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10.1 Introduction

The last few years have witnessed a dramatic upswing in the volume, vari-
ety, and acquisition rate of data from disparate sources. Among other factors,
this “data deluge” has been fueled by the ubiquity of the web, pervasive de-
ployment of low-cost sensors, cheaper storage memory, and growing awareness
that data is a key asset from which valuable insights can be unlocked. Social
networks lie at the forefront of this revolution, presenting ample opportuni-
ties to address several challenges associated with big data. Examples include
micro-blogging services (e.g., Twitter), web-based friendship networks (e.g.,
Facebook), and online product reviews (e.g., Yelp).

Exploiting the immense big data opportunities comes at the cost of over-
coming significant challenges. First, traditional analytics are ill-equipped
to cope with the sheer volume of data. Many distributed platforms (e.g.,
Hadoop/MapReduce and GraphLab) have emerged to tame the scale of data.
Nevertheless, only a subset of algorithms are readily implementable on these
platforms, and development of more versatile architectures is an active re-
search area.

In addition, most social data are high-dimensional with many features. In
order to finesse the curse of dimensionality, parsimonious models must be de-
vised for feature subset selection. Since most big data are acquired sequentially
as streaming inputs, batch learning and optimization approaches are imprac-
tical. For example, securities traders interested in capturing market sentiment
from real-time tweets are driven by the need for split-second buy/sell deci-
sions. Furthermore, big data acquisition pipelines are plagued by measurement
inaccuracies, misses, and incompleteness due to, e.g., privacy concerns.

10.1.1 Signal Processing for Big Data

Signal processing (SP) provides a principled framework within which big
data challenges can be readily addressed [SGM14]. Advances in SP have for-
malized parsimonious models that exploit key properties inherent to big data,
e.g., sparsity, low-rank, and manifold structures. For example, several contem-
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FIGURE 10.1.1: Signal processing in the context of Big Data analyt-
ics [SGM14].

porary models jointly capture low rank and sparsity (see, e.g., [MMG13c]),
subsuming several learning paradigms such as principal component analysis
(PCA) [HTF09], dictionary learning (DL) [OF97], and compressive sampling
(CS) [CW08].

Scaling to very large problem instances, while attaining real-time opera-
tion are noteworthy themes that have shaped the direction of contemporary
research efforts. The alternating direction method of multipliers (ADMM) has
enjoyed growing popularity in decentralized learning and optimization algo-
rithms, especially in settings where data resides over a network of computing
nodes [MBG10, BPC+11, MMG13a].

For streaming data, online learning has emerged as a powerful frame-
work for real-time analytics [MBPS10, KST11, MMG13b]. Popular online al-
gorithms including online mirror descent, and online gradient descent have
been studied and deployed in practical social network settings; see e.g., [SS11]
for a comprehensive review. Figure 10.1.1 depicts various themes for which
SP and learning offer a comprehensive framework.

In addition to decentralized computation, significant improvements in run-
ning time have been realized though random sampling and random projection
algorithms [Mah11]. These methods operate on a randomized sketch of an
input data matrix by either: i) sampling a small subset of rows of the ma-
trix that are most informative (random sampling); or ii) linearly combining
a small number of rows of the matrix (random projection). Under reasonable
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conditions, these randomized approaches can in theory attain asymptotically
faster worst-case running times than deterministic alternatives.

10.1.2 Social Network Analytics Problems

Initial social network studies were exploratory in nature and unveiled sur-
prising properties common to large networks e.g., existence of power laws,
small-world properties, and preferential attachment strategies for network
growth [New10, EK10]. The exponential growth of the web coupled with
ground-breaking advances in fields as diverse as computational biology, and
epidemiology have led to a dramatic change in the scope and size of prob-
lems studied. A few examples include ranking of web pages [BP98, CDK+99],
discovery of causal interactions in gene regulatory networks [CBG13], and
prediction of the spread of infectious diseases [VR07, Jac10].

Looking at network science through the lens of statistical learning, several
contemporary problems boil down to (non-)parametric regression, dimension-
ality reduction, clustering, or (semi-)supervised classification. “Work-horse”
dimensionality reduction approaches such as multidimensional scaling (MDS)
have been advocated for network visualization tasks [KK89, BP11, BG13].
Topology inference problems from network processes have been the focus of
several recent works [RLS10, BMG14]. Another line of research has concen-
trated on virus (also information, buying patterns) propagation models over
complex networks [Het00, EK10]. Other interesting topics include community
discovery [GN02, For10], prediction of network processes from partial observa-
tions [Kol09, FRG14], and detection of anomalies in social networks [MG12b].
This chapter is representative of a subset of problems, for which the identified
big data challenges are addressed by leveraging statistical learning advances.

