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Traffic flows

» Networks often serve as conduits for traffic flows

Example

» Commodities and people flow over transportation networks;
» Data flows over communication networks; and

» Capital flows over networks of trade relations

> Flow-related questions on network design, provisioning and routing

= Solutions involve tools in optimization and algorithms

» Our focus: statistical analysis and modeling of network flow data

= Regression-based prediction of unknown flow characteristics



Routing matrix

» Let G(V, E) be a digraph. Flows are directed: origin — destination
= Directed edges (arcs) here referred to as links
= Number of flows is Ny, typically have Nf = O(N2)

= Flows traverse multiple links en route to their destinations
» Routing matrix R € {0,1}V*"r states incidence of routes with links

P 1, if flow f routed via link e,
ef =1 0, otherwise

» Assumed flows follow a single route from origin to destination



Example: Routing of two flows

Ex: Consider a digraph with N, =7 links and N¢ = 2 active flows
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» Strongly connected digraph: flows can be as many as N, (N, — 1)



Traffic matrix

» Central to study of network flows is the traffic matrix Z € RM*Nv
> Entry z; is total volume of flow from origin vertex i to destination j

» Ex: net out-flow from / and net in-flow to j given by

z,-+:E zj and z+j:E zjj
J i

» Link-level aggregate traffic vector x := [xi,...,xy,] related to Z as
x =Rz, where z:=vec(Z)

= Link counts x, equal the sum of flow volumes routed through e



Flow costs and time dependencies

» Notion of cost ¢ associated with paths or links also important
Ex: generalized socioeconomic cost for transportation analysis
= Study choices made by consumers of transportation resources
Ex: quality of service (QoS) in network traffic analysis

= Monitor delays to unveil congestion or anomalies

> Implicitly assumed a static snapshot taken of the network flows
= Flows dynamic in nature. Time-varying models more realistic
= When appropriate will denote x(t), Z(t) or R(t)

» Common assumption to treat routing matrix R as being fixed

= Routing changes at slower time scale than flow dynamics



Example: Internet2 traffic matrix

OD flow volume

» Internet2 backbone: N¢ = 110 flows (8 shown) over a week

= Temporal periodicity and “spatial” correlation apparent



Roadmap dictated by types of measurement and analysis goal

Measure: origin-destination (OD) flow volumes z; in full

» Goal: model flows to understand and predict future traffic

= Gravity models

Measure: link counts x., flow volumes unavailable
Goal: traffic matrix estimation, i.e., predict unobserved OD flows z;

= Gaussian and Poisson models, entropy minimization

Measure: OD costs c;; for a subset of paths
Goal: predict unobserved OD and link costs

= Active network tomography and network kriging



Gravity models

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography



Gravity models

v

Gravity models originate in the social sciences [Stewart '41]

= Describe aggregate level of interactions among populations

v

Ex: geography, economics, sociology, hydrology, computer networks

» Newton's law of gravitation for masses my, m; separated by di»
mymy
Fio=G 72
12

v

Gravity models specify interactions among populations vary:
= In direct proportion to the population’s sizes; and

= Inversely with some measure of their separation

v

Intuition: OD flows as “population interactions”, makes sense!



Model specification

v

Sets of origins 7 and destinations J. Flows Z; fromi€Z toje J

v

Gravity models state Zj; are independent, Poisson, with mean
E[Zj] = ho(i)hp(j)hs(cij)

= Origin ho(-), destination hp(-), and separation function hs(-)

= "Distance” between i, j captured by separation attributes c;
» Ex: Stewart's theory of demographic gravitation specifies

-2
E[Zj] = ymo,imp ;d;
= Population sizes measured by mp ; and 7p j, distance by dj;
= Demographic gravitational constant

v

Unlike Netwon's law, no empirical or theoretical support here



Origin, destination and separation functions

v

Multiple origin, destination and separation functions proposed

= Motivated from sociophysics and economic utility theory

v

Ex: power functions for ho(i) and hp(j), where for a, 5 >0

ho(i) = (m0,1)* and  hp(j) = (7p )’

v

Ex: power function hs(cj) = c,-jfe, 0 > 0. General exponential form

hS(cij) = eXp(eTC,'j), Ba Cj € RK

v

Convenient for inference of model parameters, since
log E[Z;] = logy + alog o, + Blogmp j + 8 ¢;

= Log-linear form facilitates standard regression software



Example: Austrian phone-call data

» Q: Structure of telecommunication interactions among populations?
= Planning for government (de)regulation of the sector
= Predict influence of technologies in regional development

» Gravity models to model telecommunication patterns as flows

» Data for phone-call traffic among 32 Austrian districts in 1991
= 32 x 31 =992 flow measurements z;, i #j=1,...,32
= Gross regional product (GRP) per region — Size proxy

