
i
i

“Book” — 2017/9/21 — 12:15 — page 1 — #1 i
i

i
i

i
i

CHAPTER

1Big Data

Morteza Mardani,∗, Gonzalo Mateos∗∗ and Georgios B. Giannakisa,†

∗Stanford University, Department of Electrical Engineering, 350 Serra Mall, Stanford, CA, 94305
∗∗University of Rochester, Department of Electrical and Computer Engineering, 413 Hopeman,

Rochester, NY, 14627 †University of Minnesota, Department of Electrical and Computer Engineering,

200 Union Street SE, Minneapolis, MN 55455
aCorresponding: georgios@umn.edu

CHAPTER OUTLINE HEAD

1.1. Learning from Big Data: Opportunities and Challenges . . . . . . . 1

1.2. Matrix Completion and Nuclear Norm . . . . . . . . . . . . . . . . . . 2

1.3. Decentralized Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1. Internet delay cartography . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Streaming Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1. Performance guarantees . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2. Real-time network traffic monitoring . . . . . . . . . . . . . . . . . 17

1.4.3. Large-scale machine learning . . . . . . . . . . . . . . . . . . . 18

1.5. Concluding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 LEARNING FROM BIG DATA: OPPORTUNITIES
AND CHALLENGES

We live in an era of “data deluge.” Pervasive sensors collect massive amounts of
information on every bit of our lives, churning out enormous streams of raw data in a
wide variety of formats. To get a sense of scale, users of the Facebook social network
happily feed 10 billion messages per day, click the “like” button 4.5 billion times and

1



i
i

“Book” — 2017/9/21 — 12:15 — page 2 — #2 i
i

i
i

i
i

2 CHAPTER 1 Big Data

Table 1.1 Notation
.x vector

X matrix
X set
(·)> matrix transpose
tr{·} matrix trace
σi i-th singular value of a matrix
‖X‖2F := tr{X>X} matrix Frobenius norm
‖X‖∗ :=

∑
i σi matrix nuclear norm

‖X‖ := maxi σi matrix spectral norm
‖x‖2 vector `2-norm
⊗ Kronecker product
vec(X) concatenates columns of X on top of each other
unvec(x) unfolds x to a matrix
O(·) order of operation count
λmin minimum eigen value
∇ f gradient of f
∇2 f Hessian of f

upload 350 million new pictures each and every day. Consumer data are collected ev-
ery time we browse or purchase products online, as business models aim to provide
services that are increasingly personalized. Automated sensors capture essentially
every snapshot of complex phenomena of interest through high-resolution measure-
ments. Mining information from these large volumes of data is expected to bring
significant science and engineering advances along with consequent improvements
in quality of life.

While big data may bring “big blessings,” there are formidable challenges in deal-
ing with large-scale datasets [1]. The sheer volume of data makes it often impossible
to run analytics using central processors and storage units. Ubiquitous network data
are also geographically spread, and collecting the data might be infeasible due to
communication costs or privacy concerns. Consequently, datasets are often incom-
plete and thus a sizable portion of entries are missing. Moreover, large-scale data are
prone to contain corrupted measurements, communication errors, and even suffer
from anomalies such as cyberattacks. Furthermore, as many sources continuously
generate data in real time, analytics must often be performed online as well as with-
out an opportunity to revisit past data.

Conventional statistical inference tools cope with the notorious curse of dimen-
sionality as well as with corruptions and anomalies by exploiting latent structure
(of low intrinsic-dimensionality) in the data. Such structure typically emerges due
to dependencies present in real world signals. In large-scale networks, complex in-
teractions spanning the social, temporal, and spatial dimensions render such graph-
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1.2 Matrix Completion and Nuclear Norm 3

indexed data highly correlated. For instance, the origin-to-destination (OD) traffic
flows in the backbone of Internet Protocol (IP) networks exhibit dependencies mainly
due to traffic generation patterns [2], which can facilitate network monitoring tasks
such as identifying traffic volume anomalies resulting from cyberattacks [3].

In this context, the goal of this chapter is to develop a framework for scalable
decentralized and streaming analytics that facilitates machine learning for big data.
For simplicity of exposition, the presentation focuses on the matrix completion prob-
lem with applications to IP network health monitoring. However, the scope of the
ensuing framework can be broadened to accommodate other fundamental low-rank
recovery tasks such as robust PCA and low-rank plus compressed-sparse recovery.
Modern datasets are oftentimes indexed by several variables or dimensions giving
rise to a multi-way array (or tensor), in general. This chapter focuses on two-way ar-
rays, or matrices, but extension to tensors are possible. Readers interested in delving
into these generalizations are referred to [4, 5, 6, 7, 8].

1.2 MATRIX COMPLETION AND NUCLEAR NORM
Let X := [xl,t] ∈ RL×T be a low-rank matrix [rank(X) � min(L,T )] and a set Ω ⊆

{1, . . . , L} × {1, . . . ,T } of index pairs (l, t) that define a sampling of the entries of X.
Given a number of (possibly) noise corrupted measurements

yl,t = xl,t + vl,t, (l, t) ∈ Ω (1.1)

the goal is to estimate low-rank X, by denoising the observed entries and imputing
the missing ones. Introducing the sampling operator PΩ(·) which sets the entries of
its matrix argument not in Ω to zero and leaves the rest unchanged, the data model
can be compactly written in matrix form as

PΩ(Y) = PΩ(X + V). (1.2)

A natural estimator accounting for the low rank of X will be sought to fit the data
PΩ(Y) in the least-squares (LS) error sense, as well as minimize the rank of X; see
e.g. [9]. However, minimizing the non-convex matrix rank demands combinatorial
complexity, and it is NP-complete [10, 11]. Adopting the nuclear norm ‖X‖∗ :=∑

i σi(X) (σi signifies i-th singular value) as a convex surrogate of rank [12, 13], one
is then motivated to solve

(P1) min
X

1
2
‖PΩ(Y − X)‖2F + λ‖X‖∗ (1.3)

where λ ≥ 0 is the rank-controlling parameter. Being convex (P1) is appealing, and
it offers well-documented guarantees for stable and exact recovery in numerous tasks
such as matrix completion [14, 9], and low-rank plus (compressed) sparse matrix de-
composition [15, 16, 17]. For the matrix completion setting, typical results establish
that if the energy of X is sufficiently spread out, which can be fulfilled for instance
when the singular vectors are non-spiky, then with onlyO(Pr log2(P)) randomly cho-
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4 CHAPTER 1 Big Data

sen matrix entries (r := rank(X) and P := max(L,T )), one can accurately recover the
missing entries in the complement of Ω [14, 9].

However, nuclear-norm regularization lacks separability across rows and columns
of X because singular values σi(X) depend on all entries of the matrix. This coupling
challenges streaming and decentralized data analytics, where columns of X are ac-
quired sequentially in time, or, rows of X are geographically dispersed throughout a
network, respectively. The following section introduces an alternative characteriza-
tion of the nuclear-norm that proves instrumental to develop scalable decentralized
and online algorithms to tackle (P1).