Section 10.2 focuses on scalable visualization of social networks via nonlin-
ear dimensionality reduction. Inference and imputation of corrupted signals
over social graphs is the topic of Section 10.3. This is followed by Section
10.4, which presents algorithms for community discovery in big social net-
works. Finally, Section 10.5 presents recent algorithms for tracking topologies
of dynamic social networks that facilitate diffusion of network processes. Ad-
mittedly, these approaches represent a small fraction of the gamut of social
network analytics methods. Nevertheless, they are representative of a broader
class of contemporary tools that are relevant to big data analytics in social
networks.

10.2 Visualizing and reducing dimension in social nets

Network visualization is often accomplished through graph embedding,
which entails mapping each node to a point in Euclidean space. Due to the data
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deluge spawned by modern network-based phenomena, the rising complexity
and sheer volume of networks present new opportunities and challenges for
graph embedding tools that capture global patterns and use visual metaphors
to convey meaningful structural information e.g., hierarchy, node similarity,
and natural communities [HL12].

Most traditional visualization algorithms trade off the clarity of struc-
tural characteristics of the underlying network for aesthetic requirements like
minimal edge crossing and fixed edge lengths; e.g., [KK89, PT98, DBD13].
Although efficient for small graphs (hundreds of nodes), embeddings for
larger graphs generated by classical approaches are seldom structurally in-
formative. To this end, several approaches have been developed for embed-
ding graphs while preserving specific structural properties. Pioneering meth-
ods (e.g., [KK89]) have resorted to multidimensional scaling (MDS), which
seeks a low-dimensional representation of high-dimensional data so that pair-
wise dissimilarities are preserved through Euclidean distances in the embed-
ding [BG05, BG13]. In this case, the vertex dissimilarity structure is pre-
served through pairwise distance metrics in the embedding. Spectral em-
beddings whose coordinates consist of entries in the leading principal com-
ponents of the network adjacency matrix are advocated in [LWH03]. The
structure-preserving embedding algorithm solves a semidefinite program with
linear topology constraints that emphasize reconstructability of the graph
through neighborhood methods [SJ09]. Other visualization methods empha-
size community structure [YLZ+13], while concentric layouts emphasize node
hierarchy by placing the highest ranked nodes at the center of the embed-
ding [AHDBV06, BP11, BG13].

Despite the rich history associated with graph drawing methods, devel-
opment of visualization techniques that effectively capture hierarchical struc-
ture and other global patterns remains a challenging and active area of re-
search. This section showcases a recently developed kernel-based visualization
approach that leverages local linear embedding (LLE), a popular manifold
learning technique [BG15]. Similar to recent works on graph embedding, node
importance is captured through centrality constraints [BP11, BG13]. In gen-
eral, centrality measures provide a means to assign a level of importance to
each node in a network [Sab66, Fre77]. For instance, betweenness centrality
describes the extent to which information is routed through a specific node
by measuring the fraction of all shortest paths traversing it; see e.g., [Kol09,
p. 89]. Other measures include closeness and eigenvalue centrality.

10.2.1 Kernel-based graph embedding

Consider a network represented by an undirected graph G = (V , E), where
E denotes the set of edges, and V the set of vertices with cardinality |V| = N .
Suppose the structure of G is captured by its so-termed adjacency matrix A
whose (i, j)-th entry (hereafter denoted by aij) is zero only if edge (i, j) /∈ E ,
otherwise it denotes the weight of (i, j). Given G and a prescribed embedding
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dimension p (typically p ∈ {2, 3}), the graph embedding task is tantamount to

searching for the set of p×1 vectors X := {xi}Ni=1 which “effectively” capture
the underlying local graph structure.

Suppose {yi ∈ Rq}Ni=1 are data points sampled from a nonlinear manifold.