= Road-based distance among regions — Separation proxy



Phone-call data scatterplots

2 3 4 5

1

» Data suggest a gravity model of the form
E[Zj] = v(70.)*(7p.j)" (cj)~°
= 7o, = GRP;, mpj = GRP;, ¢ = djj i-j's road-based distance

» Typical that flow volumes vary widely in scale



Inference for gravity models

v

Specified Zj as independent Poisson RVs, with means p;; = E[Zj]
= ML for statistical inference in the general gravity model

v

Let o; = log ho(i), B; = log hp(j) and @ € RX. Will focus on
log 11 = cj + B + 8¢

= Log-linear model € class of generalized linear models
P. McCullagh and J. Nedler, Generalized Linear Models. CRC, 1989

v

v

Given flow observations Z = z, the Poisson log-likelihood for p is

Up)= > zjloguj—
iIJEIXT

= Substitute the gravity model and maximize £(p) for MLE



ML parameter estimates

» MLEs & := {&;}icz, B := {BJ}JGJ and 9 satisfy
A AT
|OgﬂU:d/+ﬁj+0 Cj, ,Lj€ELXxJ =logp=M¥
AT AT
» Defined 4 := [dT B 0 ]T, mean flow estimates fi;; solve

dhj=zi, i€l and > py=zj€d
- .

Zc,-j( Zcu )zii, k=1,....K

iJ

Unique MLE 8 under mild conditions, e.g., rank(M) = + J+ K —1

= Values &;, Bj unique only up to a constant

v

v

A. Sen, “Maximum likelihood estimation of gravity model
parameters,” J. Regional Science, vol. 26, pp. 461-474, 1986



LS parameter estimates

v

LS procedures the norm early on, based on models

log Zy ~a;+B;+0"¢c;+ej, i,jeEIxT

v

Beware: ordinary LS estimation doomed to yield poor results
= Biased estimates, E [log Zj] < log uj; by Jensen's inequality

= Variance not constant, var [log Z;] depends on p;;

v

Corrective measures: replace log Z; <+ Z;; := log(Z; +1/2)
=E {ZJ} = log pj; and var {ZJ} = uijfl up to O(,uf) terms

= Use weighted LS with wj o< />

v

LS is simple, but all things being equal ML is preferable



Example: Analysis of Austrian phone-call data

» Given phone-call data, form MLEs of parameters in two models

Standard gravity model: p;; = v(m0.:)*(7p )" (c;)~?
General gravity model: log puj; = a; + 5; — O¢j

Logso(Fitted Value)
Logso(Fitted Value)

Logso(Flow Volume) Logso(Flow Volume)

» Prediction of traffic flows. Plot fij; vs z; in log-log scale
= Fairly linear trend for both gravity models
= Standard model tends to over-estimate low-volume flows



Relative prediction error
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> Relative prection error. Plot (zj — fij7)/z;j vs zjj in log-log scale
= For both models error varies widely in magnitude
= Roughly, error decreases with flow volume
= Tendency to over- (under)-estimate low (high) volumes



Model accuracy comparison

» Plot empirical CDF of models’ relative prediction errors
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» General model's CDF lies to the left of that for the standard model

= The general model dominates in terms of accuracy

» Ex: Standard model errors < z; for 58% of the OD pairs
= Compare with 72% under the general model
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Monitoring flows

» Monitoring OD flow volumes Z;; fundamental to:
= Traffic management
= Network provisioning

= Planning for network growth

» Often difficult (even impossible) to measure the Zj. ..
Ex: large-scale surveys prohibitive in transportation networks

Ex: flow sampling, storing, transmission affects Internet user QoS

» ...but relatively easy to acquire link counts X,
Ex: highway networks, place sensors in on- and off-ramps
Ex: routers monitor data on incident links (e.g., SNMP)



Traffic matrix estimation

Traffic matrix estimation

Given R and link counts {X.}eck, predict flows Z; (or estimate (i)

» Highly underdetermined inverse problem. “Invert” known fat R in
X =RZ, where R e {0,1}N*N and N, < Nf
= Leverage side information to constrain the solution set

» Also dubbed network tomography. Taxonomy of methods:
= Static: estimate Z for a single time period

= Dynamic: estimate Z successively over multiple time periods

» Y. Vardi, “Network tomography: Estimating source-destination traffic
intensities from traffic counts,” JASA, vol. 91, pp. 365-377, 1996



Gaussian models and LSE

» Traffic often has units of “counts” e.g., cars per hour or Mbps

= Still, early approaches based on LS and Gaussian models
» Simple linear model for observed link counts X = {Xe}ecE
X=Rp+e
» R {0,1}"*"N is the known routing matrix

Ne o+
> p € R is vector of expected OD flow volumes
» cis a N. x 1 vector of i.i.d. zero-mean errors, with variance o

» Formulation suggests estimating p via ordinary LS
= Gaussian & reasonable in high-count settings (LS < ML)
= However, typically N. < N¢ and LS is poorly posed