Separable rank regularization. Being low-rank matrix X admits a bilinear fac-
torization X = LQ>, with factor matrices L ∈ RL×ρ and Q ∈ RT×ρ. The value of
ρ ≥ r is chosen sufficiently large to overestimate rank(X). Interestingly, the nuclear
norm of X can be alternatively written as the solution of the following non-convex
problem [18, 19]

‖X‖∗ := min
{L,Q}

1
2

{
‖L‖2F + ‖Q‖2F

}
, s. to X = LQ>. (1.4)

The optimization (1.4) is over all possible bilinear factorizations of X, so that the
number of columns of L and Q is also a variable. For an arbitrary matrix X with SVD
X = UXΣXV>X , the minimum in (1.4) is attained for L = UXΣ

1/2
X and Q = VXΣ

1/2
X .

Establishing the uniqueness of such solution requires semidefinite programming
(SDP) arguments [18].

Adopting this characterization is useful since the Frobenius norm cost in (1.4)
is separable across the entries of the factor matrices, but it comes at the price of
non-convexity for the corresponding recovery task. However, as argued later under
certain conditions this choice comes with no loss of optimality. Next, we leverage
(1.4) to obtain a separable cost equivalent to that in (P1), that can be minimized in a
decentralized fashion via the alternating-direction method of multipliers [20, 21, 22].

1.3 DECENTRALIZED ANALYTICS
The matrix completion task in (P1) assumes that the samples PΩ(Y) are entirely
available at a central processing unit, and they can be jointly processed to infer X.
Collecting the entire data is challenging in various applications, or, it can be even im-
possible e.g., in wireless sensor networks (WSNs) operating under stringent power
budget constraints. In other cases such as the Internet or collaborative marketing
studies, agents providing private data for e.g., fitting a low-rank preference model,
may not be willing to share their training data but only the learning results. Perform-
ing the optimization in a centralized fashion raises robustness concerns as well, since
the central processor represents an isolated point of failure.

Several customized iterative algorithms have been proposed to solve instances
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1.3 Decentralized Analytics 5

of (P1), and have been shown effective in tackling low- to medium-size problems;
see e.g., [4, 14, 18]. However, most algorithms require computation of singular
values per iteration and become prohibitively expensive when dealing with high-
dimensional data as argued in [23]. In a similar vein, stochastic gradient algorithms
were recently developed for large-scale problems entailing regularization with the
nuclear norm [23, 6]. Even though iterations in [23] are highly paralellizable, they
are not applicable to networks of arbitrary topology. The aforementioned reasons
motivate well developing reduced-complexity decentralized algorithms for nuclear-
norm minimization.

Network data model. Consider N networked agents capable of performing
some local computations, as well as exchanging messages among directly connected
neighbors. An agent should be understood as an abstract entity, e.g., a sensor in a
WSN, or a router monitoring Internet traffic. The network is modeled as an undi-
rected graph G(N ,L), where the set of nodes N := {1, . . . ,N} corresponds to the
network agents, and the edges (links) in L := {1, . . . , L} represent pairs of agents
that can communicate. Agent n ∈ N communicates with its single-hop neighboring
peers in Jn, and the size of the neighborhood will be henceforth denoted by |Jn|.
To ensure that the data from an arbitrary agent can eventually percolate through the
entire network, it is assumed that graph G is connected; i.e., there exists a (possibly)
multi-hop path connecting any two agents.

Decentralized matrix completion. With reference to the matrix completion
task in (P1), in the network setting envisioned here each agent n ∈ N acquires a
few incomplete and noise-corrupted rows of matrix Y ∈ RL×T . Specifically, the local
data available to agent n is matrix PΩn (Yn), where Yn ∈ R

Ln×T ,
∑N

n=1 Ln = L, and
Y :=

[
Y>1 , . . . ,Y

>
N

]>
= X + V. The index pairs in Ωn are those in Ω for which the

row index matches the rows of Y observed by agent n. With regards to the decision
variables, partition also X :=

[
X>1 , . . . ,X

>
N

]>
∈ RL×T similar to Y, where Xn ∈ R

Ln×T ,
n = 1, . . . ,N. Agents collaborate to form the wanted estimator (P1) in a decentralized
fashion, which can be equivalently rewritten as

(P1) min
X

N∑
n=1

[
1
2
‖PΩn (Yn − Xn)‖2F +

λ

N
‖X‖∗

]
.

Our objective is to develop a decentralized matrix-completion (DMC) algorithm
based on in-network processing of the locally available data. The described setup
naturally suggests three features that the algorithm should exhibit: (f1) agent n ∈ N
should obtain an estimate of Xn, which coincides with the corresponding solution
of the centralized estimator (P1) that uses the entire data PΩ(Y); (f2) processing per
agent should be kept as simple as possible; and (f3) the overhead for inter-agent
communications should be affordable and confined to single-hop neighborhoods.

To facilitate reducing the computational complexity and memory storage require-
ments of the decentralized algorithm sought, it is henceforth assumed that the de-
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6 CHAPTER 1 Big Data

cision variable X in (P1) has rank at most ρ. For instance, empirical analysis of
real Internet traffic data has revealed that OD flow traffic matrices typically have
rank[X] ∈ [5, 8]; hence, one can safely choose ρ = 10 [24]. In addition, recall that
the rank of the solution X̂ in (P1) is controlled by the choice of λ, and can be made
small enough for sufficiently large λ. As argued next, the smaller the value of ρ, the
more efficient the algorithm becomes.

Because rank(X̂) ≤ ρ, (P1)’s search space is effectively reduced and one can fac-
torize the decision variable as X = LQ>, where L and Q are L × ρ and T × ρ ma-
trices, respectively. Adopting this reparametrization of X in (P1) one obtains the
following equivalent optimization problem

(P2) min
{L,Q}

N∑
n=1

[
1
2
‖PΩn (Yn − LnQ>)‖2F +

λ

N
‖LQ>‖∗

]
which is non-convex due to the bilinear terms LnQ>, and L :=

[
L>1 , . . . ,L

>
N

]>
. The

number of variables is reduced from LT in (P1), to ρ(L + T ) in (P2). The savings
can be significant when ρ is in the order of a few dozens, and both L and T are large.
Problem (P2) is still not amenable to decentralized implementation due to: (i) the
non-separable nuclear norm present in the cost function; and (ii) the global variable
Q coupling the per-agent summands.

Leveraging (1.4), the following reformulation of (P2) provides an important first
step towards obtaining a decentralized estimator:

(P3) min
{L,Q}

N∑
n=1

[
1
2
‖PΩn (Yn − LnQ>)‖2F +

λ

2N

{
N‖Ln‖

2
F + ‖Q‖2F

}]
.

