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Learning from relational data

I Graphs are natural models for relational data that can help to learn in various timely applications

<latexit sha1_base64="qRFlBcxXU+HkGLDkkfTMJuzUpMQ=">AAACDHicbVDLSgMxFM34tr6qLt0Ei+BCyozgY1kQwZUo2Cq0g2TS2xqaSYbkjlqG+QA3/oobF4q49QPc+Tem0y60eiBwOOfc5OZEiRQWff/Lm5icmp6ZnZsvLSwuLa+UV9caVqeGQ51rqc1VxCxIoaCOAiVcJQZYHEm4jHpHA//yFowVWl1gP4EwZl0lOoIzdNJ1udJCuMfiniySKeTZMddKx4LTU8A7bXo2dym/6hegf0kwIhUywtl1+bPV1jyNQSGXzNpm4CcYZsyg4BLyUiu1kDDeY11oOqpYDDbMiiVyuuWUNu1o445CWqg/JzIWW9uPI5eMGd7YcW8g/uc1U+wchplQSYqg+PChTiopajpohraFAY6y7wjjRrhdKb9hhnF0/ZVcCcH4l/+Sxm412K/une9WajujOubIBtkk2yQgB6RGTsgZqRNOHsgTeSGv3qP37L1578PohDeaWSe/4H18A4gQnH0=</latexit>

Economic Networks
<latexit sha1_base64="TM9974F6VSGW9uqUs5jVfQUv9aw=">AAACGnicbVDLSgMxFM3Ud31VXboJFsGFlJmCj2XBjW5E0VahLSWT3rahmWRI7qhl6He48VfcuFDEnbjxb0ynXfg6EDicc29ycsJYCou+/+nlpqZnZufmF/KLS8srq4W19ZrVieFQ5Vpqcx0yC1IoqKJACdexARaFEq7C/tHIv7oBY4VWlziIoRmxrhIdwRk6qVUIGgh3mN2ThjKBYXqhuWCSMtWmJ6qjTZRN0lPAW236dtgqFP2Sn4H+JcGEFMkEZ63Ce6OteRKBQi6ZtfXAj7GZMoOCSxjmG4mFmPE+60LdUcUisM00izSk205pUxfDHYU0U79vpCyydhCFbtIF7dnf3kj8z6sn2DlspkLFCYLi44c6iaSo6agn2hYGOMqBI4wb4bJS3mOGcXRt5l0Jwe8v/yW1cinYL+2dl4uV3Ukd82STbJEdEpADUiHH5IxUCSf35JE8kxfvwXvyXr238WjOm+xskB/wPr4ARluiMA==</latexit>

Social and Information Networks
<latexit sha1_base64="wvKo5gHV6RomWtquGoPGZvoR0P4=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgQkpS8LEsuNFdBfuAtpTJ9LYdOpmEmRuxhIIbf8WNC0Xc+hPu/BunaRbaeuDC4Zx75849fiS4Rtf9tnJLyyura/n1wsbm1vaOvbtX12GsGNRYKELV9KkGwSXUkKOAZqSABr6Ahj+6mvqNe1Cah/IOxxF0AjqQvM8ZRSN17YM2wgOm7yS+iGGS3EgEJQEnXbvoltwUziLxMlIkGapd+6vdC1kcgEQmqNYtz42wk1CFnAmYFNqxhoiyER1Ay1BJA9CdJN09cY6N0nP6oTIl0UnV3xMJDbQeB77pDCgO9bw3Ff/zWjH2LzsJl1GMINlsUT8WDobONBCnxxUwFGNDKFPc/NVhQ6ooMzHoggnBmz95kdTLJe+8dHZbLlZOszjy5JAckRPikQtSIdekSmqEkUfyTF7Jm/VkvVjv1sesNWdlM/vkD6zPH6tzmMI=</latexit>