Example: Toy network

X 1100 Hac £1
X, | |1 010 paa | | €2
X;; 01 0 1 Hbe €3
X4 00 1 1 Hbd €4

» Although N, = N¢ = 4, rank(R) = 3 and RTR not invertible
= For link counts X = x, there are infinite solutions fi to

min [|x — Ry ||
n



Leveraging historical data

» Suppose we have initial OD flow volume measurements Zy = zg

= Historical data, maybe even rough and innacurate

» Use zg to constrain the LS problem. Consider the model

FINLICEN

> Independent errors £ and e have covariance matrices W and X

» Generalized LS estimator

T -1
min | 207 H v 0,1 2o~ K
m x— Ru 0 2 x — Ry

= From likelihood-based perspective a Gaussian model implicit



Generalized LS solution

v

Generalized LSE is a linear combination of zg and x, namely

fr= (W +RTER) T (Wlz + RTE1x)

v

Model is linear so fi is unbiased and a MVUE, with

var[p] = (W +RTETIR)

v

Typically X is diagonal and W depends on sampling of zg
= Estimate from historical data {zo} or previous estimates i

v

Likely to obtain negative fi;; if link counts are low. Constrain pj; > 0

v

M. Bell, “The estimation of OD matrices by constrained generalized
least squares,” Transportation Research, vol. 25B, pp. 13-22, 1991



Bayesian approach

v

Instead of historical data, regularize with prior p ~ N (g, 721)
» Suppose X = Ry + €, with € ~ N(0,0%1). MAP estimator
fo=E[p|X=x] =p;+RT(RRT + A)7*(x — Ruy)

= Correction of g driven by error in predicting x as Ry

v

Uncertainty in the estimate assessed via the covariance matrix

var [p| X =x]| = 7 [I-RT(RRT + AI)"'R]

v

Smoothing parameter \ := 02 /72. Limiting cases:
= As A — 0 enforce x = Rfa
= As A — oo then 1 = pg



Poisson models and MLE

v

Gaussian model inappropriate even if few {p;} are small

v

Independent, Poisson OD flows modeled as

iy
P(Z=2zp)= HP i = Ziji 1ij) = Hez;_!uu

i

» Consider error-free observations X = RZ
= Distribution of X induced by that of Z above
= Elements of X not independent in general

= Multiple z solve x = Rz, for observed X = x

v

Still o identifiable if columns of R all distinct and nonzero [Vardi '96]

P(X;u)=P(X; 1) = p=aji



Example: Toy network (encore)

» Subgraph induced by V' = {a, v, c}, OD pairs {av, vc, ac}

10 1
R_<011)

» Observe link counts x = [1,2]7
» Two consistent flow sets
z; =1[0,1,1]" and z, = [1,2,0]"

> Data likelihood L(p;x) =P (X =[1,2]"; p) is

L(wx)=P(Z=1[0,1,1";p) +P(Z=[1,2,0]"; )
= (Mactive + Haviioe/2) exp(—flac — flay — fivc)



Issues with Poisson MLE

v

Q: What is the MLE fi = arg max,,-o L£(p;x)?
Solve ?236( (Kackive + .UaV:u€c/2) exp(—flac — Hav — fhvc)

= VuL(p*;x) =0 for p* =[1,2,0]7, but o =[0,1,1]"

v

Paradox? No, solution in the boundary of the feasible set

v

For Poisson models £(; x) not concave in general [Vardi '96]

= Asymptotically concave for i.i.d. x1,...,%, if & >0

v

EM-based MLE solver impractical (E [Z | X, p] tricky)
= Workaround: approximate X ~ N (R, Rdiag(u)RT)
= Resort to a method-of-moments estimator



Bayesian approach

v

Goal: inference based on the posterior P (Z | X)
= Requires a prior P (Z) and the model X = RZ

v

Prior specification: Z independent, Poisson(g); along prior P ()

e iy

P(Z.p) =P () []P (Zj 1) =P () ]]

z;j!
ij ij Y

v

Observe link counts X, conduct inference based on P (Z, ‘ X)
= Simulate from the posterior via Gibbs sampler
= lteratively resample from P (Z | u,X) and P (u } X, Z)

v

C. Tebaldi and M. West, “Bayesian inference on network traffic
using link count data,” JASA, vol. 93, pp. 557-573, 1998



Conditional posterior distributions

> P (| X,Z): Independent ;; priors, i.e., P () = [1;; P (uy), yields

N,
P(u|X,Z)E u|Z HP U|ZU (XH JP i)

= Given Z, easy to simulate {4} from univariate posteriors
= Ex: If P(u;) uniform or Gamma — P (u; | Z;) also Gamma

P (Z ! u, X): Model X = RZ constrains Z given X = x
= Condition algebraically, rather than using Bayes' rule

> lllustrate through an example, then give general form of P (Z | 1, X)



Example: Toy network (second encore)

» Subgraph induced by V' = {a, v, c}, OD pairs {av, vc, ac}

10 1
R‘<011)

» Given X = x and Z,,
= Know Z,, and Z, since
Zav = Xl_Zac and Zvc = X2_Zac

> Simulate from the full joint conditional posterior P (Z | p1,X) by:
(i) Drawing z,c from the marginal posterior
I R L i

Zac! (x1 — Zac)! (2 — Zac)!