Building on (1.4) and since rank(X̂) ≤ ρ, it readily follows that the separable
Frobenius-norm regularization in (P3) comes with no loss of optimality, mean-
ing that (P1) and (P3) admit identical solutions. This equivalence ensures that by
finding the global minimum of (P3) [which can have significantly fewer variables
than (P1)], one can recover the optimal solution of (P1). However, since (P3) is
non-convex, it may have stationary points which need not be globally optimal. Inter-
estingly, the next proposition offers a global optimality certificate for the stationary
points of (P3). For the detailed proof, see [7, Appendix A].

Proposition 1. Let {L̄, Q̄} be a stationary point of (P3). If ‖PΩ(Y − L̄Q̄>)‖ ≤ λ (no
subscript in ‖.‖ signifies spectral norm), then X̂ = L̄Q̄> is the globally optimal solu-
tion of (P1).

To decompose the cost function in (P3), in which summands are coupled through
the global variables Q, introduce auxiliary variables {Qn}

N
n=1 representing local es-

timates of Q per agent n. These local estimates are utilized to form the separable
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1.3 Decentralized Analytics 7

constrained minimization problem

(P4) min
{Ln,Qn}

N∑
n=1

[
1
2
‖PΩn (Yn − LnQ>n )‖2F +

λ

2
‖Ln‖

2
F +

λ

2N
‖Qn‖

2
F

]
s. t. Qn = Qm, m ∈ Jn, n ∈ N .

Clearly, (P3) and (P4) are equivalent optimization problems because the graph G
is assumed to be connected. The equivalence should be understood in the sense
that Q̂1 = Q̂2 = . . . = Q̂N = Q̂, where {Q̂n}n∈N and Q̂ are the optimal solutions of
(P4) and (P3), respectively. Of course, the corresponding estimates of L will coin-
cide as well. Even though consensus is a fortiori imposed within neighborhoods, it
extends to the whole (connected) network and local estimates agree on the global
solution of (P3). To arrive at the desired decentralized algorithm, it is convenient to
re-parameterize the consensus constraints in (P4) as

Qn = F̄m
n , Qm = F̃m

n , and F̄m
n = F̃m

n , m ∈ Jn, n ∈ N (1.5)

where {F̄m
n , F̃m

n }
m∈Jn
n∈N are auxiliary optimization variables that will be eventually elim-

inated.

Alternating-direction method of multipliers. To tackle the constrained mini-
mization problem (P4), associate dual variables D̄m

n and D̃m
n with the consensus con-

straints in (1.5). Next introduce the quadratically augmented Lagrangian function

Lc (V1,V2,V3,M) =

N∑
n=1

[
1
2
‖PΩn (Yn − LnQ>n )‖2F +

λ

2N
{N‖Ln‖

2
F + ‖Qn‖

2
F}

]

+

N∑
n=1

∑
m∈Jn

{
〈C̄m

n ,Qn − F̄m
n 〉 + 〈C̃

m
n ,Qm − F̃m

n 〉
}

+
c
2

N∑
n=1

∑
m∈Jn

{
‖Qn − F̄m

n ‖
2
F + ‖Qm − F̃m

n ‖
2
F

}
(1.6)

where c is a positive penalty coefficient, and the primal variables are split into three
groups V1 := {Qn}

N
n=1, V2 := {Ln}

N
n=1, and V3 := {F̄m

n , F̃m
n }

m∈Jn
n∈N . For notational con-

venience, collect all multipliers inM := {C̄m
n , C̃m

n , }
m∈Jn
n∈N . The remaining constraints

in (1.5), namely CV := {F̄m
n = F̃m

n , m ∈ Jn, n ∈ N}, have not been dualized.
To minimize (P4) in a decentralized fashion, a variation of the alternating-

direction method of multipliers (ADMM) will be adopted here. The ADMM is
an iterative augmented Lagrangian method especially well-suited for parallel pro-
cessing [20, 21], which has been proven successful to tackle the optimization tasks
encountered e.g., with decentralized estimation problems [22, 25, 26]. The proposed
solver entails an iterative procedure comprising four steps per iteration k = 1, 2, . . .
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8 CHAPTER 1 Big Data

[S1] Update dual variables for all n ∈ N , m ∈ Jn:

C̄m
n [k] = C̄m

n [k − 1] + µ(Qn[k] − F̄m
n [k]) (1.7)

C̃m
n [k] = C̃m

n [k − 1] + µ(Qm[k] − F̃m
n [k]) (1.8)

[S2] Update the first group of primal variables:

V1[k + 1] = arg min
V1
Lc (V1,V2[k],V3[k],M[k]) . (1.9)

[S3] Update the second group of primal variables:

V2[k + 1] = arg min
V2
Lc (V1[k + 1],V2,V3[k],M[k]) . (1.10)

[S4] Update the auxiliary primal variables:

V3[k + 1] = arg min
V3∈CV

Lc (V1[k + 1],V2[k + 1],V3,M[k]) . (1.11)

This four-step procedure implements a block-coordinate descent method with dual
variable updates. At each step of minimizing the augmented Lagrangian, the vari-
ables not being updated are treated as fixed and are substituted with their most up-to-
date values. Different from ADMM, the alternating-minimization step here generally
cycles over three groups of primal variablesV1-V3 (cf. two groups in ADMM [20]).
In [S1], µ > 0 is the step size of the subgradient ascent iterations on the dual prob-
lem. While it is common in ADMM implementations to select µ = c, a distinction
between the step size and the penalty parameter is made explicit here in the interest
of generality.

Reformulating the estimator (P1) to its equivalent form (P4) renders the aug-
mented Lagrangian in (1.6) highly decomposable. The separability comes in two
flavors, both with respect to the variable groups V1-V3, as well as across the net-
work agents n ∈ N . This in turn leads to highly parallelized, simplified recursions
corresponding to the aforementioned four steps. Specifically, it is shown in [7, Ap-
pendix B] that if the multipliers are initialized to zero, [S1]-[S4] constitute the DMC
algorithm tabulated under Algorithm 1. Careful inspection of Algorithm 1 reveals
that the inherently redundant auxiliary variables and multipliers {F̄m

n , F̃m
n , C̃m

n } have
been eliminated. Agent n does not need to separately keep track of all its non-
redundant multipliers {C̄m

n }m∈Jn , but only to update their respective (scaled) sums
On[k] := 2

∑
m∈Jn

C̄m
n [k]. To derive Algorithm 1 it is useful to recognize that lin-

earity of PΩn implies that vec(PΩn (Z)) = Ωnvec(Z), where Ωn ∈ {0, 1}LnT×LnT is a
diagonal matrix.