Internet
<latexit sha1_base64="8UQBGKa51+ETnTDAzVZvCCzn2ZI=">AAACBHicbVC7SgNBFJ2NrxhfUcs0g0GwkLAb8VEGtLARIpgHJCHMTm6SIbMPZu6KYdnCxl+xsVDE1o+w82+cJFto4oELh3PunTv3uKEUGm3728osLa+srmXXcxubW9s7+d29ug4ixaHGAxmopss0SOFDDQVKaIYKmOdKaLijy4nfuAelReDf4TiEjscGvugLztBI3XyhjfCA03diV0aQxCdX9Ab0EHTSzRftkj0FXSROSookRbWb/2r3Ah554COXTOuWY4fYiZlCwSUkuXakIWR8xAbQMtRnHuhOPF2e0EOj9Gg/UKZ8pFP190TMPK3Hnms6PYZDPe9NxP+8VoT9i04s/DBC8PlsUT+SFAM6SYT2hAKOcmwI40qYv1I+ZIpxNLnlTAjO/MmLpF4uOWel09tysXKcxpElBXJAjohDzkmFXJMqqRFOHskzeSVv1pP1Yr1bH7PWjJXO7JM/sD5/AGHXmH8=</latexit>

3D Meshes
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Knowledge Graphs
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Brain Connectomes
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Machine learning on graphs: Challenges

I We’re quite good at learning from data in Euclidean domains (sequences, multi-dim. grids). . .

. . . but we want to learn from data defined on graphs G(V ,E)

I Challenges: no geometry (in general), irregular neighborhoods, arbitrary size, often dynamic

⇒ Ordering? Translation? Convolution? Structural priors (stationarity, invariances)?

M. Bronstein et al, “Geometric deep learning: Going beyond Euclidean data,” IEEE Signal Process Mag, 2017
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Graph notation

I Graph G(V ,E) with adjacency matrix A ∈ RNv×Nv
+

⇒ Aij = proximity between i and j

⇒ Neighborhood of i is Ni = {j ∈ V : (i , j) ∈ E}

I Define a signal x ∈ RNv supported on V

⇒ xi = signal (feature, attribute) value at node i

⇒ Could be a feature vector xi ∈ RF

X = [x1, . . . , xNv ]> ∈ RNv×F

I Target labels y for (semi)-supervised learning
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Recap: Graph neural networks (GNNs)

I A GNN is a minor variation of a graph filter
⇒ Pointwise nonlinearities and compositions

I Equivariance Φ(Px;PAP>,H) = PΦ(x;A,H)
⇒ Independent of node labeling

I GNNs can be transferred across different graphs
⇒ Graph A reinterpreted as input in Φ(x,A;H)

I Convolutional (C)NNs are a particular case
⇒ When A is adjacency of a directed cycle

L. Ruiz et al, “Graph neural networks: Architectures, stability, and transferability,” Proc. IEEE, 2021
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What is this lecture about?

Canonical tasks and examples

Link prediction: from handcrafted features to learned representations

GNNs in the wild

Parting words
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Machine learning on graphs: Tasks

I Graph visualization and pattern discovery
I Ex: How is the science and technology enterprise developing?

I Graph modeling and generation
I Ex: Generate new molecules with antibacterial properties?

I Clustering and community detection
I Ex: Which groups of individuals have similar political beliefs?

I Node regression/classification and semi-supervised learning
I Ex: Can we identify protein function from their physical binding?

I Link/relation prediction
I Ex: Predict user-item interactions in recommendation systems?

I Graph regression/classification
I Ex: Predict cognitive decline from brain connectomes?
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Task-dependent readout

I The learning task at hand dictates how we process GNN outputs

I Ex: Reduce final-layer node representations {[xL]i}i∈V for graph classification

⇒
⊕

is a permutation-invariant aggregator; e.g., sum, mean, max

⇒ Train over a set of graphs {yGt , (At , xt)}t∈T using e.g., a cross-entropy loss

Network Science Analytics Graph Neural Networks in Action 8



Example: Predicting protein function

I Baker’s yeast data, formally known as Saccharomyces cerevisiae
I Graph: 134 vertices (proteins) and 241 edges (protein interactions)

4

Fig. 8.4 Network of interactions among proteins known to be responsible for cell communication
in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling
cascades, a specific form of communication in the cell. The remaining proteins are indicated in
blue.