LLE seeks the low-dimensional vectors {xi ∈ Rp}Ni=1 (p ≪ q) that preserve
the local neighborhood structure on the manifold. First, the neighborhoods
{Ni}Ni=1 are constructed per datum by selecting the K-nearest neighbors of
i, or setting Ni := {yj ∈ Rq : ∥yi − yj∥2 ≤ ϵ, ϵ > 0, j = 1, . . . , N}. Assuming
|Ni| = K, each point is then fit to a linear combination of its neighbors by
solving the following constrained least-squares (LS) optimization problem

arg min{
wi1,...,wiK∑
j∈Ni

wij=1

}

∥∥∥∥∥∥
yi −

∑

j∈Ni

wijyj

∥∥∥∥∥∥

2

2

i = 1, . . . , N, (10.2.1)

where {wij}Kj=1 are the reconstruction weights for point i, while the constraint
enforces shift invariance. Setting wij = 0 for j /∈ Ni, the final step determines

{xi ∈ Rp}Ni=1 so that reconstruction weights are preserved by solving:

arg min⎧
⎨

⎩

x1,...,xN∑N
i=1 xi=0

1
N

∑N
i=1 xix

T
i =I

⎫
⎬

⎭

N∑

i=1

∥∥∥∥∥∥
xi −

N∑

j=1

wijxj

∥∥∥∥∥∥

2

2

. (10.2.2)

The equality constraints are included to eliminate the trivial all-zero solution,
and also to eliminate shift and rotation ambiguities.

In order to tailor LLE for graph embedding where only weights {aij}
are available, one must contend with the general non-existence of high di-
mensional vectors {yi}Ni=1 defined per node. Fortunately, the optimization
problem (10.2.1) can be cast in terms of the inner products yT

i yj for all
i, j ∈ {1, . . . , N}. This brings to bear the merits of kernel methods which
entail computations on inner products of transformed feature vectors, φ(y),
namely kij(yi,yj) = φT (yi)φ(yj). However, this flexibility comes at the chal-
lenge of selecting the best kernel matrixK ∈ RN×N where [K]ij := kij(yi,yj).
A few choices of K include:

i. The doubly-centered dissimilarity matrix K = −(1/2)J∆(2)J, where
[∆(2)]ij denotes the squared geodesic distance between nodes i and j,
or any other dissimilarity metric on the graph, and J := I − N−111T

denotes the centering operator (I is the identity matrix and 1 is the all-
one column vector) [BG05]. In this case, K is reminiscent of the kernel
adopted by classical MDS.

ii. The Penrose-Moore pseudoinverse of the graph Laplacian; that isK = L†,
where L := A −D, A ∈ {0, 1}N×N denotes the binary graph adjacency
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matrix, and D := diag(A1). It turns out that L† admits an intuitive
interpretation as a similarity matrix based on random walk distances on
graphs [FPRS07].

iii. Matrix K = AAT , where A ∈ {0, 1}N×N , and [AAT ]ij counts the num-
ber of single-hop neighbors shared by nodes i and j.

Neighborhood selection in traditional LLE entails O
(
qN2

)
complexity

with q ≫. This bottleneck can be overcome by setting Ni to the single-
hop neighbors per node. Let Yi := [φ(yi

1), . . . ,φ(y
i
di
)] collect the “virtual”

transformed vectors associated per Ni, where di denotes the degree of node i.
Letting wi := [wi1, . . . , widi ]

T , the constrained LS fit (10.2.1) can be written
as:

wi = argmin
{w: 1Tw=1}

wTKiw − 2wTki, (10.2.3)

where Ki := YT
i Yi and ki := YT

i φ(yi) are submatrices of K indexed by
elements of Ni. Resorting to Lagrange multiplier theory, one can readily solve
for wi in (10.2.3) in closed form. Moreover for large-scale graph embedding,
(10.2.3) can be easily parallelized over clusters of computing nodes. Each
subproblem entails O(d3i ) complexity, which is manageable because typically
di ≪ N .

The low-dimensional graph embedding can be evaluated from the recon-
struction weights via (10.2.2), by solving for:

arg min⎧
⎨

⎩

X∑N
i=1 xi=0

1
N

∑N
i=1 xix

T
i =I

⎫
⎬

⎭

Tr
[
XT (I−W)T (I−W)X

]
, (10.2.4)

where WT := [w̃1, . . . , w̃N ], w̃ij = wij if j ∈ Ni otherwise w̃ij = 0, XT :=
[x1, . . . ,xN ], and Tr(.) denotes matrix trace. The solution comprises the 2nd
to the (p + 1)st least dominant eigenvectors of (I −W)T (I −W). For large
graphs, X can be efficiently computed via orthogonal iterations which are
amenable to decentralization, entailing O(pN2) complexity; see e.g., [KM08].