Computational and communication cost. The per-agent computational com-
plexity of the DMC algorithm is dominated by repeated inversions of ρ × ρ and
ρLn × ρLn matrices to obtain En[k + 1] and Dn[k + 1], respectively, and matrix mul-
tiplications to update Qn[k + 1] and Ln[k + 1]. Notice that En[k + 1] ∈ RρT×ρT has
block-diagonal structure with blocks of size ρ × ρ. Overall, the per-iteration com-
plexity across the network is upper bounded by O(ρ3NT ), which grows linearly with
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1.3 Decentralized Analytics 9

Algorithm 1 : DMC algorithm per agent n ∈ N
Input Yn,Ωn, λ, c, µ
Initialize O[0] = 0T×ρ, and Ln[1], Qn[1] at random
for k = 1, 2,. . . do

Receive {Qm[k]} from neighbors m ∈ Jn
[S1] Update local dual variables:
On[k] = On[k − 1] + µ

∑
m∈Jn (Qn[k] −Qm[k])

[S2] Update first group of local primal variables:
En[k + 1] =

{
(IT ⊗ L>n [k])Ωn(IT ⊗ Ln[k]) + (λ/N + 2c|Jn |)IρT

}−1

Gn[k + 1] := (IT ⊗ L>n [k])Ωnvec(Yn) − vec(O>n [k]) + cvec(
∑

m∈Jn (Q>n [k] + Q>m[k]))
Q>n [k + 1] = unvec

(
En[k + 1]Gn[k + 1]

)
[S3] Update second group of local primal variables:
Dn[k + 1]:=

{
(Q>n [k + 1]⊗ ILn )Ωn(Qn[k + 1]⊗ ILn )+λIρLn

}−1

Ln[k + 1] = unvec
(
Dn[k + 1] (Q>n [k + 1] ⊗ ILn )Ωnvec(Yn)

)
Broadcast {Qn[k + 1]} to neighbors m ∈ Jn

end for
Return Qn,Ln

the network size. This is affordable since in practice ρ is typically small for a number
of applications of interest (cf. the low-rank assumption). In addition, Ln, the number
of row vectors acquired per agent, and T , the number of time instants for data col-
lection, can be controlled by the designer to accommodate a prescribed maximum
computational complexity. One can also benefit from the decomposability of (1.9)
and (1.10) across rows of L and Q, respectively, and parallelize the row updates.
This way, one only needs to invert ρ × ρ matrices.

On a per-iteration basis, network agents communicate their updated local esti-
mates Qn[k] only with their neighbors, in order to carry out the updates of primal
and dual variables during the next iteration. In terms of communication cost, Qn[k]
is a T × ρ matrix and its transmission does not incur significant overhead for small
values of ρ. Observe that the dual variables On[k] need not be exchanged, and the
overall communication cost does not depend on the network size N.

Convergence and optimality. When employed to solve non-convex problems
such as (P4), ADMM (or its variant used here) offers no convergence guarantees.
However, there is ample experimental evidence in the literature that supports em-
pirical convergence of ADMM, especially when the non-convex problem at hand
exhibits “favorable” structure. For instance, (P4) is bi-convex and gives rise to the
strictly convex optimization subproblems (1.9)-(1.11), which admit unique closed-
form solutions per iteration. This observation and the linearity of the constraints en-
dow Algorithm 1 with good convergence properties – extensive numerical tests in [7]
demonstrate that this is indeed the case. The following proposition proved in [7, Ap-
pendix C] asserts that upon convergence, Algorithm 1 attains consensus and global
optimality thus yielding the performance of the centralized estimator (P1).
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FIGURE 1.1 Internet2 end-to-end delay prediction.

(Left) Topology of the Internet-2 backbone network. (Right) Predicted and true end-
to-end delays of the Internet2 network when only 20% of the paths are randomly
sampled.

Proposition 2. If the sequence of iterates {Qn[k],Ln[k]}n∈N generated by Algorithm
1 converge to {Q̄n, L̄n}n∈N , and G is connected, then: i) Q̄n = Q̄m n,m ∈ N; and ii)
if ‖PΩ(Y − L̄Q̄>1 )‖ ≤ λ, then X̂ = L̄Q̄>1 , where X̂ is the global optimum of (P1).

1.3.1 INTERNET DELAY CARTOGRAPHY
End-to-end network latency information is critical towards enforcing quality-of-
service constraints in many Internet applications. However, probing all pairwise
delays becomes infeasible in large-scale networks. If one collects the end-to-end
latencies of source-sink pairs (i, j) in a delay matrix X := [xi, j] ∈ RN×N , strong de-
pendencies among path delays render X low-rank [27]. This is mainly because the
paths with nearby end nodes often overlap and share common bottleneck links. This
property of X along with the decentralized-processing requirements of large-scale
networks, motivates well the adoption of the DMC algorithm for network-wide path
latency prediction. Given the n-th row of X is partially available to agent n, the goal
is to impute the missing delays through agent collaboration.

End-to-end flow latencies are collected from the operation of Internet2 backbone
network during Aug. 18–22, 2011 [28]. The Internet2 network (Fig. 1.1 (Left)) com-
prises N = 9 agents, L = 26 links, and F = 81 flows. Spectral analysis of the delay
matrix reveals that the first four singular values are markedly dominant, demonstrat-
ing that X is low rank. A fraction of the entries in X are purposely dropped to yield an
incomplete delay matrix PΩ(X). After running the DMC algorithm, the true and pre-
dicted latencies are depicted in Fig. 1.1 (Right) (for 20% missing data). The relative
prediction error is around 10%.
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1.4 STREAMING ANALYTICS
Extracting latent low-dimensional structure from high-dimensional data is of
paramount importance in timely inference tasks encountered with big data ana-
lytics. However, the collection of massive amounts of data far outweigh the ability
of modern computers to store and analyze them in a batch fashion. In addition, in
practice (possibly incomplete) observations are acquired sequentially in time which
motivates updating previously obtained estimates rather than re-computing new ones
from scratch each time a new datum becomes available. In this context, the present
section permeates benefits from rank minimization to scalable imputation of missing
data, via tracking low-dimensional subspaces and unraveling latent structure from
incomplete streaming data.

Subspace tracking has a long history in signal processing. An early notewor-
thy representative is the projection approximation subspace tracking (PAST) algo-
rithm [29]; see also [30]. Recently, an algorithm (termed GROUSE) for tracking
subspaces from incomplete observations was put forth in [31], based on incremental
gradient descent iterations on the Grassmannian manifold of subspaces. Recent anal-
ysis has shown that GROUSE can converge locally at an expected linear rate [32],
and that it is tightly related to the incremental SVD algorithm [33]. PETRELS is a
second-order recursive LS type algorithm, that extends the seminal PAST iterations
to handle missing data [34]. As noted in [35], the performance of GROUSE is limited
by the existence of barriers in the search path on the Grassmanian, which may lead
to GROUSE iterations being trapped at local minima; see also [34]. Lack of regular-
ization in PETRELS can also lead to unstable (even divergent) behaviors, especially
when the amount of missing data is large. Accordingly, the convergence results for
PETRELS are confined to the full-data setting where the algorithm boils down to
PAST [34]. Relative to all aforementioned works, the algorithmic framework for
online matrix completion presented here offers provable convergence and theoretical
performance guarantees in a stationary setting, and is flexible to accommodate tensor
streaming data models as well.