I Target signal: functional annotation intracellular signaling cascade (ICSC)
I Signal transduction, how cells react to the environment
I yi = 1 if protein i annotated ICSC (yellow), yi = 0 otherwise (blue)

E. Kolaczyk, Statistical Analysis of Network Data: Methods and Models, Springer, 2009
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Example: Unveiling network communities

I Partition the electrical power grid into areas with minimum inter-area interactions

I Applications to grid operation and monitoring
I Decide control areas for distributed power system state estimation
I Parallel computation of power flow
I Controlled islanding to prevent spreading of blackouts
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Example: Network neuroscience

I Challenge: understanding human brain function and structure

I Subject-level classification. Q: Is brain connectivity affected by heavy drinking?

Y. Li et al, “Learning to model the relationship between brain structural and functional connectomes,” IEEE TSIPN, 2022
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Example: Authorship attribution with Word Adjacency Networks (WANs)

I Nodes are different function words and edges how often words appear close to each other

⇒ Proxy for the different ways in which authors use the English language grammar

I Shakespeare’s and Marlowe’s WANs different enough to ascertain their collaboration on Henry VI

S. Segarra et al, “Attributing the authorship of the Henry VI plays by word adjacency,” Shakespeare Quarterly, 2016
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Roadmap

Canonical tasks and examples

Link prediction: from handcrafted features to learned representations

GNNs in the wild

Parting words
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Link prediction

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

Original graph Link prediction 

I Given signal x = [x1, . . . , xNv ]> and edge status only for subset of pairs V
(2)
obs ⊂ V (2)= V × V

I Goal: predict edge status for other pairs in V
(2)
miss = V (2) \ V (2)

obs

Network Science Analytics Graph Neural Networks in Action 14



Problem statement

I Graph G(V ,E) with adjacency matrix A ⇒ Aobs and Amiss denote entries in V
(2)
obs and V

(2)
miss

Link prediction

Predict entries in Amiss , given observations Aobs and possibly various vertex attributes X ∈ RNv×F

I Link information may be missing due to:

⇒ Difficulty in observation, issues of sampling

⇒ Edge is not yet present, wish to predict future status

I Given a model for X and {Aobs ,Amiss}, jointly predict Amiss based on

P
(
Amiss

∣∣Aobs ,X
)

⇒ More manageable to predict the variables Amiss
ij individually
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Informal scoring methods

I Idea: compute handcrafted score s(i , j) for missing ‘potential edges’ {i , j} ∈ V
(2)
miss

⇒ Predicted edges returned by retaining the top n∗ scores

I Scores designed to assess certain local structural properties of G obs

⇒ Distance-based, inspired by the small-world principle

s(i , j) = −distGobs (i , j)

⇒ Neighborhood-based, e.g., the number of common neighbors

s(i , j) = |N obs
i ∩N obs

j | or s(i , j) =
|N obs

i ∩N obs
j |

|N obs
i ∪N obs

j |

⇒ Favor loosely-connected common neighbors

s(i , j) =
∑

k∈N obs
i ∩N

obs
j

1

log |N obs
k |

L. Adamic and E. Adar, “Friends and neighbors on the Web,” Social Networks, 2003
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Tests on co-authorship networks

D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,” J. Assoc. Inf. Sci. Technol., 2007
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Example: predicting lawyer collaborations

I Network G obs of working relationships among lawyers
I Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

I Data includes various node-level attributes:
I Seniority (node labels indicate rank ordering)
I Office location (triangle, square or pentagon)
I Type of practice, i.e., litigation (red) and corporate (cyan)
I Gender (three partners are female labeled 27, 29 and 34)

I Goal: predict cooperation among social actors in an organization

E Lazega, “The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership,” 2001
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Shallow classification methods tested

I Define the following set of explanatory variables:

Z
(1)
ij = seniorityi + seniorityj , Z

(2)
ij = practicei + practicej

Z
(3)
ij = I

{
practicei = practicej

}
, Z

(4)
ij = I

{
genderi = genderj

}
Z

(5)
ij = I {officei = officej}, Z

(6)
ij = |N obs

i ∩N obs
j |

Method 1: standard logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij

Method 2: standard logistic regression with Z
(1)
ij , . . . ,Z

(6)
ij

Method 3 informal scoring method with s(i , j) = Z
(6)
ij

Method 4: logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij and latent eigenmodel