Although this approach preserves the local graph topology defined by
single-hop neighbors, the spectral decomposition is generally not scalable for
very large networks. Moreover for large network visualization tasks, one is of-
ten more interested in conveying global properties such as node hierarchy. To
this end, the next subsection modifies the embedding step to enforce centrality
constraints.

10.2.2 Centrality-constraints

Large-scale settings call for emphasis on structural properties such as node
hierarchy over aesthetics. Centrality measures impose a hierarchical ordering
among nodes by quantifying the relative importance of nodes over their peers
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e.g., degree, closeness, and betweenness centralities [Kol09]. As a result, graph
embedding under centrality constraints yields very informative network visu-
alizations. Let C(G) := {ci}Ni=1 denote the set of centralities of G, with ci
representing the centrality measure of node i. The goal is to determine the
embedding {xi}Ni=1 that effectively “preserves” the centrality ordering in C(G).

Modifying the final step in (10.2.2) to incorporate centrality constraints
yields the following optimization problem:

argmin
x1,...,xN

N∑

i=1

∥∥∥∥∥∥
xi −

N∑

j=1

wijxj

∥∥∥∥∥∥

2

2

s. t. ∥xi∥22 = f2(ci), i = 1, . . . , N, (10.2.5)

where f(ci) is a monotone decreasing function of ci ensuring that more central
nodes are placed closer to the center. The dropped 0-mean constraint can be
compensated for by a post-processing centering operation upon determination
of {x̂i}Ni=1.

Problem (10.2.5) is non-convex without global optimality guarantees. For-

tunately, the problem decouples over vectors {xi}Ni=1 motivating a block coor-
dinate descent (BCD) approach [Ber99]. The optimization variables can now
be partitioned into N blocks with xi corresponding to block i. Consequently,
during iteration r one cycles through all blocks by solving:

xr
i = argmin

x

∥∥∥∥∥∥
x−

∑

j<r

wijx
r
j −

∑

j>r

wijx
r−1
j

∥∥∥∥∥∥

2

2

s. t. ∥x∥22 = f2(ci). (10.2.6)

Letting vr
i :=

∑
j<r wijxr

j +
∑

j>r wijx
r−1
j and λ ≥ 0 denote a Lagrange

multiplier, the solution:

xr
i = argmin

x
∥x− vr

i ∥22 + λ(∥x∥22 − f2(ci)) (10.2.7)

is given by:

xr
i =

vr
i

1 + λ
. (10.2.8)

Upon substitution of (10.2.8) into the equality constraint in (10.2.6), one
obtains the closed-form per-iteration update:

xr
i =

{
vr
i

∥vr
i ∥2

f(ci), if ∥vr
i ∥2 > 0

xr−1
i , otherwise.

(10.2.9)

If Xr denotes the embedding matrix after r BCD iterations, the operation
X = (I−N−111T )Xr centers {xr

i }
N
i=1 to the origin in order to satisfy the shift

invariance property of the embedding. Algorithm 10.2.1 summarizes the steps
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outlined for the centrality-constrained graph embedding scheme. The only
inputs to the algorithm are the graph topology G, the centrality measures,
{ci}Ni=1, the graph embedding dimension p, and the kernel matrix L. Note
that Algorithm 10.2.1 scales well to big data settings since both steps can
be computed in parallel. Moreover, (10.2.3) entails O(d3i ) complexity, with
di ≪ N , and the dimensionality of (10.2.6) is p ∈ {2, 3}.

Algorithm 10.2.1: Centrality-constrained graph embedding

1: Input: G, C(G), K, ϵ, p
2: for i = 1 . . . N (in parallel) do
3: Set Ni to single-hop neighbors of i
4: Extract Ki and ki from K
5: Solve wi = arg min

w
wTKiw − 2wTki s. t. 1Tw = 1

6: Set wij = 0 for j /∈ Ni

7: end for
8: Initialize X0, r = 0
9: repeat

10: r = r + 1
11: for i = 1 . . . N (in parallel) do
12: Compute xr

i according to (10.2.9)
13: Xr(i, :) = (xr

i )
T

14: end for
15: until ∥Xr −Xr−1∥F ≤ ϵ
16: X = (I− 1

N 11T )Xr

10.2.3 Numerical tests

This section presents numerical tests conducted on a synthetic small-world
network generated by the Watts-Strogatz model [WS98] and Gnutella, a real-
world file-sharing network. Given the number of nodes N , average degree d̄,
and β ∈ [0, 1], the Watts-Strogatz model constructs a d̄-regular ring lattice and
rewires each edge with probability β. The synthetic graph was generated with
N = 2×103, d̄ = 4, and β = 0.3. Several centrality measures are available with
emphasis on different importance criteria. For instance, closeness centrality
captures the extent to which a particular node is close to all other nodes in
the network, and it is commonly defined as ci := 1/(