P (Zac=zac | 1, X = x) o

(ii) Evaluating zay = x1 — Zac and zyc = X2 — Zac



General form of the OD flow posterior

» If rank(R) = N, write R = [R; Ry] with R; € {0, 1}V*"Ne invertible
= Can split flows Z7 = [Z],Z]]7, where Z; = R{}(X — RyZ»)

» The sought conditional posterior has the form
P(Z:z}p,,X:x) :P(21:zl|22:22,u,X:x)P(22:22{u,X:x)

=P (Zl =2 ‘ Z, = 22,u,X = X) = ]I{Zl = Rfl(x— RQZQ)}
= The "independent flows" Z, have distribution

Zj

P(ZQZZQ‘[J,X:X)O(H%
i)

if

» Amenable to drawing entries of Z; via a Gibbs sampler



Example: North Carolina road network

» Monroe, NC road network: N, = 20 links and Nf = 64 flows
= Studied by transportation engineers at NC State University

» Network fed to the traffic simulator Integration [Van Aerde et al '96]
= Modeled delays: congestion, traffic lights, turns, lanes merging

» Data (OD flows and link counts) for 2-hour morning period



Flow marginal posterior distributions

» Estimated marginal posteriors for 8 of the 64 OD flows (A = true)
= Uniform priors (top), and “informed” Gamma priors (bottom)

NtoH NtoA OtoF OtoA
: E ¢l I X l |
g W . @ B 10 LGl
0 20 40 60 80 100 120 140 0 50 100 150 0 10 20 30 40 50 300 400 500 600
NtoH Nto A OtoF OtoA
] § §
« o
: El! ﬁlil il : Il
. .. ... .l
0 20 4 60 80 0 20 40 60 8 100 120 0 20 4 60 400 450 500 550 600 650

» Tend to overestimate smaller flows with a uniform prior

= Gamma priors based on recent data remove ambiguities



Relative entropy

» Consider a prior guess () of pu, normalized such that

0
ZM() Zuu = iy
» Relative entropy “distance” between g and u(®) given by

D(p| )—Z 2 log( (0)>
1

ij

» Remarks
(i) Also known as Kullback-Liebler (KL) divergence
(if) Dissimilarity between “distributions” {s;/p+} and {u/u{’)
(iii) D(pl|n®®) > 0 always, and D(p[| ) = 0 = pu = pl¥



Entropy minimization

> Traffic matrix estimation: minimize D(p||1(®)) subject to x ~ Ry

» Dualize constraints via Lagrange multipliers A € R, solve

min D(p] ) + A7 (x — Ru)

» Given )\, optimality condition yields the estimator
fii(A) = ,uu ) exp (—1 - /\Tr,-j)

= Multiplicative perturbation of (%), X obtained numerically
= Specify (9 from historical data zg, or prior estimates i
= Non-negative solution guaranteed if u(® =0



Entropy regularization

v

Can view D(p| p(®) as regularizer for x = Rz — Penalized LS

min [|x — Rx||> + AD(p|| (?)
n=0

= Convex problem, A\ chosen via cross validation

v

Couple interpretations:
(i) Entropy minimization with relaxed constraint ||x — Rx||? < 7

(i) MAP for Gaussian model and prior f(p) s. t. log f() oc D(p||p(®)
= View as f(p) ~ multinomial, with probabilities oc 1’

Ex: simple gravity model prior ul(-f) x u,(-?r),usg)

v

v

Y. Zhang et al, “An information-theoretic approach to traffic matrix
estimation,” SIGCOMM, pp. 301-312, 2003



Dynamic methods

» Q: Traffic matrix estimation over time periods t =1,...,77

> Given: link counts x1., := {x(¢)}7_; and routing Ry.; := {R(%)}7_;
» Determine: OD flows zy., := {z(t)}7_;, where x(t) = R(t)z(t)

X107 Chicago--Los Angeles
0o 2 T T T
g True
s 1 ) i Estimated
>
3
2 0 1 1 1 1 1 1 1
“ o 500 1000 1500 2000 2500 3000 3500 4000
Time

» Dynamic methods categorization: simultaneous or sequential

» A. Soule et al, “Traffic matrices: Balancing measurements, inference
and modeling,” SIGMETRICS, pp. 362-373, 2005



Simultaneous methods

v

Simultaneous methods mostly based on the linear model

X(t) = R(t)u(t) +e(t), t=1,...,7

v

Penalized LS criteria employed to form fi;..
i, = argmmz Ix() = R(DA() 2 + A (par.,)