I Five-fold cross-validation over the set of 36(36− 1)/2 = 630 vertex pairs

⇒ For each fold, 630/5 = 126 pairs in Amiss and the rest in Aobs

P. Hoff, “Modeling homophily and stochastic equivalence in symmetric relational data,” NeurIPS, 2008
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Receiver operating characteristic
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Fig. 7.2 ROC curves summarizing the capabilities to predict collaborative working relationships
in the lawyer dataset of Section 6.5.4, for method 1 (red), based on logistic regression, with the
explanatory variables Z(1) through Z(5), method 2 (blue), which is method 1 augmented with the
variable Z(6), method 3 (brown), an informal scoring method based on scores s(i, j) = Z(6)

i j , and
method 4 (yellow), the method of Hoff [200,201], using the same variables as in method 1.

Method 1 

Random 

Method 4 

Method 3 
Method 2 

I Method 1 performs worst ⇒ Agnostic to network structure

I Informal Method 3 yields slightly worst performance than 2 and 4

I Q: Can we efficiently learn (task-independent) features for machine learning on graphs?
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Graph representation learning

I Network embedding: Learn a mapping from a discrete graph to a continuous domain

I Goal: Given G(V ,E), learn (low) d-dimensional vector representation {zi}i∈V
⇒ Criterion is to preserve local and global graph properties

I Output is node embedding matrix Z = [z1, . . . , zNv ]> ∈ RNv×d

⇒ Pick d � Nv for scalability. Effectively a dimensionality reduction technique

Network Science Analytics Graph Neural Networks in Action 21



An encoder-decoder perspective

W. L. Hamilton et al, “Representation learning on graphs: Methods and applications,” IEEE Data Engineering Bulletin, 2018

I. Chami et al, “Machine learning on graphs: A model and comprehensive taxonomy,” J Mach Learn Res, 2022
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Matrix factorization methods

I Idea: learn low-rank representation of similarity matrix s(A) by minimizing the loss

LG (Z) = ‖s(A)− ZZ>‖2
F

⇒ Outer product decoder: Â = ZZ> an inner-product approximation [s(A)]ij ≈ z>i zj

I Graph factorization (GF) preserves first-order similarity in G

I Set [s(A)]ij = Aij and evaluate LG (Z) on (i , j) ∈ V
(2)
obs

A. Ahmed et al, “Distributed large-scale natural graph factorization,” WWW, 2013

I GraRep preserves higher-order similarity in G
I Set e.g., [s(A)]ij = [Ak ]ij , k ≥ 2, for length-k path counts

S. Cao et al, “GraRep: Learning graph representations with global structural information,” CIKM, 2015

I HOPE preserves general similarity measures in (directed) G
I Jaccard, Adamic-Adar and related neighborhood scores

M. Ou et al, “Asymmetric transitivity preserving graph embedding,” KDD, 2016
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From texts to graphs: Random walk approaches

I Idea: asign similar zi to nodes that tend to co-occur in random walks over G

I View sentences in NLP as random walks over the vocabulary

⇒ Generate short random walks on G to sample node sequences

⇒ Learn node positional distributions just like words in skip-gram models

I P
(
j
∣∣ i) of visiting j in random walk from i as similarity measure [s(A)]ij to decode from Z

⇒ Minimize cross-entropy loss

LG (Z) = −
∑

i,j∈V (2)
obs

log Âij , where Âij =
ez
>
i zj∑

k∈V ez
>
i zk

⇒ Implies an approximation Âij ≈ [s(A)]ij = P
(
j
∣∣ i)

⇒ Evaluating the softmax denominator is challenging (O(Nv ) complexity)

B. Perozzi et al, “DeepWalk: Online learning of social representations,” KDD, 2014
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Scalable representation learning via node2vec

I node2vec offers a flexible definition of (biased) random walks

⇒ Smoothly interpolates between walks akin to BFS or DFS

⇒ Flexibility: Effective for capturing structural roles or community structures

⇒ Scalability: Approximates
∑

k∈V∗ e
z>i zk via samples V ∗

I Ex: character interaction graph from the novel ‘Les Miserables’

⇒ Left coloring indicates membership to communities (global positions)