Streaming data model. Consider a sequence of high-dimensional data vectors,
which are corrupted with additive noise and some of their entries may be missing.
At time instant t, the incomplete streaming observations are modeled as

Pωt (yt) = Pωt (xt + vt), t = 1, 2, . . . (1.12)

where xt ∈ R
L is the signal of interest, and vt stands for the noise. The set ωt ⊂

{1, 2, . . . , L} contains the indices of available observations, while the corresponding
sampling operator Pωt (·) sets the entries of its vector argument not in ωt to zero,
and keeps the rest unchanged; note that Pωt (yt) ∈ RL. Depending on the applica-
tion, these acquired vectors could e.g., correspond to (vectorized) images, link traf-
fic measurements collected across physical links of a computer network, or, movie
ratings provided by Netflix users. Suppose that the sequence {xt}

∞
t=1 lives in a low-
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dimensional (� L) linear subspace Lt, which is allowed to change slowly over time.
Given the incomplete observations {Pωτ(yτ)}tτ=1, ensuing sections deal with online
(adaptive) estimation of Lt, and reconstruction of xt as a byproduct. The reconstruc-
tion here involves imputing the missing elements, and denoising the observed ones.

Online matrix completion. Collect the indices of available observations up to
time t in the set Ωt := ∪t

τ=1ωτ, and the actual batch of observations in the matrix
PΩt (Yt) := [Pω1 (y1), . . . ,Pωt (yt)] ∈ RL×t. Likewise, introduce matrix Xt containing
the signal of interest. Since xt lies in a low-dimensional subspace, Xt is (approxi-
mately) a low-rank matrix. A natural estimator leveraging the low rank property of
Xt attempts to fit the incomplete data PΩt (Yt) to Xt in the LS sense, and minimize
the rank of Xt. This motivates recovering Xt by solving (P1).

Scalable imputation algorithms for streaming observations should effectively
overcome the following challenges: (c1) the problem size can easily become quite
large, since the number of optimization variables Lt grows with time; (c2) existing
batch iterative solvers for (P1) typically rely on costly SVD computations per it-
eration; see e.g., [14]; and (c3) (columnwise) nonseparability of the nuclear-norm
challenges online processing when new columns {Pωt (yt)} arrive sequentially in
time. To limit the computational complexity and memory storage requirements of
the algorithm sought, it is henceforth assumed that the dimensionality of the under-
lying time-varying subspace Lt is bounded by a known quantity ρ. Accordingly,
it is natural to require rank(X̂t) ≤ ρ. Because rank(X̂t) ≤ ρ, one can factorize the
matrix decision variable as X = LQ>, where L and Q are L × ρ and t × ρ matrices,
respectively. Such a bilinear decomposition suggests Lt is spanned by the columns
of the tall matrix L, while the rows of Q are the projections of {xt} onto Lt.

Leveraging once more the separable nuclear-norm regularization in (1.4), a possi-
ble adaptive counterpart to (P1) is the exponentially-weighted LS (EWLS) estimator
found by minimizing the empirical cost

(P5) min
{L,Q}

t∑
τ=1

θt−τ
[
1
2

∥∥∥Pωτ(yτ − Lqτ)
∥∥∥2

2+
λ̄t

2
‖L‖2F+

λt

2
‖qτ‖22

]
where Q := [q1, . . . ,qt], λ̄t := λt/

∑t
τ=1 θ

t−τ, and 0 < θ ≤ 1 is the so-termed forget-
ting factor. When θ < 1, data in the distant past are exponentially downweighted,
which facilitates tracking in nonstationary environments. In the case of infinite mem-
ory (θ = 1) and for λt = λ, the formulation (P5) coincides with the batch estimator
(P1). This is the reason for the time-varying factor λ̄t weighting ‖L‖2F .

Towards deriving a real-time, computationally efficient, and recursive solver
of (P5), an alternating-minimization (AM) method is adopted in which iterations
coincide with the time-scale t of data acquisition. Per time instant t, a new datum
{Pωt (yt)} is drawn and qt is estimated via

q[t] = arg min
q

[
1
2
‖Pωt (yt − L[t − 1]q)‖22 +

λt

2
‖q‖22

]
(1.13)
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Algorithm 2 : Alternating LS for subspace tracking from incomplete observations
input {Pωτ (yτ), ωτ}∞τ=1, {λτ}∞τ=1, and θ.
initialize Gl[0] = 0ρ×ρ, sl[0] = 0ρ, l = 1, ..., L, and L[0] at random.
for t = 1, 2,. . . do

D[t] =
(
λtIρ + L>[t − 1]ΩtL[t − 1]

)−1
L>[t − 1].

q[t] = D[t]Pωt (yt).
Gl[t] = θGl[t − 1] + ωl,tq[t]q[t]>, l = 1, . . . , L.
sl[t] = θsl[t − 1] + ωl,tyl,tq[t], l = 1, . . . , L.

ll[t] =
(
Gl[t] + λtIρ

)−1
sl[t], l = 1, ..., L.

return x̂t := L[t]q[t].
end for

which is an `2-norm regularized LS (ridge-regression) problem. It admits the closed-
form solution

q[t] =
(
λtIρ + L>[t − 1]ΩtL[t − 1]

)−1
L>[t − 1]Pωt (yt) (1.14)

where diagonal matrix Ωt ∈ {0, 1}L×L is such that [Ωt]l,l = 1 if l ∈ ωt, and is zero
elsewhere. In the second step of the AM scheme, the updated subspace matrix L[t]
is obtained by minimizing (P5) with respect to L, while the optimization variables
{qτ}tτ=1 are fixed and take the values {q[τ]}tτ=1, namely

L[t] = arg min
L

λt

2
‖L‖2F +

t∑
τ=1

θt−τ 1
2
‖Pωτ(yτ − Lq[τ])‖22

 . (1.15)

Notice that (1.15) decouples over the rows of L which are obtained in parallel via

ll[t] = arg min
l

λt

2
‖l‖22 +

t∑
τ=1

θt−τωl,τ(yl,τ − l>q[τ])2

 , (1.16)

for l = 1, . . . , L, where ωl,τ denotes the l-th diagonal entry ofΩτ. For θ = 1 and fixed
λt = λ, ∀t, subproblems (1.16) can be efficiently solved via recursive LS (RLS) [36].
Upon defining sl[t] :=

∑t
τ=1 θ

t−τωl,τyl,τq[τ], Hl[t] :=
∑t
τ=1 θ

t−τωl,τq[τ]q>[τ] + λtIρ,
and Ml[t] := H−1

l [t], one updates

sl[t] = sl[t − 1] + ωl,tyl,tq[t]

Ml[t] = Ml[t − 1] − ωl,t
Ml[t − 1]q[t]q>[t]Ml[t − 1]

1 + q>[t]Ml[t − 1]q[t]

and forms ll[t] = Ml[t]sl[t], for l = 1, . . . , L.
However, for 0 < θ < 1 the regularization term (λt/2)‖l‖22 in (1.16) makes it im-

possible to express Hl[t] in terms of Hl[t − 1] plus a rank-one correction. Hence, one
cannot resort to the matrix inversion lemma and update Ml[t] with quadratic com-
plexity only. Based on direct inversion of each Hl[t], the alternating LS algorithm
for subspace tracking from incomplete data is tabulated under Algorithm 2.