> Separable penalty J(py..) = >, Je(ps(t)) not uncommon
» Ex: Ji() based on independent Gaussian or entropy-based priors

v

Temporal correlations in xj., ignored — 7 decoupled static problems

» Over short spans can assume p(t) = p, treat xy., as replicates
= LS ill-posed in general, but Poisson likelihood well behaved



Sequential methods

v

Sequential methods leverage time correlations via Kalman filtering

v

State p(t) and link count (measurement) X(t) equations

u(t +1) = O(t)u(t) + ()
X(t) = R(t)u(t) + (1)

= n(t), e(t) are zero-mean, white, with covariances W(t), X(t)

» Kalman filter (KF) in a nutshell

> Prediction step: form prediction fi, ., of p(t+ 1) using x1.¢

» Correction step: Update i, ; based on x(t + 1) — R(t + 1)1, 4.,
» Also update recursively the error covariance matrix

M = E [(ﬂt:t — p(t)) (B — H(t))T]



Kalman filter updates

v

Initialize fig, Moo and run for t =0,...,7

v

Prediction step:

i:l't+1:t = <I)(t):i:l’t:t
M1 = O(t)M, d 7 (1) + W(t)

v

Kalman gain update:

Kiyr = Mt+1:tRT(t +1) [R(t + 1)Mt+1:tRT(t + 1)+ X(t+ 1)] -

v

Correction step:
i:l't+1:t+1 = I‘Al‘t+1:t + Kt+1 [X(t + 1) - R(t + 1)[”t+1:t]

Mitrier1 = [| = KeraB(t + 1)]Mepq[l — K1 B(t + 1)]T
+ Ken Z(t + 1)K,



Practical considerations

v

Model matrices ®(t), W(t) and X(t) must be determined
= Often assumed time-invariant, and estimated from data

v

Estimation depends on the model and data available
= Given xp., use variant of the EM algorithm
= Given flows z;.., use AR(1) fitting techniques

v

Z. Ghahramani and G. Hinton, “Parameter estimation for linear
dynamical systems,” Tech. Rep. CRG-TR-96-2, U. of Toronto, 1996

v

KF should be periodically recalibrated — readjust ®, W and X

(a) Monitor the error process x(t) — R(t)i,.,
(b) Check if some entry e exceeds e.g., 30, for few periods
(c) Obtain o2 from diagonal of R(t)MR7(t) + X
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Internet traffic monitoring

v

Q: Why do ISPs monitor their networks routinely?
R1
R2
R3
R4

Identify network (e.g., link) failures, their extent, and reasons
Adjust routing — control congestion — optimize QoS
Traffic engineering and management — capacity planning
Security policies against cyber-attacks (e.g., worms, DoS)

~— — — —

Availability of traffic matrices Z(t) key to traffic monitoring

While possible, rarely measure Internet flows Z;(t) at ISP level
= Concern on the volume of data generated
= Potential to adversely affect end-user QoS

Limited z(t) to calibrate Internet traffic matrix estimation methods



Abilene traffic data

New York

Washington
Los Angeles

Houston

» Measure flows zy., for 7 =12 x 24 x 7 = 2,016 time slots
= Router sampling every 5 mins., week of Dec. 22, 2003
» Abilene routing matrix R € {0, 1}39%110 gjven, time invariant

= Pseudo-measurements: link counts x(t) = Rz(t), t =1,...,7



Link counts and OD flow volumes

Denver-Sunnyvale

(kBps)
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Denver-Los Angeles

Flow volume
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» Few flow patterns discernible in the aggregate (link count) data

= OD flow recovery impossible in the absence of side information



Choice of traffic matrix estimation methods

» Compare static and dynamic methods for traffic matrix estimation
» Method 1: entropy-based approach termed tomogravity
m|n ||x —Rz|? + )\Z U lo ( (0)> where z,-(jo) = z,.(i)zi(j-)
ij ++ Zjj
= Simple gravity model prior adopted for z(® X = 0.01
» Method 2: KF with state and measurement equations

Z(t+1) = ®Z(t) + n(t)
X(t) = Rz(t)

= No error injected to the pseudo-measurements x(t)
= Matrices ® and W estimated from z;.0835 (Monday's flows)



Relative prediction error versus time

> Relative error averaged over OD pairs, as a function of time

= Compare KF, tomogravity and bias-compensated tomogravity

0.8

0.6

Spatial Relative Error
0.4

Tue Wed Thu Fri Sat Sun
Time

» Tomogravity overestimates, after bias-correction comparable to KF

= KF performs better early in the week, then degrades



Relative prediction error versus flows

> Relative error averaged over time, for each OD pair in log-log scale
= Symbol area o« mean volume of the flow

= Color code: KF had higher error, tomogravity had higher error
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» KF mostly outperforms tomogravity for high- and low-volume flows