∑
j∈V dij), where dij

denotes the geodesic distance between nodes i and j. For the experiments,
closeness centralities were transformed as follows:

f(ci) =

(
cmax − ci

cmax − cmin

)
, (10.2.10)

where cmax := maxi ci, and cmin := mini ci ∀i = 1, . . . , N .
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(a) (b)

(c) (d)

FIGURE 10.2.1: Graph embeddings for a Watts-Strogatz graph with N =
2, 000: (a) Centrality-constrained embedding with K1 = (−1/2)J∆(2)J;
(b) Centrality-constrained embedding with K2 = AAT ; (c) Centrality-
constrained embedding with K3 = L†; and (d) Centrality-agnostic embed-
ding based on kernel matrix K1. The color bar maps node colors to varying
centrality values.

Figure 10.2.1 depicts visualizations of the Watts-Strogatz network ob-
tained by setting N = 2, 000. In Figure 10.2.1 (a), (b), and (c), centrality-
constrained embeddings are plotted with kernel matricesK1 = (−1/2)J∆(2)J,
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K2 = AAT , and K3 = L†, respectively. The appeal for centrality-constrained
embeddings is clear when compared with Figure 10.2.1(d), which depicts a
“centrality-agnostic” graph embedding usingK1. Here, the final weight preser-
vation step entailed spectral decomposition of (I −W)T (I −W), consistent
with the original LLE algorithm. It is clear that even for a moderately sized
synthetic graph, little meaningful information can be conveyed visually from
the centrality-agnostic embedding. For instance, it is not obvious how an an-
alyst would discern which nodes are most accessible to peers, or those whose
removal would compromise the rate of information propagation over the net-
work.

Figure 10.2.2 depicts visualizations of snapshots of the Gnutella peer-to-
peer file-sharing network [LKF07]. Directed edges represent connections be-
tween hosts. The snapshots were captured on Aug. 4, 2012 (N = 10, 876,
|E| = 39, 994) and Aug. 24, 2012 (N = 26, 518, |E| = 65, 369), respectively.
The adjacency matrices were symmetrized to obtain undirected versions of
the network. In this case K = AAT and C was set to the node degrees. It
is clear from the network drawings that despite the dramatic growth in the
number of edges over a 20 day span, most new nodes had low degree, and are
located far from the center.

10.2.4 Visualization of dynamic social networks

This section has so far focused on addressing issues concerning structurally-
informative visualization of large static networks. However, these issues are
exacerbated in settings involving dynamic networks whose topologies evolve
over time [BW97, BW98, BC03, MMBd05, MMBd06, LS08, FT08]. Typically,
one is given a time series of graphs {Gt}Tt=1, representing static snapshots
indexed by time intervals t = 1, . . . , T . Although it is possible to compute a
sequence of static embeddings, this approach does not scale to big data where
graph snapshots may encode millions of nodes, and may be acquired in a
streaming fashion.

Moreover, the sequence of embeddings must “respect” the viewer’s mental
map, which captures a sense of stability of the underlying structure of the
network across time intervals. Sequential embeddings with drastic changes for
a significant number of node positions violate a viewer’s expectations, render-
ing mental reconciliation of temporal network changes hard. Pioneering works
have advocated a Bayesian framework that facilitates modeling dependencies
between consecutive graph layouts [BW97, BW98]. A more recent visualiza-
tion framework advocates regularized graph layouts, which involve optimizing
a cost function augmented with a penalty that enforces stability across times-
lots [XKI12].

Instead of generating a sequence of stable embeddings, a recent approach
promotes static displays that capture temporal variations using non-negative
matrix factorization for dimensionality reduction [MM13]. It tacitly assumes
that the number of nodes remains fixed but edge connections vary with time.
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(a) Gnutella-04 (08/04/2012)

(b) Gnutella-24 (08/24/2012)

FIGURE 10.2.2: Visualization of two snapshots of the large-scale file-sharing
network Gnutella [LKF07] based on degree centrality and K = AAT .
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Static visual plots of rank-one matrix factors capture the temporal evolution
of node importance. Despite numerous efforts, most contemporary approaches
are not tailored for big networks with streaming (and possibly missing) inputs,
a setup of growing research activity.