⇒ Right coloring indicates roles played within (local) neighborhoods

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” KDD, 2016
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Limitations GNNs overcome

I Shallow embeddings: encoder a simple embedding lookup

⇒ Directly optimizes an embedding zi for each node i ∈ V

I No parameter sharing between nodes in the encoder
I Statistically inefficient: parameter sharing can act as a regularizer
I Computationally inefficient: number of parameters is O(Nv )

I Fails to leverage graph signals during encoding
I Attributes highly informative w.r.t. the node’s position and role in G

I Limited expressive power to capture complex non-linear structures
I Enter (deep) NN architectures in the encoder-decoder modules

I Inherently transductive
I Challenge for dynamic networks or large graphs not stored in memory
I Does not generalize to other graphs beyond G (used for training)
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GNNs can tackle real-world problems

Canonical tasks and examples

Link prediction: from handcrafted features to learned representations

GNNs in the wild

Parting words
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Complementary product recommendation at Amazon

I Q: given an item purchase query, which other related and diverse set of items to recommend?

⇒ Graph representation learning module on Behavior-based Product Graph

⇒ Nodes are catalog items with features, edge types reflect browse and purchase behavior

I Demonstrated business gains after production deployment at Amazon

J. Hao et al, “P-Companion: A principled framework for diversified complementary product recommendation,” CIKM, 2020
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Discovering polypharmacy side effects

I Multimodal graph of protein-protein, drug-protein, and drug-drug (i.e., side effect) interactions

⇒ Problem: unveiling polypharmacy side effects as prediction of drug-drug edge type

⇒ Multirelational link prediction in multimodal networks using GNNs

M. Zitnik et al, “Modeling polypharmacy side effects with graph convolutional networks,” Bioinformatics, 2018
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Vehicular traffic prediction in Google Maps

I Goal: accurate time-of-arrival (ETA) predictions from terabytes of traffic data

⇒ Road networks partitioned into “Supersegments” of adjacent roads sharing traffic volume

I GNN-based ETA prediction model is an integral part of Google Maps today

A. Derrow-Pinion et al, “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021
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Antibiotic discovery

I GNN model to predict antibiotic activity (e.g., E. coli growth inhibition) in molecules

⇒ Train on 2335 diverse molecules, test on chemical libraries (> 107 million candidates)

⇒ Conventional approaches: expensive, time-consuming, bounded exploration space

I Model predicts antibacterial activity in Halicin ⇒ Structurally-different from known antibiotics

J. Stokes et al, “A deep learning approach to antibiotic discovery,” Cell, 2020
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Chip floorplanning for next-generation TPU design

I Chip floorplanning: engineering task of designing the physical layout of a computer chip

⇒ Optimize for performance, power consumption, chip area, wirelength

I Computer chip as a netlist: hypergraph of modules (memory, gates) connected by wires

I Impact: used to design TPUv5, the next generation of Google’s AI accelerators

A. Mirhoseini et al, “A graph placement methodology for fast chip design,” Nature, 2021
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Concluding remarks

Canonical tasks and examples

Link prediction: from handcrafted features to learned representations

GNNs in the wild

Parting words
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Useful resources

GNN and network analysis libraries

I PyTorch Geometric (PyG) – http://pyg.org

⇒ Comprehensive interface to build GNNs

I Jraph – http://github.com/deepmind/jraph

⇒ Lightweight library for GNNs in jax

I Deep Graph Library (DGL) – http://www.dgl.ai

⇒ Framework agnostic DL on graphs

I NetworkX – http://networkx.org

⇒ Create, manipulate, visualize, analyze graphs

GNN courses

I University of Pennsylvania – http://gnn.seas.upenn.edu

I Stanford University – http://cs224w.stanford.edu
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The road ahead

I Graphs are natural models for relational data that can help to learn in various timely applications

⇒ Leveraging structure is necessary for scalable learning

I Host of fundamental and task/application-specific opportunities

⇒ Generative models for graphs (auto-regressive, normalizing flows, difussion)

⇒ Representational power, generalization, adversarial robustness

⇒ Tackling combinatorial optimization problems

⇒ Distributed learning and control in multi-agent systems
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