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Network flows

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Traffic flows

I Networks often serve as conduits for traffic flows

Example

I Commodities and people flow over transportation networks;

I Data flows over communication networks; and

I Capital flows over networks of trade relations

I Flow-related questions on network design, provisioning and routing

⇒ Solutions involve tools in optimization and algorithms

I Our focus: statistical analysis and modeling of network flow data

⇒ Regression-based prediction of unknown flow characteristics
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Routing matrix

I Let G (V ,E ) be a digraph. Flows are directed: origin → destination

⇒ Directed edges (arcs) here referred to as links

⇒ Number of flows is Nf , typically have Nf = O(N2
v )

⇒ Flows traverse multiple links en route to their destinations

I Routing matrix R ∈ {0, 1}Ne×Nf states incidence of routes with links

re,f =

{
1, if flow f routed via link e,
0, otherwise

I Assumed flows follow a single route from origin to destination
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Example: Routing of two flows

Ex: Consider a digraph with Ne = 7 links and Nf = 2 active flows

R =



1 0
0 0
1 0
0 0
0 1
0 1
1 0

 e1

e2

e3

e4

e5

e6

e7f1

f2

I Strongly connected digraph: flows can be as many as Nv (Nv − 1)
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Traffic matrix

I Central to study of network flows is the traffic matrix Z ∈ RNv×Nv

I Entry zij is total volume of flow from origin vertex i to destination j

I Ex: net out-flow from i and net in-flow to j given by

zi+ =
∑
j

zij and z+j =
∑
i

zij

I Link-level aggregate traffic vector x := [x1, . . . , xNe ]
T related to Z as

x = Rz, where z := vec(Z)

⇒ Link counts xe equal the sum of flow volumes routed through e
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Flow costs and time dependencies

I Notion of cost c associated with paths or links also important

Ex: generalized socioeconomic cost for transportation analysis

⇒ Study choices made by consumers of transportation resources

Ex: quality of service (QoS) in network traffic analysis

⇒ Monitor delays to unveil congestion or anomalies

I Implicitly assumed a static snapshot taken of the network flows

⇒ Flows dynamic in nature. Time-varying models more realistic

⇒ When appropriate will denote x(t), Z(t) or R(t)

I Common assumption to treat routing matrix R as being fixed

⇒ Routing changes at slower time scale than flow dynamics

Network Science Analytics Analysis of Network Flow Data 7



Example: Internet2 traffic matrix

I Internet2 backbone: Nf = 110 flows (8 shown) over a week

⇒ Temporal periodicity and “spatial” correlation apparent
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Roadmap

I Roadmap dictated by types of measurement and analysis goal

I Measure: origin-destination (OD) flow volumes zij in full

I Goal: model flows to understand and predict future traffic

⇒ Gravity models

I Measure: link counts xe , flow volumes unavailable

I Goal: traffic matrix estimation, i.e., predict unobserved OD flows zij

⇒ Gaussian and Poisson models, entropy minimization

I Measure: OD costs cij for a subset of paths

I Goal: predict unobserved OD and link costs

⇒ Active network tomography and network kriging
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Gravity models

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Gravity models

I Gravity models originate in the social sciences [Stewart ’41]

⇒ Describe aggregate level of interactions among populations

I Ex: geography, economics, sociology, hydrology, computer networks

I Newton’s law of gravitation for masses m1, m2 separated by d12

F12 = G
m1m2

d2
12

I Gravity models specify interactions among populations vary:

⇒ In direct proportion to the population’s sizes; and

⇒ Inversely with some measure of their separation

I Intuition: OD flows as “population interactions”, makes sense!
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Model specification

I Sets of origins I and destinations J . Flows Zij from i ∈ I to j ∈ J

I Gravity models state Zij are independent, Poisson, with mean

E [Zij ] = hO(i)hD(j)hS(cij)

⇒ Origin hO(·), destination hD(·), and separation function hS(·)
⇒ “Distance” between i , j captured by separation attributes cij

I Ex: Stewart’s theory of demographic gravitation specifies

E [Zij ] = γπO,iπD,jd
−2
ij

⇒ Population sizes measured by πO,i and πD,j , distance by dij

⇒ Demographic gravitational constant γ

I Unlike Netwon’s law, no empirical or theoretical support here
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Origin, destination and separation functions

I Multiple origin, destination and separation functions proposed

⇒ Motivated from sociophysics and economic utility theory

I Ex: power functions for hO(i) and hD(j), where for α, β ≥ 0

hO(i) = (πO,i )
α and hD(j) = (πD,j)

β

I Ex: power function hS(cij) = c−θ
ij , θ ≥ 0. General exponential form

hS(cij) = exp(θTcij), θ, cij ∈ RK

I Convenient for inference of model parameters, since

logE [Zij ] = log γ + α log πO,i + β log πD,j + θTcij

⇒ Log-linear form facilitates standard regression software
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Example: Austrian phone-call data

I Q: Structure of telecommunication interactions among populations?

⇒ Planning for government (de)regulation of the sector

⇒ Predict influence of technologies in regional development

I Gravity models to model telecommunication patterns as flows

I Data for phone-call traffic among 32 Austrian districts in 1991

⇒ 32× 31 = 992 flow measurements zij , i 6= j = 1, . . . , 32

⇒ Gross regional product (GRP) per region → Size proxy

⇒ Road-based distance among regions → Separation proxy
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Phone-call data scatterplots
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Fig. 9.1 Austrian call data. Scatterplots are shown for call flow volume versus each of origin
GRP, destination GRP, and distance, along the top row, and for the latter three variables against
each other, in the other rows. All axes are on log-log scales. Superimposed on each scatterplot are
two lines, for descriptive purposes, showing fits based on simple linear regression (dotted) and a
nonparametric smoother (solid). Density plots for each of the four variables are shown along the
diagonal.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Zij

GRPi GRPj dij

I Data (in log10 scale) suggest a gravity model of the form

E [Zij ] = γ(πO,i )
α(πD,j)

β(cij)
−θ

⇒ πO,i = GRPi , πD,j = GRPj , cij = dij i-j ’s road-based distance

I Typical that flow volumes vary widely in scale
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Inference for gravity models

I Specified Zij as independent Poisson RVs, with means µij = E [Zij ]

⇒ ML for statistical inference in the general gravity model

I Let αi = log hO(i), βi = log hD(j) and θ ∈ RK . Will focus on

logµij = αi + βj + θTcij

⇒ Log-linear model ∈ class of generalized linear models

I P. McCullagh and J. Nedler, Generalized Linear Models. CRC, 1989

I Given flow observations Z = z, the Poisson log-likelihood for µ is

`(µ) =
∑

i,j∈I×J

zij logµij − µij

⇒ Substitute the gravity model and maximize `(µ) for MLE
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ML parameter estimates

I MLEs α̂ := {α̂i}i∈I , β̂ := {β̂j}j∈J and θ̂ satisfy

log µ̂ij = α̂i + β̂j + θ̂
T
cij , i , j ∈ I × J ⇒ log µ̂ = Mγ̂

I Defined γ̂ :=
[
α̂T β̂

T
θ̂
T ]T

, mean flow estimates µ̂ij solve∑
j

µ̂ij = zi+, i ∈ I and
∑
i

µ̂ij = z+j , j ∈ J∑
i,j

cij(k)µ̂ij =
∑
i,j

cij(k)zij , k = 1, . . . ,K

I Unique MLE θ̂ under mild conditions, e.g., rank(M) = I + J +K − 1

⇒ Values α̂i , β̂j unique only up to a constant

I A. Sen, “Maximum likelihood estimation of gravity model
parameters,” J. Regional Science, vol. 26, pp. 461-474, 1986
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LS parameter estimates

I LS procedures the norm early on, based on models

logZij ≈ αi + βj + θTcij + εij , i , j ∈ I × J

I Beware: ordinary LS estimation doomed to yield poor results

⇒ Biased estimates, E [logZij ] ≤ logµij by Jensen’s inequality

⇒ Variance not constant, var [logZij ] depends on µij

I Corrective measures: replace logZij ↔ Z̃ij := log(Zij + 1/2)

⇒ E
[
Z̃ij

]
= log µij and var

[
Z̃ij

]
= µ−1

ij up to O(µ−2
ij ) terms

⇒ Use weighted LS with wij ∝ µ
1/2
ij (start with z

1/2
ij , then µ̂

1/2
ij )

I LS is simple, but all things being equal ML is preferable

Network Science Analytics Analysis of Network Flow Data 18



Example: Analysis of Austrian phone-call data

I Given phone-call data, form MLEs of parameters in two models

Standard gravity model: µij = γ(πO,i )
α(πD,j)

β(cij)
−θ

General gravity model: logµij = αi + βj − θcij
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Fig. 9.2 Accuracy of estimates of traffic volume made by the standard (left, in blue) and general
(right, in green) gravity models for the Austrian call data. Top: Fitted values versus flow volume.
Bottom: Relative error versus flow volume, where light and dark points indicate under- and over-
estimation, respectively. All axes are on logarithmic scales, base ten. The lines y= x and y= 0 are
shown in yellow in the top and bottom sets of plots, respectively, for reference.