10.3 Inference and imputation on social graphs

Inference over graphs is a rich subject, and includes the typical (non-)
parametric regression, classification, and clustering tasks. Here, we will focus
on anomaly detection, interpolation (a.k.a. imputation), and extrapolation
(a.k.a. prediction).

10.3.1 Distributed anomaly detection for social graphs

This section deals with graph (network) anomaly identification. On the
one hand, existing approaches have dealt with the pursuit of abnormal be-
havior exhibited by processes that evolve over graphs, such as Internet traffic
flows [LCD04, ZGGR05, MMG13b, MMG13c, MR13], or spatiotemporal en-
ergy consumption profiles [CLL+10, MG12a, MG13], to name a couple. But
also of great interest for spam, fraud and network intrusion detection is to
consider the structure of the underlying graphs, and determine whether e.g.,
nodes, edges, or egonets are anomalous in the sense that they deviate from
postulated network models; see e.g., [NC03, SQCF05, EH07, MT08, TL11,
AMF12, MAB13] for noteworthy contributions. In the sequel, a novel approach
to social graph anomaly detection is outlined, which is based on contempo-
rary low-rank plus sparse matrix decompositions. A distributed algorithm
is then developed leveraging the alternating-directions method of multipliers
(ADMM); see e.g., [BT99, BPC+11].

10.3.1.1 Anomaly detection via sparse plus low-rank decomposi-
tion

The idea here is to consider the egonets in a social graph (i.e., each node’s
induced single-hop subgraph), and for each of them evaluate structural fea-
tures or graph invariants such as, average degree, number of nodes, principal
eigenvalue and average clustering coefficient, to name a few. It is thus possible
to collect all these structural quantities in a feature×egonet matrix Y. Specifi-
cally, let the D×1 vector yn := [y1,n, . . . , yD,n]T collect D different graph fea-
tures, calculated for each egonet n ∈ [1, N ] in a graph of N vertices. Consider
the D×N graph feature matrix Y := [y1, . . . ,yN ]. The d-th row yT (d) of Y is
the networkwide sequence corresponding to feature d, measured for all egonets
in the graph. It may be useful to explicitly account for missing data, which
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could arise because not all features can be calculated for all egonets, or when a
subsampling strategy is implemented to reduce the computational complexity
in forming Y. To this end, consider the set Ω ⊆ {1, . . . , D} × {1, . . . , N} of
index pairs (d, n) defining a sampling pattern (or mask) of the entries of Y.
Introducing the matrix sampling operator PΩ(·), which sets the entries of its
matrix argument not indexed by Ω to zero and leaves the rest unchanged, the
(possibly) incomplete matrix of egonet features in the presence of outliers can
be modeled as:

PΩ(Y) = PΩ(X+O+E), (10.3.1)

where X, O, and E denote the nominal feature matrix, the outliers (i.e.,
anomalies), and small approximation errors, respectively. For nominal egonet
features yd,n = xd,n + ed,n, one has no anomaly; that is od,n = 0.

The model is inherently under-determined, since even for the (most fa-
vorable) case of full data, i.e., Ω ≡ {1, . . . , D} × {1, . . . , N}, there are twice
as many unknowns in X and O as there is data in Y. Estimating X and O
becomes even more challenging when data are missing, since the number of
unknowns remains the same, but the amount of data is reduced. In any case,
estimation of {X,O} from PΩ(Y) is an ill-posed problem unless one intro-
duces extra structural assumptions on the model components to reduce the
effective degrees of freedom. To this end, two cardinal properties of X and O
will prove instrumental. First, a key observation is that for “nominal” complex
networks most of these features obey power laws [FFF99, Kol09, EK10], and
hence Y (or its entrywise logarithm) will be approximately low rank. Second,
anomalies (or outliers) only occur sporadically across egonets and features,
yielding a sparse matrix O.