Before moving on to reduced-complexity subspace trackers it is worth comment-
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ing that the basic idea of performing online rank-minimization leveraging the sep-
arable nuclear-norm regularization was first introduced in [6], in the context of un-
veiling network traffic anomalies. Since then, the approach has gained popularity
in real-time non-negative matrix factorization for singing voice separation from its
music accompaniment [37], and online robust PCA [38], to name a few examples.

Low-complexity stochastic-gradient subspace updates. To further re-
duce Algorithm’s 2 computational complexity in updating the subspace L[t], here
we develop lightweight algorithms which better suit big data applications. To this
end, the basic AM framework is retained, and the update for q[t] will be identical
[cf. (1.14)]. However, instead of exactly solving an unconstrained quadratic program
per iteration to obtain L[t] [cf. (1.15)], the subspace estimates will be obtained via
stochastic-gradient descent (SGD) iterations. As shown later on, these updates can
be traced to inexact solutions of a certain quadratic program related to (1.15).

For θ = 1, it is shown in Section 1.4.1 that Algorithm 1’s subspace estimate L[t] is
obtained by minimizing the empirical cost function Ĉt(L) = (1/t)

∑t
τ=1 fτ(L), where

ft(L) :=
1
2
‖Pωt (yt − Lq[t])‖22 +

λ

2t
‖L‖2F +

λ

2
‖q[t]‖22, t = 1, 2, . . . (1.17)

By the law of large numbers, if {Pωt (yt)}∞t=1 are stationary, solving minL limt→∞ Ĉt(L)
yields the desired minimizer of the expected cost E[Ct(L)], where the expectation is
taken with respect to the unknown probability distribution of the data. A standard
approach to achieve this same goal – typically with reduced computational complex-
ity – is to drop the expectation (or the sample averaging operator for that matter),
and update the subspace via SGD; see e.g., [36]

L[t] = L[t − 1] − (µ[t])−1∇ ft(L[t − 1]) (1.18)

where (µ[t])−1 is the step size, and ∇ ft(L) = −Pωt (yt − Lq[t])q>[t] + (λ/t)L. The
subspace update L[t] is nothing but the minimizer of a second-order approximation
Qµ[t],t(L,L[t − 1]) of ft(L) around the previous subspace estimate L[t − 1], where

Qµ,t(L1,L2) := ft(L2) + 〈L1 − L2,∇ ft(L2)〉 +
µ

2
‖L1 − L2‖

2
f .

To tune the step size, the backtracking rule is adopted, whereby the non-increasing
step size sequence {(µ[t])−1} decreases geometrically at certain iterations to guaran-
tee the quadratic function Qµ[t],t(L,L[t − 1]) majorizes ft(L) at the new update L[t].
Other choices of the step size are discussed in Section 1.4.1. Different from Algo-
rithm 2, no matrix inversions are involved in the update of the subspace L[t]. In the
context of adaptive filtering, first-order SGD algorithms such as (1.17) are known
to converge slower than RLS. This is expected since RLS can be shown to be an
instance of Newton’s (second-order) optimization method [36, Ch. 4].

Building on the increasingly popular accelerated gradient methods for batch
smooth optimization [39, 40], the idea here is to speed-up the learning rate of
the estimated subspace (1.18), without paying a penalty in terms of computa-
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Algorithm 3 : Online SGD for subspace tracking from incomplete observations
input {Pωτ (yτ), ωτ}∞τ=1, ρ, λ, η > 1.
initialize L[0] at random, µ[0] > 0, L̃[1] := L[0], and k[1] := 1.
for t = 1, 2,. . . do

D[t] =
(
λIρ + L>[t − 1]ΩtL[t − 1]

)−1
L>[t − 1]

q[t] = D[t]Pωt (yt)
Find the smallest nonnegative integer i[t] such that with µ̄ := ηi[t]µ[t − 1]

ft(L̃[t] − (1/µ̄)∇ ft(L̃[t])) ≤ Qµ̄,t(L̃[t] − (1/µ̄)∇ ft(L̃[t]), L̃[t])

holds, and set µ[t] = ηi[t]µ[t − 1].
L[t] = L̃[t] − (1/µ[t])∇ ft(L̃[t]).

k[t + 1] =
1+
√

1+4k2[t]
2 .

L̃[t + 1] = L[t] +
(

k[t]−1
k[t+1]

)
(L[t] − L[t − 1]).

end for
return x̂[t] := L[t]q[t].

tional complexity per iteration. The critical difference between standard gradi-
ent algorithms and the so-termed Nesterov’s variant, is that the accelerated up-
dates take the form L[t] = L̃[t] − (µ[t])−1∇ ft(L̃[t]), which relies on a judicious
linear combination L̃[t − 1] of the previous pair of iterates {L[t − 1],L[t − 2]}.
Specifically, the choice L̃[t] = L[t − 1] + k[t−1]−1

k[t] (L[t − 1] − L[t − 2]), where k[t] =[
1 +

√
4k2[t − 1] + 1

]
/2, has been shown to significantly accelerate batch gradi-

ent algorithms resulting in convergence rate no worse than O(1/k2); see e.g., [40]
and references therein. Using this acceleration technique in conjunction with a
backtracking stepsize rule [41], a fast online SGD algorithm for imputing missing
entries is tabulated under Algorithm 3. Clearly, a standard (non accelerated) SGD
algorithm with backtracking step size rule is subsumed as a special case, when
k[t] = 1, t = 1, 2, . . .. In this case, complexity is O(|ωt |ρ

2) mainly due to update of
qt, while the accelerated algorithm incurs an additional cost O(Pρ) for the subspace
extrapolation step.

Computational cost. Careful inspection of Algorithm 2 reveals that the main
computational burden stems from ρ × ρ inversions to update the subspace matrix
L[t]. The per iteration complexity for performing the inversions is O(|ωt |ρ

3) (which
could be further reduced if one leverages also the symmetry of Gl[t]), while the
cost for the rest of operations is O(|ωt |ρ

2). The overall cost of the algorithm per
iteration can thus be safely estimated as O(|ωt |ρ

3), which can be affordable since ρ
is typically small (cf. the low rank assumption). In addition, for the infinite memory
case θ = 1 where the RLS update is employed, the overall cost is further reduced to
O(|ωt |ρ

2). The first-order Algorithm 3 reduces this cost by order ρ, that is in the same
order as GROUSE and PETRELS, which incur costs ofO(Pρ + |ωt |ρ

2) andO(|ωt |ρ
2),

respectively.
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1.4.1 PERFORMANCE GUARANTEES
This section studies the performance of the proposed first- and second-order online
algorithms for the infinite memory special case; that is θ = 1. In the sequel, to make
the analysis tractable the following assumptions are adopted:
(a1) Processes {ωt,Pωt (yt)}∞t=1 are independent and identically distributed (i.i.d.);
(a2) Sequence {Pωt (yt)}∞t=1 is uniformly bounded; and
(a3) Iterates {L[t]}∞t=1 lie in a compact set.