Flow volume predictions
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» Tomogravity completely misses the dynamics of the first flow
= But outperforms KF for the second flow
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Network flow costs

v

Consider a network graph G(V/, E). Let P be the set of paths in G
= Path i-j has origin vertex i € Z and destination j € J

v

Network flows costs at two levels of granularity: paths and links
= Path costs ¢ € R"» and link costs x € RN related via

c=R"x

v

Cost associated to path = sum of the costs of the links traversed

v

Ex: end-to-end delay is the sum of the delays in intermediate links

v

Our focus: a particular class of problems involving inference of costs
= Given data are limited (path) end-to-end measurements



Link costs from end-to-end measurements

Active network tomography

Given c° in paths P°% C P, infer some characteristic of x

obs

v

Actively inject traffic to measure ¢, e.g., multicast probing

= Traffic matrix estimation — observe link counts passively

v

Tomography: unveil “internal” network characteristics

= Infer summands {x.}ecp, from aggregate c;

» Ex: determine link loss rates from packet loss measurements

v

M. Coates et al, “Internet tomography,” IEEE Signal Processing
Magazine, vol. 19, pp. 47-65, 2002



Path costs from end-to-end measurements

Network kriging

Given ¢ in paths P°P C P, predict ¢™® in P™iss = p\ pobs

» Kriging coined in geosciences for spatial interpolation or smoothing

» Key: exploit redundancies among links used by various paths

» D. Chua et al, “Network kriging,” IEEE J. Selected Areas in
Communications, vol. 24, pp. 2263-2276, 2006



Interpolation of path costs

» Number of paths N, is much larger than N,. Interpolation idea:
(i) Select only N, paths P°** to monitor
(i) Use c®* € R"e to determine link costs x
(ii) Since R = [R, Ry], recover c™= = R/ x
» But in general r := rank(R) < N, so x not identifiable
= Cannot find xy g7y € null(R) from ¢ = R7x
= Only vectors xz(rr) € range(R") can be identified in (ii)
» Of course do not need x to recover ¢™ss = xr(rT) suffices

» Y. Chen et al, “An algebraic approach to practical and scalable
overlay network monitoring,” SIGCOMM, vol. 34, pp. 55-66, 2004



Example: Unidentifiable link costs

» Graph G(V, E) with N, = 4 and N, = 3, paths {AB, AC, BC}

(1,-1,0) row(path) space

' \_(/measured)
null space %
0 ) (unmeasured)
1

1

» Cannot identify x; and x, — Always show up summed in paths



Interpolation algorithm

» Key: monitor r = rank(R) independent paths to recover xz(gr)

= Choose paths via QR decomposition of R with column pivoting
Interpolation algorithm:

(1) Select r = rank(R) < N, independent paths to monitor

(2) Use c® € R’ to solve for xg(rT) from o = ROTXR(RT)

Least norm solution: xggr) = (RZ)TCOI’S = RO(RZRO)AC"I’S
(3) Recover the unknown path costs as
™ = Rixgwrr) = RLRo(RIRo) ¢

» For N, = N2, conjecture rank(R) = O(N, log N,) [Chen et al '04]
= Almost order of magnitude savings in measurement overhead



Effective rank of R

v

Interpolation appealing if we can monitor r = rank(R) paths

mISS

= Cannot recover c if a single measurement is missing

v

Network kriging: recast problem as one of statistical prediction
= Accurate even with s < rank(R) measurements. How?

v

Since r = rank(R), can write the SVD of R” as

s<Lr

E Ukukvkw E okukvk

v

Observation: often most of the smaller o, are close to zero
= We say R is effectively of lower rank than r
= Intuition: dependencies among links used by various paths



Example: Reduced dimensionality in Abilene

» Singular values of the Abilene routing matrix R
= N, = 30 links and N, = 110 paths. Plot shows rank(R) = 30

0 5 10 15 20 25 30

> Spectral gap apparent. Effective rank s € {5,10}, even s = 27

= Recover useful information about ¢ from couple measurements



Routing matrix singular vectors

» Visualize top right singular vectors {vi}}_; of RT (evecs. of RRT)
= Linearly independent “meta-paths” in “link space”

= Intuition: shared patterns of links common to paths in R

» Northern E-W meta-path {v,}3_,, and southern E-W meta-path v,



Network kriging

» Consider predicting an arbitrary linear summary a’c of ¢

» Ex: network-wide average path cost a = 1/N,, or ¢; where a = e;;

> Let x be a realization of X, with mean p and var[X] = X
= Because C = R"X, then E[C] = R"p and var[X] = RTZR

» Given s < rank(R) measured path costs c°>, find

ﬁ(CObs) = arg mpin E [(aTC — p(CObS))z]

= Minimum mean-squared error (MMSE) predictor, given by

ﬁ(CObs) —F [aTC ‘ Cobs _ cobs] _ aICObs—l—E [a;Cmiss ’ Cobs _ cobs}



LMMSE predictor

> Restrict attention to linear (L)MMSE predictors p(c®?) = a7 ¢
ATcobs _ T obs _’_am“ +aTVm0V ( obs RZI”)

a

= Used (cross-)covariances V, = R/ R, and V,,,, = RTZR,

» Estimate p from the data via generalized LS, i.e.,

~No (ROVO—IRT) R V 1 Obs

» Substitution of fi yields the network kriging predictor [Chua et al '06]

AT obs _ _T_obs T —1_obs
a'c®™ =a,c™ +a, VoV, ¢

> SVD-based path selection to minimize E [(a”C — a7 C)?]