I Prediction of traffic flows. Plot µ̂ij vs zij in log-log scale

⇒ Fairly linear trend for both gravity models

⇒ Standard model tends to over-estimate low-volume flows

Network Science Analytics Analysis of Network Flow Data 19



Relative prediction error
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Fig. 9.2 Accuracy of estimates of traffic volume made by the standard (left, in blue) and general
(right, in green) gravity models for the Austrian call data. Top: Fitted values versus flow volume.
Bottom: Relative error versus flow volume, where light and dark points indicate under- and over-
estimation, respectively. All axes are on logarithmic scales, base ten. The lines y= x and y= 0 are
shown in yellow in the top and bottom sets of plots, respectively, for reference.

I Relative prection error. Plot (zij − µ̂ij)/zij vs zij in log-log scale

⇒ For both models error varies widely in magnitude

⇒ Roughly, error decreases with flow volume

⇒ Tendency to over- (under)-estimate low (high) volumes
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Model accuracy comparison

I Plot empirical CDF of models’ relative prediction errors
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Fig. 9.3 Empirical CDF of the logarithm of the relative prediction error for the standard (blue) and
general (green) gravity models in predicting call volume for the Austrian call data.

I General model’s CDF lies to the left of that for the standard model

⇒ The general model dominates in terms of accuracy

I Ex: Standard model errors ≤ zij for 58% of the OD pairs

⇒ Compare with 72% under the general model
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Estimating traffic matrices

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Monitoring flows

I Monitoring OD flow volumes Zij fundamental to:

⇒ Traffic management

⇒ Network provisioning

⇒ Planning for network growth

I Often difficult (even impossible) to measure the Zij . . .

Ex: large-scale surveys prohibitive in transportation networks

Ex: flow sampling, storing, transmission affects Internet user QoS

I . . . but relatively easy to acquire link counts Xe

Ex: highway networks, place sensors in on- and off-ramps

Ex: routers monitor data on incident links (e.g., SNMP)
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Traffic matrix estimation

Traffic matrix estimation

Given R and link counts {Xe}e∈E , predict flows Zij (or estimate µij)

I Highly underdetermined inverse problem. “Invert” known fat R in

X = RZ, where R ∈ {0, 1}Ne×Nf and Ne � Nf= O(N2
v )

⇒ Leverage side information to constrain the solution set

I Also dubbed network tomography. Taxonomy of methods:

⇒ Static: estimate Z for a single time period

⇒ Dynamic: estimate Z successively over multiple time periods

I Y. Vardi, “Network tomography: Estimating source-destination traffic
intensities from traffic counts,” JASA, vol. 91, pp. 365-377, 1996
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Gaussian models and LSE

I Traffic often has units of “counts” e.g., cars per hour or Mbps

⇒ Still, early approaches based on LS and Gaussian models

I Simple linear model for observed link counts X = {Xe}e∈E

X = Rµ+ ε

I R ∈ {0, 1}Ne×Nf is the known routing matrix
I µ ∈ RNf

+ is vector of expected OD flow volumes
I ε is a Ne × 1 vector of i.i.d. zero-mean errors, with variance σ2

I Formulation suggests estimating µ via ordinary LS

⇒ Gaussian ε reasonable in high-count settings (LS ⇔ ML)

⇒ However, typically Ne � Nf and LS is poorly posed
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Example: Toy network

I Graph G (V ,E ) with Nv = 5 and Ne = 4, OD pairs {ac , ad , bc , bd}
4

1

4

2

3

a

b

c

d

v

Fig. 9.4 A simple network illustrating the traffic matrix estimation problem.
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I Although Ne = Nf = 4, rank(R) = 3 and RTR not invertible

⇒ For link counts X = x, there are infinite solutions µ̂ to

min
µ
‖x− Rµ‖2
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Leveraging historical data

I Suppose we have initial OD flow volume measurements Z0 = z0

⇒ Historical data, maybe even rough and innacurate

I Use z0 to constrain the LS problem. Consider the model[
Z0

X

]
=

[
I
R

]
µ+

[
ξ
ε

]
I Independent errors ξ and ε have covariance matrices Ψ and Σ

I Generalized LS estimator

min
µ

[
z0 − µ
x− Rµ

]T [
Ψ−1 0
0 Σ−1

] [
z0 − µ
x− Rµ

]
⇒ From likelihood-based perspective a Gaussian model implicit
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Generalized LS solution

I Generalized LSE is a linear combination of z0 and x, namely

µ̂ =
(
Ψ−1 + RTΣ−1R

)−1 (
Ψ−1z0 + RTΣ−1x

)
I Model is linear so µ̂ is unbiased and a MVUE, with

var [µ̂] =
(
Ψ−1 + RTΣ−1R

)−1

I Typically Σ is diagonal and Ψ depends on sampling of z0

⇒ Estimate from historical data {z0} or previous estimates µ̂

I Likely to obtain negative µ̂ij if link counts are low. Constrain µij ≥ 0

I M. Bell, “The estimation of OD matrices by constrained generalized
least squares,” Transportation Research, vol. 25B, pp. 13-22, 1991
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Bayesian approach

I Instead of historical data, regularize with prior µ ∼ N (µ0, τ
2I)

I Suppose X = Rµ+ ε, with ε ∼ N (0, σ2I). MAP estimator

µ̂ := E
[
µ
∣∣X = x

]
= µ0 + RT (RRT + λI)−1(x− Rµ0)

⇒ Correction of µ0 driven by error in predicting x as Rµ0

I Uncertainty in the estimate assessed via the covariance matrix

var
[
µ
∣∣X = x

]
= τ 2

[
I− RT (RRT + λI)−1R

]
I Smoothing parameter λ := σ2/τ 2. Limiting cases:

⇒ As λ→ 0 enforce x = Rµ̂

⇒ As λ→∞ then µ̂→ µ0
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Poisson models and MLE

I Gaussian model inappropriate even if few {µij} are small

I Independent, Poisson OD flows modeled as

P (Z = z;µ) =
∏
ij

P (Zij = zij ;µij) =
∏
ij

e−µijµ
zij
ij

zij !

I Consider error-free observations X = RZ

⇒ Distribution of X induced by that of Z above

⇒ Elements of X not independent in general

⇒ Multiple z solve x = Rz, for observed X = x

I Still µ identifiable if columns of R all distinct and nonzero [Vardi ’96]

P (X;µ) = P (X; µ̃) ⇒ µ = aµ̃
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Example: Toy network (encore)

I Subgraph induced by V ′ = {a, v , c}, OD pairs {av , vc , ac}4

1

4

2

3

a

b

c

d

v

Fig. 9.4 A simple network illustrating the traffic matrix estimation problem.

R =

(
1 0 1
0 1 1

)
I Observe link counts x = [1, 2]T

I Two consistent flow sets

z1 = [0, 1, 1]T and z2 = [1, 2, 0]T

I Data likelihood L(µ; x) = P
(
X = [1, 2]T ;µ

)
is

L(µ; x) = P
(
Z = [0, 1, 1]T ;µ

)
+ P

(
Z = [1, 2, 0]T ;µ

)
= (µacµvc + µavµ

2
vc/2) exp(−µac − µav − µvc)
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Issues with Poisson MLE

I Q: What is the MLE µ̂ = argmaxµ�0 L(µ; x)?

