertices

» H. Anderson and T. Britton, Stochastic Epidemic Models and Their
Statistical Analysis. Springer, 2000.
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Immunity and reinfections

» Q: What if individuals can be infected multiple times?
= SIR model falls short, assumes immunity (or death) after infection

» SIS model: infectives recover at rate 7, but are susceptible again

S—>1—-S5S—>1-S5S—...
Ex: Gonorrhea, no immunity acquired after infection

» SIRS model: infectives recover at rate -y, then immune for limited time
= Immunity time exponentially distributed with parameter ¢
= Recovered individual susceptible again and can be reinfected

S-1—-R—-S—=1—-R—=-5—...
» Ex: Syphilis, limited temporal immunity



Synchronization

» Epidemics of certain diseases tend to synchronize across a population
= Strong oscillations in the number of infectives over time

Ex: Such 'life cycle’ effects are well known for measles and syphilis

v

Traditionally, cycles attributed to large-scale societal changes

= Recently to contagion dynamics and network structure

» Can use simple e.g., SIRS models to produce such cyclic effects
Key ingredients: temporary immunity combined with long-range links
= Coordination in timing of flare-ups across the whole network

= Network-wide deficit in number and connectivity of susceptibles

» Large “drop” in the outbreak following the “peak” from earlier flare-ups



Small-world contact networks

» Temporary immunity can explain oscillations locally. Global effects?

» Small-world contact networks
= Homophilous ties: highly-clustered links forming local communities
= Weak ties: long-range links connecting distant parts of the network

» Network rich in long-range ties to coordinate disease flare-ups globally

» Relevance of small-world properties to synchronization

» D. J. Watts and S. H. Strogatz “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, pp. 440-442, 1998

» Small-world contact networks leading to oscillation in epidemics

» M. Kuperman and G. Abramson, “Small world effect in an epidemiological
model,” Physical Rev. Letters, vol. 86, no. 13, pp. 2909-2912, 2012



SIRS model and weak ties
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» Complex dynamics emerge from simple contagion and network models

= Rigorous analysis of synchronization onset challenging
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Kolmogorov forward equations
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