An estimator matching nicely the specifications of the graph anomaly de-
tection problem stated, is the so-termed “robust” (stable) principal compo-
nents pursuit (PCP, also know as RPCA for robust principal component anal-
ysis) [ZLW+10, CLMW11, CSPW11, MG12b], that will be outlined here for
completeness. PCP seeks estimates {X̂, Ô} as the minimizers of:

(P1) min
{X,O}

∥PΩ(Y −X−O)∥2F + λ∗ ∥X∥∗ + λ1 ∥O∥1 ,

where the ℓ1-norm ∥O∥1 :=
∑

d,n |od,n| and the nuclear norm ∥X∥∗ :=∑
i σi(X) (σi(X) denotes the i-th singular value of X) are utilized to pro-

mote sparsity in the number of outliers (nonzero entries) in O, and the low
rank of X, respectively. The nuclear and ℓ1-norms are the closest convex sur-
rogates to the rank and cardinality functions, which albeit the most natural
criteria they are in general NP-hard to optimize [CG84, Nat95]. The tuning
parameters λ1,λ∗ ≥ 0 control the tradeoff between fitting error, rank, and
sparsity level of the solution. When an estimate σ̂2

v of the noise variance is
available, guidelines for selecting λ∗ and λ1 have been proposed in [ZLW+10].

The location of nonzero entries in Ô reveals “anomalies” across both fea-
tures and egonets, while their amplitudes quantify the magnitude of deviation.
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Clearly, it does not make sense to flag outliers in data that has not been ob-
served, namely for (d, n) /∈ Ω. In those cases (P1) yields ôd,n = 0 since both
the Frobenius and ℓ1-norms are separable across the entries of their matrix
arguments.

A numerical test on the arXiv General Relativity and Quantum Cosmology
collaboration social graph [Les11] is depicted in Figure 10.3.1. The graph
has 5, 242 vertices (authors) and 14, 496 edges (indicating that two authors
collaborated on at least one paper), and there is no missing data. The red
egonet is flagged as anomalous, and it is apparent that edge density (number
of collaborations) is markedly larger than e.g., the other highlighted peers
(purple, green and magenta egonets). Beyond egonets, it is also possible to
devise algorithms to unveil anomalous graphs at a macro level. To this end,
the relevant graph invariants (rows of Y) should be evaluated for the whole
network using e.g., the scalable graph minining package Pegasus [KTF09], and
across networks (columns of Y) for all those graphs of interest in the analysis.

Being convex (P1) is computationally appealing, and it has been shown to
attain good performance in theory and practice. For instance, in the absence
of noise and when there is no missing data, identifiability and exact recovery
conditions were reported in [CLMW11] and [CSPW11]. Even when data are
missing, it is possible to recover the low-rank component under some technical
assumptions [CLMW11]. Theoretical performance guarantees in the presence
of noise are also available [ZLW+10]. Regarding batch centralized algorithms, a
PCP solver based on the accelerated proximal gradient method was put forth
in [LGW+11, MMG13c], while the ADMMwas employed in [YY13, MMG13c].
For a single but dynamic network, detection of structural changes in time can
be naturally accommodated if the feature vectors (now time-indexed columns
of Y) are recalculated per time slot, and processed on-the-fly using online
graph algorithms for streaming data; see also [PPY13, MAB13, MMG13b,
WTPP14].

10.3.1.2 In-network processing algorithm

Increasingly-large graphs and computational challenges arising with big
data motivate well devising fully-distributed iterative algorithms for unveiling
anomalies in social graphs. In a nutshell, per iteration k = 1, 2, . . . nodes n
(i.e., graph vertices) carry out simple computational tasks locally, relying on
their own local feature vectors yn. Subsequently, local estimates are refined
after exchanging messages only with directly connected neighbors in the vertex
set Nn, which facilitates percolation of local information to the whole network.
The end goal is for each node to form local estimates xn[k] and on[k] that
coincide with the n-th columns of X̂ and Ô as k → ∞, where {X̂, Ô} is the
solution of (P1) obtained when all data PΩ(Y) are centrally available.