Solve max
µ�0

(µacµvc + µavµ
2
vc/2) exp(−µac − µav − µvc)

⇒ ∇µL(µ∗; x) = 0 for µ∗ = [1, 2, 0]T , but µ̂ = [0, 1, 1]T

I Paradox? No, solution in the boundary of the feasible set

I For Poisson models L(µ; x) not concave in general [Vardi ’96]

⇒ Asymptotically concave for i.i.d. x1, . . . , xn if µ � 0

I EM-based MLE solver impractical (E
[
Z
∣∣X,µ] tricky)

⇒ Workaround: approximate X ∼ N (Rµ,Rdiag(µ)RT )

⇒ Resort to a method-of-moments estimator
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Bayesian approach

I Goal: inference based on the posterior P
(
Z
∣∣X)

⇒ Requires a prior P (Z) and the model X = RZ

I Prior specification: Z independent, Poisson(µ); along prior P (µ)

P (Z,µ) = P (µ)
∏
ij

P
(
Zij

∣∣µij

)
= P (µ)

∏
ij

e−µijµ
zij
ij

zij !

I Observe link counts X, conduct inference based on P
(
Z,µ

∣∣X)
⇒ Simulate from the posterior via Gibbs sampler

⇒ Iteratively resample from P
(
Z
∣∣µ,X) and P

(
µ
∣∣X,Z)

I C. Tebaldi and M. West, “Bayesian inference on network traffic
using link count data,” JASA, vol. 93, pp. 557-573, 1998
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Conditional posterior distributions

I P
(
µ
∣∣X,Z): Independent µij priors, i.e., P (µ) =

∏
ij P (µij), yields

P
(
µ
∣∣X,Z) ≡ P

(
µ
∣∣Z) =∏

ij

P
(
µij

∣∣Zij

)
∝
∏
ij

e−µijµ
zij
ij

zij !
P (µij)

⇒ Given Z, easy to simulate {µij} from univariate posteriors

⇒ Ex: If P (µij) uniform or Gamma → P
(
µij

∣∣Zij

)
also Gamma

I P
(
Z
∣∣µ,X): Model X = RZ constrains Z given X = x

⇒ Condition algebraically, rather than using Bayes’ rule

I Illustrate through an example, then give general form of P
(
Z
∣∣µ,X)
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Example: Toy network (second encore)

I Subgraph induced by V ′ = {a, v , c}, OD pairs {av , vc , ac}
4

1

4

2

3

a

b

c

d

v

Fig. 9.4 A simple network illustrating the traffic matrix estimation problem.

R =

(
1 0 1
0 1 1

)
I Given X = x and Zac

⇒ Know Zav and Zvc since

Zav = X1−Zac and Zvc = X2−Zac

I Simulate from the full joint conditional posterior P
(
Z
∣∣µ,X) by:

(i) Drawing zac from the marginal posterior

P
(
Zac=zac

∣∣µ,X = x
)
∝ µzac

ac

zac !

µx1−zac
av

(x1 − zac)!

µx2−zac
vc

(x2 − zac)!

(ii) Evaluating zav = x1 − zac and zvc = x2 − zac
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General form of the OD flow posterior

I If rank(R) = Ne , write R = [R1 R2] with R1 ∈ {0, 1}Ne×Ne invertible

⇒ Can split flows ZT = [ZT
1 ,Z

T
2 ]

T , where Z1 = R−1
1 (X− R2Z2)

I The sought conditional posterior has the form

P
(
Z = z

∣∣µ,X = x
)
= P

(
Z1 = z1

∣∣Z2 = z2,µ,X = x
)
P
(
Z2 = z2

∣∣µ,X = x
)

⇒ P
(
Z1 = z1

∣∣Z2 = z2,µ,X = x
)
= I

{
z1 = R−1

1 (x− R2z2)
}

⇒ The “independent flows” Z2 have distribution

P
(
Z2 = z2

∣∣µ,X = x
)
∝
∏
ij

µ
zij
ij

zij !

I Amenable to drawing entries of Z2 via a Gibbs sampler
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Example: North Carolina road network

I Monroe, NC road network: Ne = 20 links and Nf = 64 flows

⇒ Studied by transportation engineers at NC State University
566 Journal of the American Statistical Association, June 1998 

H 0 

A B C D E 

L M N 

Figure 6. Physical Node-Link Structure of the Monroe Network. 

cases analysis may be subject to significant biases in in- 
ferences unless it is appropriately constrained via informed 
prior distributions. 

We summarize some basic results of this first analysis us- 
ing uniform priors for the Ai. We ran the MCMC analysis 
from starting values computed as described in Section 3, 
for a large number of iterations in view of the unavoidably 
high dependencies among OD flows and rates link. After 
a number of experiments, we ran a final chain for 1 mil- 
lion iterations, and summarize for posterior inferences here 
a "dependence-breaking" subsample of size 10,000. Across 
repeat experiments and with different subsamples, the re- 
sults are consistent. Figure 8 summarizes marginal poste- 
riors for 16 of the full 64 OD flows. Because in this case 
we actually know the realized OD values, we can assess 
the accuracy of posterior inferences by comparing the true 
values, denoted by Xi for OD pair i, against the margins; 
the Xi* are indicated in the figures. The key point to note 
here is just how poorly several of the smaller X* values 
are estimated; they lie way down in the lower tail of their 
marginal posterior distributions and so are grossly overes- 
timated. The higher flows, in comparison, are consistently 
adequately estimated. This is an example of the general phe- 
nomenon discussed in Section 2.4 and is exhibited across 
repeat analyses of other data from the Monroe network, 
taken from differing time periods, and also of simulated 
data. The biased inferences are due to the inherent struc- 
tural ambiguity in the likelihood function for the Poisson 
rates. 

Now consider reanalysis using more informed priors for 
the Ai. We now take independent gamma priors; note that 
the analysis of Sections 2 and 3 can be developed with 
minor modification under (conditionally conjugate) gamma 
priors, and so the easy details are omitted. To mirror an 
on-line, OD flow "updating" context, we base the priors 
for "today's" Xi on the known values Xi*; the idea here is 
that the numbers Xi* represent estimate based on previous 
days analyses and observations. Specifically, we choose the 
prior gamma distribution for Ai to have shape parameter 
aXiZ and scale parameter a for some a > 0. Small values 
of a discount the prior estimate Xi* and lead to a relatively 
diffuse prior. One analysis summarized here is based on 
a = .02. For each of the 16 OD pairs chosen in the fore- 
going analysis, Figure 9 graphs the corresponding gamma 
prior densities (as dashed lines). Following MCMC-based 
analysis with these priors, the estimates of corresponding 
posteriors are computed and also graphed in Figure 9. Fig- 

ure 10 displays the corresponding marginal posteriors for 
the OD flows Xi, again with true values X? marked. Ev- 
idently, even very weak prior information, roughly "cor- 
rectly" located based on previous OD estimates, is sufficient 
to overcome the distortions and biases inherent in "disbal- 
anced" networks. Figure 11 summarizes all marginal poste- 
rior distributions for all 64 OD flows in terms of box plots. 
Boxplots are graphed for the two analyses: uniform priors 
and gamma priors on the Ai. Superimposing the true X? 
values, we note uniform consistency of the data with the 
priors in the latter analysis and the corresponding uniform 
correction of the overestimation bias for smaller flows. We 
also indicate (with the symbol "V") the point estimates de- 
livered using the algorithm of Vardi (1996) on this network. 
As is clear from the figure, this algorithm, though not a di- 
rect likelihood-based algorithm, suffers precisely the same 
problem of overestimating low flows in the context of dom- 
inating high flow rates on subsets of the network and should 
be used with caution unless explicitly adjusted to overcome 
this problem. 