= Like the QR decomposition with pivoting in [Chen et al '04]



Example: Abilene path delays

v

Abilene backbone: N, = 11 PoPs, N. = 30 links, N, = 110 paths

v

Measure link delays x;., for 7 = 6 x 24 x 3 = 432 time slots

= Router sampling every 10 mins., three days in 2003

v

Abilene routing matrix R € {0, 1}39%!10 given, time invariant
= Pseudo-measurements: path costs ¢(t) = R7x(t), t =1,...,7

v

Applied the network kriging predictor to a subset c°*(t)
éTCObS(t) = aZCObs(t) + a;VmoVJICObS(t), t= 1, e, T

= Various choices of s < rank(R), SVD-based path selection

= Covariance X assumed diagonal, estimated from data



Path delay predictons

> Average path delay in Abilene predicted with s = 3,5,7, or 9 paths
= Actual delay via interpolation of s = 30 = rank(R) paths

35WWTW-WMMW%MS=3O-

Delay (ms)

W (98]

— W
W
W ~ el

29+
WWWW s=3
27 - - - - -
0 100 200 300 400 500
Time

» Biased predictions, missing link information in approximated R
= Can be compensated if allowed to measure 30 paths once

» Predictions capture well the delay dynamics, for all s



Case study

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography



Delay monitoring

Low delay variability

[

» Motivating reasons
> Assess network health
> Fault diagnosis
> Network planning

]
n
|

delay (ms)
[~}

S Application domains u] 1000 2E:UD 3000 4000
Old 8-second rule for WWW

Content-delivery networks 30
Peer-to-peer networks

Multiuser games
Dynamic server selection

o

High delay variability

20 B
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delay (ms)
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t

» Goal: infer path delays from limited end-to-end measurements



Predicting path delays

v

Consider a network graph G(V, E). Let P be the set of paths in G
Several challenges in measuring all end-to-end path delays

= Overhead: number of paths N, = O(N2)

= Congested routers may drop packets

v

v

Q: Can fewer measurements suffice?

v

A: Yes! Most paths share multiple links = Correlations [Chua'06]

- =

= =

v

End-to-end delay prediction problem: Given delay measurements
¢ in paths P°P C P, predict ™ in P™iss = P\ pobs



Network kriging prediction

» Given (cross-)covariances V, = cov[c®*] and V,, = cov[c™"s, c°Ps]

» The universal kriging predictor is
émiss —V V—lcobs
— VmoV,
= To obtain V, and V,,, adopt a linear model for the path delays

1, link | € path p

. — T =
c=Gx=R"x, [Glp = { 0, otherwise

» Link delays x € RYs and X = cov[x] = From model cov[c] is

CObS _ so Vo Vom _ so T So !
][] [ Y] (3 o[ 3]

= Sampling matrix S = [S],S]" known, selected heuristically



Spatio-temporal prediction

v

Network kriging prediction for a single temporal snapshot of delays

v

D. Chua et al, "Network kriging,” IEEE J. Sel. Areas Communications,
vol. 24, pp. 2263-2272, 2006

v

Wavelet-based approach for spatio-temporal delay prediction
» Diffusion wavelet matrix constructed from the topology of G
» Can capture temporal correlations, up to 7 time slots
» High complexity O(73P*) = Challenging for 7 > 10

v

M. Coates et al, “Compressed network monitoring for IP and all-optical
networks,” Proc. ACM Internet Measurement Conference, 2007

v

Q: Should the same set of paths be measured every time slot?

= Low balancing? Effectiveness of random path selection?

v

Low-complexity spatio-temporal inference with online path selection



Simple delay model

v

Model delay ¢,(t) measured on path p € P at time t as

cp(t) = xp(t) + vp(t) +€p(t)

v

Component x,(t) captures queuing delays, traffic dependent
» Nonstationary: Random walk with driving noise covariance C,,

x(t) = x(t — 1) + n(t)

v

Component v,(t) lumps propagation, transmission, processing delays
» Traffic independent, temporally white with covariance C, = aGG "

2

v

Measurement noise €,(t) i.i.d. over paths and time, var [e,(t)] = ¢



Kriged Kalman filter formulation

v

Paths measured on subset P°> C P, use sampling matrix S, (t)