To clearly delineate the scope of the analysis, it is worth commenting on (a1)-(a3)
and the factors that influence their satisfaction. Regarding (a1), the acquired data is
assumed statistically independent across time as it is customary when studying the
stability and performance of online (adaptive) algorithms [36]. While independence
is required for tractability, (a1) may be grossly violated because the observations
{Pωt (yt)} are correlated across time (cf. the fact that {xt} lies in a low-dimensional
subspace). Still, in accordance with the adaptive filtering folklore e.g., [36], as θ → 1
or (µ[t])−1 → 0 the upshot of the analysis based on i.i.d. data extends accurately to
the pragmatic setting whereby the observations are correlated. Uniform bounded-
ness of Pωt (yt) [cf. (a2)] is natural in practice as it is imposed by the data acquisition
process. The bounded subspace requirement in (a3) is a technical assumption that
simplifies the analysis, and has been corroborated via extensive computer simula-
tions [5].

Convergence of the second-order algorithm. Convergence of the iterates
generated by Algorithm 2 (with θ = 1) is established first. Upon defining

gt(L,q) :=
1
2
‖Pωt (yt − Lq)‖22 +

λt

2
‖q‖22

in addition to `t(L) := minq gt(L,q), Algorithm 2 aims at minimizing the following
average cost function at time t

Ct(L) :=
1
t

t∑
τ=1

`τ(L) +
λt

2t
‖L‖2F . (1.19)

Normalization (by t) ensures that the cost function does not grow unbounded as time
evolves. For any finite t, (1.19) is essentially identical to the batch estimator in (P3)
up to a scaling, which does not affect the value of the minimizer. Note that as time
evolves, minimization of Ct becomes increasingly complex computationally. Hence,
at time t the subspace estimate L[t] is obtained by minimizing the approximate cost
function

Ĉt(L) =
1
t

t∑
τ=1

gτ(L,q[τ]) +
λt

2t
‖L‖2F (1.20)

in which q[t] is obtained based on the prior subspace estimate L[t − 1] after solving
q[t] = arg minq gt(L[t − 1],q) [cf. (1.13)]. Obtaining q[t] this way resembles the
projection approximation adopted in [29]. Since Ĉt(L) is a smooth convex quadratic
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function, the minimizer L[t] = arg minL Ĉt(L) is the solution of the linear equation
∇Ĉt(L[t]) = 0L×ρ.

So far, it is apparent that since gt(L,q[t]) ≥ minq gt(L,q) = `t(L), the approxi-
mate cost function Ĉt(L[t]) overestimates the target cost Ct(L[t]), for t = 1, 2, . . ..
However, it is not clear whether the subspace iterates {L[t]}∞t=1 converge, and most
importantly, how well can they optimize the target cost function Ct. The good news
is that Ĉt(L[t]) asymptotically approaches Ct(L[t]), and the subspace iterates null
∇Ct(L[t]) as well, both as t → ∞. This result is summarized in the next proposition.

Proposition 3. Under (a1)–(a3) and θ = 1 in Algorithm 2, if λt = λ and λmin[∇2Ĉt(L)] ≥
c for some c > 0, then limt→∞ ∇Ct(L[t]) = 0L×ρ almost surely (a.s.), i.e., the sub-
space iterates {L[t]}∞t=1 asymptotically fall into the stationary point set of the batch
problem (P3).

It is worth noting that the pattern and the amount of missing data, summarized
in the sampling sets {ωt}, play a key role towards satisfying the Hessian’s positive
semi-definiteness condition. In fact, random misses are desirable since the Hessian
∇2Ĉt(L) = λ

t ILρ + 1
t
∑t
τ=1(q[τ]q>[τ]) ⊗Ωτ is more likely to satisfy ∇2Ĉt(L) � cILρ,

for some c > 0.
The proof of Proposition 3 is inspired by [42] which establishes convergence of

an online dictionary learning algorithm using the theory of martingale sequences.
Details can be found in [5], and in a nutshell the proof procedure proceeds in the
following two main steps:
(S1) Establish that the approximate cost sequence {Ĉt(L[t])} asymptotically con-
verges to the target cost sequence {Ct(L[t])}. To this end, it is first proved that
{Ĉt(L[t])}∞t=1 is a quasi-martingale sequence, and hence convergent a.s. This relies
on the fact that gt(L,q[t]) is a tight upper bound approximation of `t(L) at the previ-
ous update L[t − 1], namely, gt(L,q[t]) ≥ `t(L), ∀L ∈ RL×ρ, and gt(L[t − 1],q[t]) =

`t(L[t − 1]).
(S2) Under certain regularity assumptions on gt, establish that convergence of
the cost sequence {Ĉt(L[t]) −Ct(L[t])} → 0 yields convergence of the gradients
{∇Ĉt(L[t]) − ∇Ct(L[t])} → 0, which subsequently results in limt→∞ ∇Ct(L[t]) = 0.

Optimality. Beyond convergence to stationary points of (P3), one may ponder
whether the online estimator offers performance guarantees of the batch nuclear-
norm regularized estimator (P1), for which stable/exact recovery results are well
documented e.g., in [14, 9]. Specifically, given the learned subspace L̄[t] and the
corresponding Q̄[t] [obtained via (1.13)] over a time window of size t, is {X̂[t] :=
L̄[t]Q̄>[t]} an optimal solution of (P1) as t → ∞? This in turn requires asymptotic
analysis of the optimality conditions for (P1) and (P3), and a positive answer is
established in the next proposition whose proof is available in [5].

Proposition 4. Consider the subspace iterates {L[t]} generated by either Algorithm 2



i
i

“Book” — 2017/9/21 — 12:15 — page 18 — #18 i
i

i
i

i
i

18 CHAPTER 1 Big Data

(with θ = 1), or Algorithm 3. If there exists a subsequence {L[tk],Q[tk]} for which
(c1) limk→∞ ∇Ctk (L[tk]) = 0L×ρ a.s., and (c2) 1

√
tk
σmax[PΩtk

(Ytk − L[tk]Q>[tk])] ≤
λtk√

tk
hold, then the sequence {X[k] = L[tk]Q>[tk]} satisfies the optimality conditions for
(P1) [normalized by tk] as k → ∞ a.s.

Regarding condition (c1), even though it holds for a time invariant rank-
controlling parameter λ as per Proposition 3, numerical tests indicate that it still
holds true for the time-varying case; see [5, Remark 2] for guidelines on the choice
of λt. Under (a2) and (a3) one has σmax[PΩt (Yt − L[t]Q>[t])] ≈ O(

√
t), which

implies that the quantity on the left-hand side of (c2) cannot grow unbounded.
Moreover, upon choosing λt ≈ O(

√
t) the term in the right-hand side of (c2) will not

vanish, which suggests that the qualification condition can indeed be satisfied [5].
Effective heuristic rules are devised in [9, 5] for tunning λ.