5. RANDOM (MARKOVIAN) ROUTING 

One important model extension relaxes the assumption 
that all messages or trips between a specified OD pair take 
the single route specified in the 0/1 routing matrix A. Vardi 
(1996) discussed this and developed the case of Markovian 
routing, in which a message travelling between a specified 
OD pair exits its "current" node in the network on one of 
possibly several links consistent with a route to the speci- 
fied destination. In communications networks, such random 
routing may arise as a result of control procedures to avoid 
or redress queuing questions. In urban road transportation 
networks, there typically exist one or a small number of pri- 
mary routes between specified OD pairs, such routes being 
used by much of the traffic, but with several additional, 

Y1 : A e+B: 1980 
Y2 : B B C: 1966 
Y3 C-D: 1788 
Y4 : D +E: 2600 

55 : E +F : 2100 
Y6: F -E: 1816 
Y7 : E >D: 2880 
Y8 : D +C: 2052 
Yg : C +B: 1954 
Yio: B-A: 1772 
Y11: I-B: 338 
Y12: L-B: 284 
Y13: H+ C: 306 
Y14: M-C: 176 
Y15: G-D: 68 
Y16: N -D: 1000 
Y17: O- E: 1104 
Y18: BI : 488 
Y19: C-+M: 274 
Y2o: D-+NS: 926 

Figure 7. Link Flows for the Monroe Network of Figure 6. 
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I Network fed to the traffic simulator Integration [Van Aerde et al ’96]

⇒ Modeled delays: congestion, traffic lights, turns, lanes merging

I Data (OD flows and link counts) for 2-hour morning period
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Flow marginal posterior distributions

I Estimated marginal posteriors for 8 of the 64 OD flows (N = true)

⇒ Uniform priors (top), and “informed” Gamma priors (bottom)
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Figure 10. Posterior Distributions for 16 Components of X Under Informed Gamma Priors on the A,. The true values X, appear on the x axis. 

common OD pair, we add the probabilities of assignment to 
the columns (i.e., fixed routes) within such subsets. In this 
case, the original 12 OD pairs generates 27 in the super- 
network. 

Now turn to the issue of modeling and inferring route 
counts. Consider any OD pair a = (i, j) in the original net- 
work, with corresponding counts Xa. The process of cre- 
ating a corresponding set of fixed routes between i and j 
generates some number, say ka, of such routes. Given the 
original probability routing matrix, we can trivially com- 
pute the resulting probabilities Pa = (pa, v** Pa,ka)' of 
selecting each of these fixed routes; note that these ka prob- 
abilities sum to unity. Write Xa,t for the number of trips 
that take fixed route t from i to j. Then, given Xa, the dis- 
aggregated counts Xa,i, ... ., Xa, k are conditionally multi- 
nomially distributed among the ka fixed routes out of the 
total Xa and with route selection probabilities Pa. Under 
the earlier assumption that Xa - Po(Aa), this trivially im- 

plies that the disaggregated, fixed route counts are them- 
selves marginally independent and Poisson distributed, with 
Xa,t V Po(p,tAa) for t = 1, ... I ka. Hence, independently 
across OD pairs a, we have 

P(Xa,l v v Xa,kc lAa, Pa) 