(1) = So(t)x(t) + v (1) + €(t),  vO(t) = So(t)u(t)

v

Kriged Kalman filter (KKF) state and measurement equations

x(t) = x(t) + n(t)
(1) = So(t)x(t) + v (t) + e(t)

v

Goal: given historical data H(t) = {c°>(7)}L_,, predict c™ss(t)

» K. Rajawat et al, “Dynamic network delay cartography,” IEEE
Trans. Info. Theory, vol. 60, pp. 2910-2920, 2014



Kriged Kalman filter updates

» State and covariance update recursions

X(t) = E [x(t) | H(1)]
= X(t = 1) + K(1)[e™*(t) = So(t)X(t — 1)]

M(t) := E [(%(t) — x(£))(x(t) = x(8)) ']
= 1= K(8)So(1)][M(t — 1) + C;]

» KKF gain
K(t) = IM(t — 1)+C;]Sg (1)[So()(M(t — 1)+C,+C,)S, )+
> Kriging predictor £™s5(t) = S,,(t)x(t) + 2™*(t), where

D(t) == Spu(t)C, S (£)[So(t)CuSS (8)+021] 71 (e (£)—So(t)X(t))



Kriging covariance models

» Q: How do we find the spatial covariance C,?

» Idea: paths sharing multiple links should be highly correlated
= Linear model: C, = «GG"
= Graph Laplacian model: C, = L'

= =
= =
» Similar principles used to define graph kernels

» Can also handle route changes, especially incremental changes



Selection of measured paths

v

KKF can model and track network wide delays given sample paths

v

Q: Practical sampling of paths? Optimal measurements? Criterion?
» Error covariance matrix (define ®(t) = [M(t — 1) + C, + C,] /o?)
Mmiss(t) —E [(cmiss(t) _ emiss(t))(cmiss(t) _ emiss(t))T]

= 021+ 0%S,(1) [®71() + ST (£)So(1)]  SE(2)

v

Optimal experimental design

Pob(t) := arg min logdet(M™*(t)), s. to |P°| = N;,’bs
PobsCP

v

Criterion: D-optimal design, i.e., entropy of a Gaussian RV
= Cost depends on P° via sampling matrix S,(t) in M™*(¢t)



Greedy algorithm

» Simple greedy algorithm to select observed paths P
> Repeat |P°P| times: PP «— PP U arg max ¢ poss Opois (p), where
dp(p) = —log (1 +[M(t —1) +C, + C.p)
Spo(p) = — log (1 +[(M(t—1)+C,+C,) 1+ STS)‘l]p’p)
= Submodular, monotonic — Greedy solution (1 — e~!) optimal
> Increments &poss(p) efficiently evaluated in O(|P||P°b|3)
= Operational complexity can be reduced further [Krause'11]
» Can be modified to handle cases when

(i) Few nodes measure delays on all paths. Which nodes to choose?
(i) All nodes measure delay on only one path. Which paths to chsose?



Empirical validation: Internet2

» Internet2 backbone: 72 paths, lightly loaded network

Seattle

[
NewYork City
Chicago | oo g
SaltLake City
Ld

» One-way delay measurements collected using OWAMP
= Every minute for 3 days in July 2011 ~ 4500 samples
» Training phase employed to estimate C,,, o [Myers'76]

» Modified estimators to handle measurements on subsets of paths
> First 1000 samples on 50 random paths used for training



Network delay cartography: Internet2
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Prediction error: Internet2

» Normalized mean-square prediction error as figure of merit

1

NMSPE = ———
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= “Optimal” paths
222 Random paths




Empirical validation: NZ-AMP

» NZ-AMP delay dataset: 186 paths, heavily loaded network
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» Round-trip-times measured using ICMP, paths via scamper
= Every 10 minutes in August 2011 ~ 4500 samples



Prediction error: NZ-AMP

Random path selection

“Optimal” path selection
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» NMSPE order of magnitude larger than for the Internet2 data
= Attributed to the markedly higher delay variability here



Delay scatter plots:

300 T 300

»r \Wavelets . 0 .

200 . SR 200

Kriging

JEVI N

Predicted delay (ms)

1004

KKF

50
.

. ' ” oo
50 200 250 0 50 100 10 200 250 300 0 50 100 150 200 250 300
True delay (ms) True delay (ms) True delay (ms)

» Prediction of path delays. Plot 6,-77"55 Vs cé-""ss
= Fairly linear trend for KKF, variability ,* for short delays
= Network kriging and diffusion wavelets biased down



Glossary
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Network traffic flows
Routing matrix

Traffic matrix

Link counts

Network flow costs
Network monitoring
Gravity model
Generalized linear model
Traffic matrix estimation
Network tomography
Poisson traffic models
Entropy minimization

Tomogravity
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Kalman filter

End-to-end measurements
Active network tomography
Network kriging

Path-cost interpolation
Identifiability

Effective rank

(L)MMSE predictor

Path selection

Diffusion wavelets

Kriged Kalman filter
Optimal experimental design
Submodular function
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