1.4.2 REAL-TIME NETWORK TRAFFIC MONITORING
Accurate estimation of OD flow traffic in the backbone of large-scale IP networks is
of paramount importance for proactive network security and management tasks [43].
Several experimental studies have demonstrated that OD flow traffic exhibits low
rank, mainly due to common temporal patterns across OD flows, and periodic trends
across time [2]. However, due to the massive number of OD pairs and the high
volume of traffic, measuring the traffic of all possible OD flows is impossible for all
practical purposes [2, 43]. Only the traffic level for a small fraction of OD flows can
be measured via the NetFlow protocol [2].

Aggregate OD-flow traffic is collected from operation of the Internet2 during
December 8 − 28, 2003 containing 121 OD pairs [28]. The measured OD flows
contain spikes (anomalies), which are discarded to end up with a anomaly-free data
stream {yt} ∈ R

121. The detailed description of the considered dataset can be found
in [6]. A fraction π of the entries of yt are then randomly sampled to yield the input
of Algorithm 2. Evolution of the running-average traffic estimation error is depicted
in Fig. 1.2(Left) for different subspace trackers and π values. Evidently, Algorithm 2
outperforms the competing alternatives when λt is adaptively tuned as in [5]. When
only 25% of the total OD flows are sampled by NetFlow, Fig. 1.2(Right) depicts how
Algorithm 2 accurately tracks representative OD flows.

1.4.3 LARGE-SCALE MACHINE LEARNING
The advocated subspace learning framework identifies latent low-dimensional struc-
ture in streaming data, and can facilitate large-scale machine learning tasks be-
yond matrix completion. The scope could be for instance broadened to accommo-
date large-scale dimensionality reduction and feature extraction from multi-way ten-
sors [44], as well as categorical and finite-alphabet datasets [45]. In addition, the
developed subspace trackers can be adopted in conjunction with support vector ma-
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FIGURE 1.2 Internet2 flow traffic estimation.

Traffic estimation performance for Internet2 data when ρ = 10 and θ = 0.95, and a
variable fraction π of data is available. (Left) Average estimation error for π = 0.25
(thin line) and π = 0.45 (thick line). (Right) Algorithm 2’s estimated (dashed red)
versus true (solid blue) OD flow traffic for 75% missing data (π = 0.25).

chines (SVMs) to classify incomplete data online [46]. These generalizations are
briefly summarized next.

Multi-linear decomposition and dimensionality reduction. Many applica-
tions involve data indexed by three, or, more variables giving rise to a tensor, instead
of just two variables as in the matrix settings dealt with so far. It is not uncommon
that one of these variables indexes time [47, 5], and that sizable portions of the data
are missing [48, 49]. Examples of time-indexed, incomplete tensor data include: (i)
dynamic social networks represented through a temporal sequence of adjacency ma-
trices, while it may be the case that not all pairwise interactions among nodes can
be sampled; and (ii) multidimensional nuclear magnetic resonance (NMR) analysis,
where missing data are encountered when sparse sampling is used in order to reduce
the experimental time. Various data analytics tasks aim at unveiling underlying la-
tent structures, which calls for high-order tensor factorizations even in the presence
of missing data [49, 48]. With this objective in mind, [5] puts forth for the first
time an online (adaptive) algorithm for decomposing low-rank tensors with miss-
ing entries; see also [44] for an adaptive algorithm to obtain parallel factor analysis
(PARAFAC) decompositions – a natural extension of the bilinear model in (P5) to
multilinear case. The proposed online algorithm offers a viable approach to solving
large-scale tensor decomposition (and completion) problems, even if the data is not
actually streamed but they are so massive that do not fit in main memory

Sketching of categorical data. With the scale of data growing every day, re-
ducing the dimensionality (a.k.a. sketching) of high-dimensional data has emerged
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as a task of paramount importance. Critical challenges arise with increasingly ubiq-
uitous datasets comprising incomplete categorical samples. For instance, in movie
recommender systems observation yt represents the users’ categorical ratings (e.g.,
like/dislike or in a 1 to 5 integer-valued scale) for the t-th movie. Since each user
rates only a small fraction of movies, ratings for a sizable portion of movies will be
missing. In this context, effective sketching tools were developed in [45] for large-
scale categorical data that are incomplete and streaming. Low-dimensional Probit,
Tobit and Logit models were considered and learned, using a maximum likelihood
approach regularized with a separable surrogate of the nuclear norm as in (1.4). The
developed online algorithms are provably convergent and light-weight, while they
achieve sublinear regret bounds for finite data streams and asymptotic convergence
for infinite data streams.

Classification with absent features. The SVM is a workhorse classification
technique that breaks down when some of the features in the input vectors are miss-
ing. Consider streaming, high-dimensional data xt from two classes, namely C1 and
C2, and suppose only a small fraction of features is present due to security concerns,
or, outliers that render data unreliable. Building on the subspace learning framework
discussed in this section, a joint imputation and supervised classification scheme
is developed in [46] which operates in two alternating steps upon arrival of a new
datum: (i) the algorithm first imputes the missing features based on the learned low-
dimensional subspace; and (ii) subsequently adjusts the SVM hyperplane to match
the imputed datum to its binary label.

1.5 CONCLUDING SUMMARY
Nowadays machine learning tasks deal with sheer volumes of data of possibly in-
complete, decentralized, and streaming nature that demands on-the-fly processing
for real-time decision making. Conventional inference analytics mine such big
data by leveraging their intrinsic parsimony, e.g., via models that include rank
and sparsity regularization or priors. Convex nuclear and `1-norm surrogates are
typically adopted and offer well-documented guarantees in recovering informative
low-dimensional structure from high-dimensional data. However, the computational
complexity of the resulting algorithms tends to scale poorly due to the nuclear
norm’s entangled structure, which also impedes streaming and decentralized analyt-
ics. To mitigate this computational hurdle, this chapter discussed a framework which
leverages a bilinear characterization of the nuclear norm to bring separability at the
expense of nonconvexity. This challenge notwithstanding, under mild conditions
stationary points of the nonconvex program provably coincide with the optimum of
the convex counterpart. Using this idea along with the theory of alternating mini-
mization, lightweight algorithms are developed with low communication-overhead
for in-network processing. Provably convergent online subspace trackers which are
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suitable for streaming analytics are developed as well. Remarkably, even under the
constraints imposed by decentralized computing and sequential data acquisition, one
can still attain the performance offered by the prohibitively-complex batch analyt-
ics. While the ideas were presented for a matrix completion problem, the scope of
the presented framework can be broadened to be jointly adopted with downstream
machine learning tasks such as dimensionality reduction, clustering, classification,
multidimensional scaling, and anomaly detection.
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