_ (Pa,tAa)Xa,t exp(-Pa,tAa) 
n 

~~~Xa,t 
7 

which reduces to 
ka 

P(Xa, 1. * Xa,kj IAa, Pa) o Aa exp(-Aa) fJpXat (8) 
t=1 

as a function of (Aa, Pa), noting that Xa t=1 Xa,t. 
The immediate consequence of (7) and (8) is that the 

original approach to inference about route counts in the 
fixed routing problem in Sections 2 and 3 applies directly 
to the super-network. Conditional on the parameters A and 
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Figure 8. Posterior Distributions for 16 Components of X Under Uniform Priors on the As. The true values Xs appear on the x axis. 

secondary routes used less frequently either as alternatives 
in times of congestion on primary routes or as occasional 
alternatives for other reasons. Primary and secondary routes 
between a specified OD pair will typically share a common 
subset of links, with a few additional links being specific 
to one or a few routes (Figure 12). 

A neat extension of the development in Sections 2 and 
3 provides for analysis using the Bayesian approach devel- 
oped for the fixed routing network. We discuss this later, 
following a precise definition and discussion of the random 
routing model. 

Given a specific OD pair a = (i,j), messages leaving 
node i may now take differing routes to node j. The Mar- 
kovian routing model simply assumes that at any node on 
the way to the destination, each message exits on a link 
determined by a set of link choice probabilities, indepen- 
dently of the path taken to the current node and indepen- 
dently across messages. In some cases there will be just 
one exit link possible, in other cases there may be several. 

As in Vardi (1996), the setup can be summarized through 
a modified routing matrix that summaries the link choice 
probabilities for all possible OD pairs. As in the fixed rout- 
ing case, the matrix has rows indexing links in the network 
and columns indexing OD pairs; now, however, the entries 
are probabilities determining the selection of links (rows) 
on trips between specified OD pairs (columns). We study an 
example matrix from Vardi (1996) further later; with rows 
and columns labelled by links and OD pairs, this has the 
probability matrix A given in Figure 6. 

Here we have 4 nodes, r = 9 directed links and c = 12 
OD pairs. Consider, for example, the OD pair AB. Each 
trip from A to B has an 80% chance of moving directly 
along link A -? B and terminating there, with the com- 
plementary 20% chance it travels from A -? C. Assuming 
that it follows this latter path, it then travels along C -? B 
directly and terminates with an 80% chance; otherwise, it 
moves along the two consecutive links C -? D -? B and 
terminates. By elementary probability computations, we can 
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I Tend to overestimate smaller flows with a uniform prior

⇒ Gamma priors based on recent data remove ambiguities
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Relative entropy

I Consider a prior guess µ(0) of µ, normalized such that∑
ij

µ
(0)
ij =

∑
ij

µij =: µ++

I Relative entropy “distance” between µ and µ(0) given by

D(µ‖µ(0)) =
∑
ij

µij

µ++
log

(
µij

µ
(0)
ij

)

I Remarks

(i) Also known as Kullback-Liebler (KL) divergence

(ii) Dissimilarity between “distributions” {µij/µ++} and {µ(0)
ij /µ

(0)
++}

(iii) D(µ‖µ(0)) ≥ 0 always, and D(µ‖µ(0)) = 0 ⇔ µ = µ(0)
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Entropy minimization

I Traffic matrix estimation: minimize D(µ‖µ(0)) subject to x ≈ Rµ

I Dualize constraints via Lagrange multipliers λ ∈ RNe , solve

min
µ,λ

D(µ‖µ(0)) + λT (x− Rµ)

I Given λ, optimality condition yields the estimator (R = [r11, . . . , rIJ ])

µ̂ij(λ) = µ
(0)
ij exp

(
−1− λT rij

)
⇒ Multiplicative perturbation of µ(0), λ obtained numerically

⇒ Specify µ(0) from historical data z0, or prior estimates µ̂

⇒ Non-negative solution guaranteed if µ(0) � 0

Network Science Analytics Analysis of Network Flow Data 40



Entropy regularization

I Can view D(µ‖µ(0)) as regularizer for x = Rz → Penalized LS

min
µ�0
‖x− Rx‖2 + λD(µ‖µ(0))

⇒ Convex problem, λ chosen via cross validation

I Couple interpretations:

(i) Entropy minimization with relaxed constraint ‖x− Rx‖2 ≤ τ
(ii) MAP for Gaussian model and prior f (µ) s. t. log f (µ) ∝ D(µ‖µ(0))

⇒ View as f (µ) ≈ multinomial, with probabilities ∝ µ
(0)
ij

I Ex: simple gravity model prior µ
(0)
ij ∝ µ

(0)
i+µ

(0)
+j (more soon)

I Y. Zhang et al, “An information-theoretic approach to traffic matrix
estimation,” SIGCOMM, pp. 301-312, 2003
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Dynamic methods

I Q: Traffic matrix estimation over time periods t = 1, . . . , τ?

I Given: link counts x1:τ := {x(t)}τt=1 and routing R1:τ := {R(t)}τt=1

I Determine: OD flows z1:τ := {z(t)}τt=1, where x(t) ≈ R(t)z(t)

Time 

Fl
ow

 v
ol

um
e 

True 
Estimated 

I Dynamic methods categorization: simultaneous or sequential

I A. Soule et al, “Traffic matrices: Balancing measurements, inference
and modeling,” SIGMETRICS, pp. 362-373, 2005
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Simultaneous methods

I Simultaneous methods mostly based on the linear model

X(t) = R(t)µ(t) + ε(t), t = 1, . . . , τ

I Penalized LS criteria employed to form µ̂1:τ

µ̂1:τ := argmin
µ1:τ

τ∑
t=1

‖x(t)− R(t)µ(t)‖2 + λJ(µ1:τ )

I Separable penalty J(µ1:τ ) =
∑

t Jt(µ(t)) not uncommon
I Ex: Jt(·) based on independent Gaussian or entropy-based priors

I Temporal correlations in x1:τ ignored → τ decoupled static problems

I Over short spans can assume µ(t) = µ, treat x1:τ as replicates

⇒ LS ill-posed in general, but Poisson likelihood well behaved
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Sequential methods

I Sequential methods leverage time correlations via Kalman filtering

I State µ(t) and link count (measurement) X(t) equations

µ(t + 1) = Φ(t)µ(t) + η(t)

X(t) = R(t)µ(t) + ε(t)

⇒ η(t), ε(t) are zero-mean, white, with covariances Ψ(t), Σ(t)

I Kalman filter (KF) in a nutshell
I Prediction step: form prediction µ̂t+1:t of µ(t + 1) using x1:t
I Correction step: Update µ̂t+1:t+1 based on x(t + 1)− R(t + 1)µ̂t+1:t

I Also update recursively the error covariance matrix

Mt:t := E
[
(µ̂t:t − µ(t))(µ̂t:t − µ(t))T

]
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Kalman filter updates

I Initialize µ̂0, M0:0 and run for t = 0, . . . , τ

I Prediction step:

µ̂t+1:t = Φ(t)µ̂t:t

Mt+1:t = Φ(t)Mt:tΦ
T (t) +Ψ(t)

I Kalman gain update:

Kt+1 = Mt+1:tR
T (t + 1)

[
R(t + 1)Mt+1:tR

T (t + 1) +Σ(t + 1)
]−1

I Correction step:

µ̂t+1:t+1 = µ̂t+1:t +Kt+1

[
x(t + 1)− R(t + 1)µ̂t+1:t

]
Mt+1:t+1 = [I−Kt+1B(t + 1)]Mt+1:t [I−Kt+1B(t + 1)]T

+Kt+1Σ(t + 1)KT
t+1
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Practical considerations

I Model matrices Φ(t), Ψ(t) and Σ(t) must be determined

⇒ Often assumed time-invariant, and estimated from data

I Estimation depends on the model and data available

⇒ Given x1:τ , use variant of the EM algorithm

⇒ Given flows z1:τ , use AR(1) fitting techniques

I Z. Ghahramani and G. Hinton, “Parameter estimation for linear
dynamical systems,” Tech. Rep. CRG-TR-96-2, U. of Toronto, 1996

I KF should be periodically recalibrated → readjust Φ, Ψ and Σ

(a) Monitor the error process x(t)− R(t)µ̂t:t

(b) Check if some entry e exceeds e.g., 3σe for few periods
(c) Obtain σ2

e from diagonal of R(t)Mt:tR
T (t) +Σ
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Case study

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Internet traffic monitoring

I Q: Why do ISPs monitor their networks routinely?

R1) Identify network (e.g., link) failures, their extent, and reasons
R2) Adjust routing → control congestion → optimize QoS
R3) Traffic engineering and management → capacity planning
R4) Security policies against cyber-attacks (e.g., worms, DoS)

I Availability of traffic matrices Z(t) key to traffic monitoring

I While possible, rarely measure Internet flows Zij(t) at ISP level

⇒ Concern on the volume of data generated

⇒ Potential to adversely affect end-user QoS

I Limited z(t) to calibrate Internet traffic matrix estimation methods
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Abilene traffic data

I Abilene backbone: Nv = 11 PoPs, Ne = 30 links, Nf = 110 flows

I Measure flows z1:τ for τ = 12× 24× 7 = 2, 016 time slots

⇒ Router sampling every 5 mins., week of Dec. 22, 2003

I Abilene routing matrix R ∈ {0, 1}30×110 given, time invariant

⇒ Pseudo-measurements: link counts x(t) = Rz(t), t = 1, . . . , τ
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Link counts and OD flow volumes 5
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Fig. 9.5 Link counts (top, in orange) for the Denver to Sunnyvale link in the Abilene network, as
compared to the origin-destination flow counts for the traffic passing over this link (in gold) from
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I Few flow patterns discernible in the aggregate (link count) data

⇒ OD flow recovery impossible in the absence of side information
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Choice of traffic matrix estimation methods

I Compare static and dynamic methods for traffic matrix estimation

I Method 1: entropy-based approach termed tomogravity

min
z�0
‖x− Rz‖2 + λ

∑
ij

zij

z
(0)
++

log

(
zij

z
(0)
ij

)
, where z

(0)
ij = z

(0)
i+ z

(0)
+j

⇒ Simple gravity model prior adopted for z(0), λ = 0.01

I Method 2: KF with state and measurement equations

Z(t + 1) = ΦZ(t) + η(t)

X(t) = Rz(t)

⇒ No error injected to the pseudo-measurements x(t)

⇒ Matrices Φ and Ψ estimated from z1:288 (Monday’s flows)
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Relative prediction error versus time

I Relative error averaged over OD pairs, as a function of time

⇒ Compare KF, tomogravity and bias-compensated tomogravity
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Fig. 9.6 Comparison of relative error (i.e., average absolute difference of predicted and actual
origin-destination flow volumes, divided by average flow volume) for Abilene traffic flows. Left:
Error aggregated over origin-destination pairs, as a function of time, for each of tomogravity (light
blue), bias-corrected tomogravity (blue) and Kalman filtering (red). Right: Error aggregated over
time, for each origin-destination pair, on a log-log scale, with area of symbol proportional to the
mean volume of that flow, and colored according to which method had the larger relative error
(tomogravity, blue; Kalman filtering, red).

I Tomogravity overestimates, after bias-correction comparable to KF

⇒ KF performs better early in the week, then degrades
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Relative prediction error versus flows

I Relative error averaged over time, for each OD pair in log-log scale

⇒ Symbol area ∝ mean volume of the flow

⇒ Color code: KF had higher error, tomogravity had higher error
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Fig. 9.6 Comparison of relative error (i.e., average absolute difference of predicted and actual
origin-destination flow volumes, divided by average flow volume) for Abilene traffic flows. Left:
Error aggregated over origin-destination pairs, as a function of time, for each of tomogravity (light
blue), bias-corrected tomogravity (blue) and Kalman filtering (red). Right: Error aggregated over
time, for each origin-destination pair, on a log-log scale, with area of symbol proportional to the
mean volume of that flow, and colored according to which method had the larger relative error
(tomogravity, blue; Kalman filtering, red).

I KF mostly outperforms tomogravity for high- and low-volume flows
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Flow volume predictions

I True flows superimposed with tomogravity and KF predictions
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Fig. 9.7 Traffic flow volume predictions from bias-corrected tomogravity (left, in blue) and
Kalman filtering (right, in red) methods, for four flows with volumes ranging from high (top)
to low (bottom). Actual flow volumes are shown in yellow.

I Tomogravity completely misses the dynamics of the first flow

⇒ But outperforms KF for the second flow
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Network flow costs

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Network flow costs

I Consider a network graph G (V ,E ). Let P be the set of paths in G

⇒ Path i-j has origin vertex i ∈ I and destination j ∈ J

I Network flows costs at two levels of granularity: paths and links

⇒ Path costs c ∈ RNp and link costs x ∈ RNe related via

c = RTx

I Cost associated to path = sum of the costs of the links traversed

I Ex: end-to-end delay is the sum of the delays in intermediate links

I Our focus: a particular class of problems involving inference of costs

⇒ Given data are limited (path) end-to-end measurements
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Link costs from end-to-end measurements

Active network tomography

Given cobs in paths Pobs ⊂ P, infer some characteristic of x

I Actively inject traffic to measure cobs , e.g., multicast probing

⇒ Traffic matrix estimation → observe link counts passively

I Tomography: unveil “internal” network characteristics

⇒ Infer summands {xe}e∈Pij from aggregate cij

I Ex: determine link loss rates from packet loss measurements

I M. Coates et al, “Internet tomography,” IEEE Signal Processing
Magazine, vol. 19, pp. 47-65, 2002
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Path costs from end-to-end measurements

Network kriging

Given cobs in paths Pobs ⊂ P, predict cmiss in Pmiss = P \ Pobs

I Kriging coined in geosciences for spatial interpolation or smoothing

I Key: exploit redundancies among links used by various paths

I D. Chua et al, “Network kriging,” IEEE J. Selected Areas in
Communications, vol. 24, pp. 2263-2276, 2006
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Interpolation of path costs

I Number of paths Np is much larger than Ne . Interpolation idea:

(i) Select only Ne paths Pobs to monitor
(ii) Use cobs ∈ RNe to determine link costs x
(iii) Since R = [Ro Rm], recover c

miss = RT
mx

I But in general r := rank(R) < Ne , so x not identifiable

⇒ Cannot find xN (RT ) ∈ null(RT ) from c = RTx

⇒ Only vectors xR(RT ) ∈ range(RT ) can be identified in (ii)

I Of course do not need x to recover cmiss ⇒ xR(RT ) suffices

I Y. Chen et al, “An algebraic approach to practical and scalable
overlay network monitoring,” SIGCOMM, vol. 34, pp. 55-66, 2004
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Example: Unidentifiable link costs

I Graph G (V ,E ) with Nv = 4 and Ne = 3, paths {AB,AC ,BC}

Symbols Meanings
M total number of nodes
N number of end hosts
n number of end hosts on the overlay
r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
t number of identifiable links
G ∈ {0, 1}r×s original path matrix
Ḡ ∈ {0, 1}k×s reduced path matrix
k ≤ s rank of G
li loss rate on ith link
pi loss rate on ith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in {0, 1}s (represents path)
p loss rate along a path
N (G) null space of G
R(GT ) row(path) space of G (== range(GT ))

Table 1: Table of notations

{0, 1}s, where the jth entry vj is one if link j is part of the
path, and zero otherwise. Suppose link j drops packets with
probability lj ; then the loss rate p of a path represented by
v is given by

1 − p =
s

j=1

(1 − lj)
vj (1)

Equation (1) assumes that packet loss is independent among
links. Caceres et al. argue that the diversity of traffic and
links makes large and long-lasting spatial link loss depen-
dence unlikely in a real network such as the Internet [15].
Furthermore, the introduction of Random Early Detection
(RED) [16] policies in routers will help break such depen-
dence. In addition to [15], formula (1) has also been proven
useful in many other link/path loss inference works [10, 9,
17, 14]. Our Internet experiments also show that the link
loss dependence has little effect on the accuracy of (1).

We take logarithms on both sides of (1). Then by defining
a column vector x ∈ s with elements xj = log (1 − lj), and
writing vT for the transpose of the column vector v, we can
rewrite (1) as follows:

log (1 − p) =
s

j=1

vj log (1 − lj) =
s

j=1

vjxj = vT x (2)

There are r = O(n2) paths in the overlay network, and
thus there are r linear equations of the form (2). Putting
them together, we form a rectangular matrix G ∈ {0, 1}r×s.
Each row of G represents a path in the network: Gij = 1
when path i contains link j, and Gij = 0 otherwise. Let pi

be the end-to-end loss rate of the ith path, and let b ∈ r

be a column vector with elements bi = log (1 − pi). Then
we write the r equations in form (2) as

Gx = b (3)

Normally, the number of paths r is much larger than the
number of links s (see Fig. 2(a)). This suggests that we
could select s paths to monitor, use those measurements to
compute the link loss rate variables x, and infer the loss
rates of the other paths from (3).

However, in general, G is rank deficient: i.e., k = rank(G)
and k < s. If G is rank deficient, we will be unable to deter-
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(a) Gx = b (b) ḠxG = b̄

Figure 2: Matrix size representations.

mine the loss rate of some links from (3). These links are also
called unidentifiable in network tomography literature [9].
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Figure 3: Sample overlay network.

Fig. 3 illustrates how rank deficiency can occur. There are
three end hosts (A, B and C) on the overlay, three links (1,
2 and 3) and three paths between the end hosts. We cannot
uniquely solve x1 and x2 because links 1 and 2 always appear
together. We know their sum, but not their difference.

Fig. 3 illustrates the geometry of the linear system, with

each variable xi as a dimension. The vectors {α 1 −1 0
T }

comprise N (G), the null space of G. No information about
the loss rates for these vectors is given by (3). Meanwhile,
there is an orthogonal row(path) space of G, R(GT ), which

for this example is a plane {α 1 1 0
T

+ β 0 0 1
T }.

Unlike the null space, the loss rate of any vector on the row
space can be uniquely determined by (3).

To separate the identifiable and unidentifiable components
of x, we decompose x into x = xG +xN , where xG ∈ R(GT )
is its projection on the row space and and xN ∈ N (G) is its
projection on the null space (i.e., GxN = 0). The decom-
position of [x1 x2 x3]T for the sample overlay is shown
below.

xG =
(x1 + x2)

2

1
1
0

+ x3

0
0
1

=
b1/2
b1/2
b2

(4)

xN =
(x1 − x2)

2

1
−1
0

(5)

Thus the vector xG can be uniquely identified, and con-
tains all the information we can know from (3) and the path
measurements. The intuition of our scheme is illustrated
through virtual links in [1].

Because xG lies in the k-dimensional space R(GT ), only k
independent equations of the r equations in (3) are needed to
uniquely identify xG. We measure these k paths to compute
xG. Since b = Gx = GxG + GxN = GxG, we can compute
all elements of b from xG, and thus obtain the loss rate of
all other paths. Next, we present more detailed algorithms.

3.2 Basic Static Algorithms
The basic algorithms involve two steps. First, we select a

basis set of k paths to monitor. Such selection only needs to

Symbols Meanings
M total number of nodes
N number of end hosts
n number of end hosts on the overlay
r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
t number of identifiable links
G ∈ {0, 1}r×s original path matrix
Ḡ ∈ {0, 1}k×s reduced path matrix
k ≤ s rank of G
li loss rate on ith link
pi loss rate on ith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in {0, 1}s (represents path)
p loss rate along a path
N (G) null space of G
R(GT ) row(path) space of G (== range(GT ))

Table 1: Table of notations

{0, 1}s, where the jth entry vj is one if link j is part of the
path, and zero otherwise. Suppose link j drops packets with
probability lj ; then the loss rate p of a path represented by
v is given by

1 − p =
s

j=1

(1 − lj)
vj (1)

Equation (1) assumes that packet loss is independent among
links. Caceres et al. argue that the diversity of traffic and
links makes large and long-lasting spatial link loss depen-
dence unlikely in a real network such as the Internet [15].
Furthermore, the introduction of Random Early Detection
(RED) [16] policies in routers will help break such depen-
dence. In addition to [15], formula (1) has also been proven
useful in many other link/path loss inference works [10, 9,
17, 14]. Our Internet experiments also show that the link
loss dependence has little effect on the accuracy of (1).

We take logarithms on both sides of (1). Then by defining
a column vector x ∈ s with elements xj = log (1 − lj), and
writing vT for the transpose of the column vector v, we can
rewrite (1) as follows:

log (1 − p) =
s

j=1

vj log (1 − lj) =
s

j=1

vjxj = vT x (2)

There are r = O(n2) paths in the overlay network, and
thus there are r linear equations of the form (2). Putting
them together, we form a rectangular matrix G ∈ {0, 1}r×s.
Each row of G represents a path in the network: Gij = 1
when path i contains link j, and Gij = 0 otherwise. Let pi

be the end-to-end loss rate of the ith path, and let b ∈ r

be a column vector with elements bi = log (1 − pi). Then
we write the r equations in form (2) as

Gx = b (3)

Normally, the number of paths r is much larger than the
number of links s (see Fig. 2(a)). This suggests that we
could select s paths to monitor, use those measurements to
compute the link loss rate variables x, and infer the loss
rates of the other paths from (3).

However, in general, G is rank deficient: i.e., k = rank(G)
and k < s. If G is rank deficient, we will be unable to deter-
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mine the loss rate of some links from (3). These links are also
called unidentifiable in network tomography literature [9].
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Fig. 3 illustrates how rank deficiency can occur. There are
three end hosts (A, B and C) on the overlay, three links (1,
2 and 3) and three paths between the end hosts. We cannot
uniquely solve x1 and x2 because links 1 and 2 always appear
together. We know their sum, but not their difference.

Fig. 3 illustrates the geometry of the linear system, with

each variable xi as a dimension. The vectors {α 1 −1 0
T }

comprise N (G), the null space of G. No information about
the loss rates for these vectors is given by (3). Meanwhile,
there is an orthogonal row(path) space of G, R(GT ), which

for this example is a plane {α 1 1 0
T

+ β 0 0 1
T }.

Unlike the null space, the loss rate of any vector on the row
space can be uniquely determined by (3).

To separate the identifiable and unidentifiable components
of x, we decompose x into x = xG +xN , where xG ∈ R(GT )
is its projection on the row space and and xN ∈ N (G) is its
projection on the null space (i.e., GxN = 0). The decom-
position of [x1 x2 x3]T for the sample overlay is shown
below.

xG =
(x1 + x2)
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1
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+ x3

0
0
1

=
b1/2
b1/2
b2

(4)

xN =
(x1 − x2)

2

1
−1
0

(5)

Thus the vector xG can be uniquely identified, and con-
tains all the information we can know from (3) and the path
measurements. The intuition of our scheme is illustrated
through virtual links in [1].

Because xG lies in the k-dimensional space R(GT ), only k
independent equations of the r equations in (3) are needed to
uniquely identify xG. We measure these k paths to compute
xG. Since b = Gx = GxG + GxN = GxG, we can compute
all elements of b from xG, and thus obtain the loss rate of
all other paths. Next, we present more detailed algorithms.

3.2 Basic Static Algorithms
The basic algorithms involve two steps. First, we select a

basis set of k paths to monitor. Such selection only needs to

(0,0,1) RT =

0

@
1 1 0
0 0 1
1 1 1

1

A

cAB

cBC

cAC

I Cannot identify x1 and x2 → Always show up summed in paths
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Interpolation algorithm

I Key: monitor r = rank(R) independent paths to recover xR(RT )

⇒ Choose paths via QR decomposition of R with column pivoting

Interpolation algorithm:

(1) Select r = rank(R) < Ne independent paths to monitor
(2) Use cobs ∈ Rr to solve for xR(RT ) from cobs = RT

o xR(RT )

Least norm solution: xR(RT ) =
(
RT

o

)†
cobs = Ro

(
RT

o Ro

)−1
cobs

(3) Recover the unknown path costs as

cmiss = RT
mxR(RT ) = RT

mRo

(
RT

o Ro

)−1
cobs

I For Np = N2
v , conjecture rank(R) = O(Nv logNv ) [Chen et al ’04]

⇒ Almost order of magnitude savings in measurement overhead
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Effective rank of R

I Interpolation appealing if we can monitor r = rank(R) paths

⇒ Cannot recover cmiss if a single measurement is missing

I Network kriging: recast problem as one of statistical prediction

⇒ Accurate even with s � rank(R) measurements. How?

I Since r = rank(R), can write the SVD of RT as

RT =
r∑

k=1

σkukv
T
k ≈

s�r∑
k=1

σkukv
T
k

I Observation: often most of the smaller σk are close to zero

⇒ We say R is effectively of lower rank than r

⇒ Intuition: dependencies among links used by various paths
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Example: Reduced dimensionality in Abilene

I Singular values of the Abilene routing matrix R

⇒ Ne = 30 links and Np = 110 paths. Plot shows rank(R) = 30
9
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Fig. 9.9 Spectrum of eigenvalues for an Abilene routing matrix.
I Spectral gap apparent. Effective rank s ∈ {5, 10}, even s = 2?

⇒ Recover useful information about c from couple measurements
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Routing matrix singular vectors

I Visualize top right singular vectors {vk}4k=1 of RT (evecs. of RRT )

⇒ Linearly independent “meta-paths” in “link space”

⇒ Intuition: shared patterns of links common to paths in R

10

Fig. 9.10 Visual representation of the first four eigenvectors (top left and right, followed by bottom
left and right, respectively) of an Abilene routing matrix. Each link is drawn with a thickness in
proportion to the magnitude of its corresponding eigenvector component.

10

Fig. 9.10 Visual representation of the first four eigenvectors (top left and right, followed by bottom
left and right, respectively) of an Abilene routing matrix. Each link is drawn with a thickness in
proportion to the magnitude of its corresponding eigenvector component.

I Northern E-W meta-path {vk}3k=1, and southern E-W meta-path v4
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Network kriging

I Consider predicting an arbitrary linear summary aTc of c

I Ex: network-wide average path cost a = 1/Np, or cij where a = eij

I Let x be a realization of X, with mean µ and var [X] = Σ

⇒ Because C = RTX, then E [C] = RTµ and var [X] = RTΣR

I Given s ≤ rank(R) measured path costs cobs , find

p̂(cobs) = argmin
p

E
[
(aTC− p(Cobs))2

]
⇒ Minimum mean-squared error (MMSE) predictor, given by

p̂(cobs) = E
[
aTC

∣∣Cobs = cobs
]
= aTo c

obs+E
[
aTmC

miss
∣∣Cobs = cobs

]
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LMMSE predictor

I Restrict attention to linear (L)MMSE predictors p̂(cobs) = âTcobs

âTcobs = aTo c
obs + aTmµ+ aTmVmoV

−1
o

(
cobs − RT

o µ
)

⇒ Used (cross-)covariances Vo = RT
o ΣRo and Vmo = RT

mΣRo

I Estimate µ from the data via generalized LS, i.e.,

µ̂ =
(
RoV

−1
o RT

o

)†
RoV

−1
o cobs

I Substitution of µ̂ yields the network kriging predictor [Chua et al ’06]

âTcobs = aTo c
obs + aTmVmoV

−1
o cobs

I SVD-based path selection to minimize E
[
(aTC− âTCobs)2

]
⇒ Like the QR decomposition with pivoting in [Chen et al ’04]
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Example: Abilene path delays

I Abilene backbone: Nv = 11 PoPs, Ne = 30 links, Np = 110 paths

I Measure link delays x1:τ for τ = 6× 24× 3 = 432 time slots

⇒ Router sampling every 10 mins., three days in 2003

I Abilene routing matrix R ∈ {0, 1}30×110 given, time invariant

⇒ Pseudo-measurements: path costs c(t) = RTx(t), t = 1, . . . , τ

I Applied the network kriging predictor to a subset cobs(t)

âTcobs(t) = aTo c
obs(t) + aTmVmoV

−1
o cobs(t), t = 1, . . . , τ

⇒ Various choices of s ≤ rank(R), SVD-based path selection

⇒ Covariance Σ assumed diagonal, estimated from data
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Path delay predictons

I Average path delay in Abilene predicted with s = 3, 5, 7, or 9 paths

⇒ Actual delay via interpolation of s = 30 = rank(R) paths
11
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Fig. 9.11 Network kriging predictions of Abilene average delay over a period of three days.I Biased predictions, missing link information in approximated R

⇒ Can be compensated if allowed to measure 30 paths once

I Predictions capture well the delay dynamics, for all s
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Case study

Network flows, measurements and statistical analysis

Gravity models

Traffic matrix estimation

Case study: Internet traffic matrix estimation

Estimation of network flow costs

Case study: Dynamic delay cartography
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Delay monitoring

I Motivating reasons
I Assess network health
I Fault diagnosis
I Network planning

I Application domains
I Old 8-second rule for WWW
I Content-delivery networks
I Peer-to-peer networks
I Multiuser games
I Dynamic server selection

Low delay variability 

High delay variability 

I Goal: infer path delays from limited end-to-end measurements
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Predicting path delays

I Consider a network graph G (V ,E ). Let P be the set of paths in G

I Several challenges in measuring all end-to-end path delays

⇒ Overhead: number of paths Np = O(N2
v )

⇒ Congested routers may drop packets

I Q: Can fewer measurements suffice?

I A: Yes! Most paths share multiple links ⇒ Correlations [Chua’06]

I End-to-end delay prediction problem: Given delay measurements
cobs in paths Pobs ⊂ P, predict cmiss in Pmiss = P \ Pobs
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Network kriging prediction

I Given (cross-)covariances Vo = cov[cobs ] and Vmo = cov[cmiss , cobs ]

I The universal kriging predictor is

ĉmiss = VmoV
−1
o cobs

⇒ To obtain Vo and Vmo , adopt a linear model for the path delays

c = Gx = RTx, [G]pl =

{
1, link l ∈ path p
0, otherwise

I Link delays x ∈ RNe and Σ = cov[x] ⇒ From model cov[c] is[
cobs

cmiss

]
=

[
So

Sm

]
Gx ⇒

[
Vo Vom

Vmo Vm

]
=

[
So

Sm

]
GΣG>

[
So

Sm

]>
⇒ Sampling matrix S = [S>

o ,S
>
m]

> known, selected heuristically
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Spatio-temporal prediction

I Network kriging prediction for a single temporal snapshot of delays

I D. Chua et al, “Network kriging,” IEEE J. Sel. Areas Communications,
vol. 24, pp. 2263-2272, 2006

I Wavelet-based approach for spatio-temporal delay prediction
I Diffusion wavelet matrix constructed from the topology of G
I Can capture temporal correlations, up to τ time slots
I High complexity O(τ 3P3) ⇒ Challenging for τ > 10

I M. Coates et al, “Compressed network monitoring for IP and all-optical
networks,” Proc. ACM Internet Measurement Conference, 2007

I Q: Should the same set of paths be measured every time slot?

⇒ Low balancing? Effectiveness of random path selection?

I Low-complexity spatio-temporal inference with online path selection
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Simple delay model

I Model delay cp(t) measured on path p ∈ P at time t as

cp(t) = χp(t) + νp(t) + εp(t)

I Component χp(t) captures queuing delays, traffic dependent
I Nonstationary: Random walk with driving noise covariance Cη

χ(t) = χ(t − 1) + η(t)

I Component νp(t) lumps propagation, transmission, processing delays
I Traffic independent, temporally white with covariance Cν = αGG>

I Measurement noise εp(t) i.i.d. over paths and time, var [εp(t)] = σ2
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Kriged Kalman filter formulation

I Paths measured on subset Pobs ⊂ P, use sampling matrix So(t)

cobs(t) = So(t)χ(t) + νobs(t) + ε(t), νobs(t) := So(t)ν(t)

I Kriged Kalman filter (KKF) state and measurement equations

χ(t) = χ(t) + η(t)

cobs(t) = So(t)χ(t) + νobs(t) + ε(t)

I Goal: given historical data H(t) = {cobs(τ)}tτ=1, predict c
miss(t)

I K. Rajawat et al, “Dynamic network delay cartography,” IEEE
Trans. Info. Theory, vol. 60, pp. 2910-2920, 2014
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Kriged Kalman filter updates

I State and covariance update recursions

χ̂(t) := E
[
χ(t)

∣∣H(t)]
= χ̂(t − 1) +K(t)[cobs(t)− So(t)χ̂(t − 1)]

M(t) := E
[
(χ̂(t)− χ(t))(χ̂(t)− χ(t))>

]
= [I−K(t)So(t)][M(t − 1) + Cη]

I KKF gain

K(t) = [M(t − 1)+Cη]S
>
o (t)[So(t)(M(t − 1)+Cη+Cν)S

>
o (t)+σ2I]−1

I Kriging predictor ĉmiss(t) = Sm(t)χ̂(t) + ν̂miss(t), where

ν̂miss(t) := Sm(t)CνS
>
o (t)[So(t)CνS

>
o (t)+σ2I]−1(cobs(t)−So(t)χ̂(t))
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Kriging covariance models

I Q: How do we find the spatial covariance Cν?

I Idea: paths sharing multiple links should be highly correlated

⇒ Linear model: Cν = αGG>

⇒ Graph Laplacian model: Cν = L†

I Similar principles used to define graph kernels

I Can also handle route changes, especially incremental changes
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Selection of measured paths

I KKF can model and track network wide delays given sample paths

I Q: Practical sampling of paths? Optimal measurements? Criterion?

I Error covariance matrix (define Φ(t) = [M(t − 1) + Cν + Cη] /σ
2)

Mmiss(t) = E
[
(cmiss(t)− ĉmiss(t))(cmiss(t)− ĉmiss(t))>

]
= σ2I+ σ2Sm(t)

[
Φ−1(t) + S>

o (t)So(t)
]−1

S>
m(t)

I Optimal experimental design

P̂obs(t) := arg min
Pobs⊂P

log det(Mmiss(t)), s. to |Pobs | = Nobs
p

I Criterion: D-optimal design, i.e., entropy of a Gaussian RV

⇒ Cost depends on Pobs via sampling matrix So(t) in Mmiss(t)
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Greedy algorithm

I Simple greedy algorithm to select observed paths Pobs

I Repeat |Pobs | times: Pobs ← Pobs ∪ argmaxp/∈Pobs δPobs (p), where

δ∅(p) = − log (1 + [M(t − 1) + Cη + Cν ]p,p)

δPobs (p) = − log
(
1 +

[
((M(t − 1) + Cη + Cν)

−1 + S>S)−1
]
p,p

)
⇒ Submodular, monotonic → Greedy solution (1− e−1) optimal

I Increments δPobs (p) efficiently evaluated in O(|P||Pobs |3)
⇒ Operational complexity can be reduced further [Krause’11]

I Can be modified to handle cases when

(i) Few nodes measure delays on all paths. Which nodes to choose?
(ii) All nodes measure delay on only one path. Which paths to chsose?
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Empirical validation: Internet2

I Internet2 backbone: 72 paths, lightly loaded network

I One-way delay measurements collected using OWAMP

⇒ Every minute for 3 days in July 2011 ∼ 4500 samples

I Training phase employed to estimate Cη, α [Myers’76]
I Modified estimators to handle measurements on subsets of paths
I First 1000 samples on 50 random paths used for training
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Network delay cartography: Internet2

True Kriging 

Wavelet KKF 
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Prediction error: Internet2

I Normalized mean-square prediction error as figure of merit

NMSPE =
1

T |Pmiss |

T∑
t=1

∥∥ĉmiss(t)− cmiss(t)
∥∥2

KKF 

Kriging 

Wavelets 

“Optimal” paths 
  

Random paths 
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Empirical validation: NZ-AMP

I NZ-AMP delay dataset: 186 paths, heavily loaded network

I Round-trip-times measured using ICMP, paths via scamper

⇒ Every 10 minutes in August 2011 ∼ 4500 samples
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Prediction error: NZ-AMP

Random path selection “Optimal” path selection 

I NMSPE order of magnitude larger than for the Internet2 data

⇒ Attributed to the markedly higher delay variability here
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Delay scatter plots: NZ-AMP

Wavelets 

KKF 

Kriging 

I Prediction of path delays. Plot ĉmiss
ij vs cmiss

ij

⇒ Fairly linear trend for KKF, variability ↗ for short delays

⇒ Network kriging and diffusion wavelets biased down
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Glossary

I Network traffic flows

I Routing matrix

I Traffic matrix

I Link counts

I Network flow costs

I Network monitoring

I Gravity model

I Generalized linear model

I Traffic matrix estimation

I Network tomography

I Poisson traffic models

I Entropy minimization

I Tomogravity

I Kalman filter

I End-to-end measurements

I Active network tomography

I Network kriging

I Path-cost interpolation

I Identifiability

I Effective rank

I (L)MMSE predictor

I Path selection

I Diffusion wavelets

I Kriged Kalman filter

I Optimal experimental design

I Submodular function
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