In its present form (P1) is not amenable for distributed implementation
due to the non-separable nuclear norm present in the cost function. If an up-
per bound rank(X̂) ≤ ρ is a priori available, (P1)’s search space is effectively
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FIGURE 10.3.1: An anomalous (depicted in red) egonet for the arXiv Gen-
eral Relativity and Quantum Cosmology collaboration social graph [Les11].
The red egonet is flagged as anomalous by the proposed low-rank plus sparse
matrix decomposition method.

reduced and one can factorize the decision variable as X = PQT , where P and
Q are D×ρ and N ×ρ matrices, respectively. Next, consider the following al-
ternative characterization of the nuclear norm (see e.g. [SS05, SRJ04, RR13]):

∥X∥∗ := min
{P,Q}

1

2

(
∥P∥2F + ∥Q∥2F

)

s. t. X = PQT , (10.3.2)

where the optimization is over all possible bilinear factorizations of X, so that
the number of columns ρ of P and Q is also a variable. Leveraging (10.3.2),
the following equivalent reformulation of (P1) provides an important first step
towards obtaining a distributed algorithm for graph anomaly detection

min
{P,Q,A}

N∑

n=1

[
∥PΩn(yn −Pqn − on)∥2 +

λ∗
2N

(
∥P∥2F +N∥qn∥2

)
+ λ1∥on∥1

]
,

(10.3.3)
which is non-convex due to the bilinear terms xn = Pqn, and where QT :=
[q1, . . . ,qN ]. Adopting the separable Frobenius-norm regularization in (10.3.3)
comes with no loss of optimality relative to (P1), provided rank(X̂) ≤ ρ.
By finding the global minimum of (10.3.3) [which could have considerably
less variables than (P1)], one can recover the optimal solution of (P1). But
since (10.3.3) is non-convex, it may have stationary points which need not
be globally optimum. Interestingly, as asserted in [MMG13a, Prop. 1] if a
stationary point {P̄, Q̄, Ō} of (10.3.3) satisfies ∥PΩ(Y − P̄Q̄T − Ō)∥ < λ∗,
then {X̂ := P̄Q̄T , Ô := Ō} is the globally optimal solution of (P1).



Big Data Analytics for Social Networks 389

To decompose the cost in (10.3.3), in which summands inside the square
brackets are coupled through the global variable P, introduce auxiliary copies
{Pn}Nn=1 representing local estimates of P, one per node n. These local copies
along with consensus constraints yield the distributed estimator:

min
{Pn,qn,on}

N∑

n=1

[
∥PΩn(yn −Pnqn − on)∥2

+
λ∗
2N

(
∥Pn∥2F +N∥qn∥2

)
+ λ1∥on∥1

]
(10.3.4)

s. t. Pn = Pm, m linked with n ∈ N ,

which is equivalent to (10.3.3) provided the network topology graph is con-
nected. Even though consensus is a fortiori imposed within neighborhoods, it
extends to the whole (connected) network, and local estimates agree on the
global solution of (10.3.3). Exploiting the separable structure of (10.3.4), a
general framework for in-network sparsity-regularized rank minimization was
put forth in [MMG13a], whereas a distributed algorithm for PCP (D-PCP)
can be found in [MG13]. Specifically, distributed iterations were obtained after
adopting the ADMM, an iterative Lagrangian method well-suited for parallel
processing [BT99, BPC+11]. In a nutshell, local tasks per iteration k = 1, 2, . . .
entail solving small unconstrained quadratic programs to refine the projections
qn[k] on the nominal feature subspace Pn[k], in addition to soft-thresholding
operations to update the egonet anomaly vectors on[k] per node; see [MG13]
for further details. Per iteration, graph nodes exchange their subspace esti-
mates Pn[k] only with directly connected neighbors. This way the communi-
cation overhead stays affordable, and independent of the network size N .

When employed to solve non-convex problems such as (10.3.4), so far
ADMM offers no convergence guarantees. However, there is ample exper-
imental evidence in the literature that supports empirical convergence of
ADMM, especially when the non-convex problem at hand exhibits “favor-
able” structure. For instance, (10.3.4) is a linearly constrained bi-convex prob-
lem with potentially good convergence properties – extensive numerical tests
in [MG13, MMG13a] demonstrate that this is indeed the case. While estab-
lishing convergence remains an open problem, one can still prove that upon
convergence the distributed iterations attain consensus and global optimality,
offering the desirable centralized performance guarantees [MMG13a].

10.3.1.3 Numerical tests

A test social network of N = 25 nodes is generated as a realization of
the random geometric graph model, meaning nodes are randomly placed on
the unit square and two nodes communicate with each other if their Euclidean
distance is less than a prescribed communication range of 0.4; see Figure 10.3.2
(a). The number of egonet features isD = 20. Entries ofE are independent and
identically distributed (i.i.d.), zero-mean, Gaussian with variance σ2 = 10−3;
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FIGURE 10.3.2: (a) A simulated small social network graph with N = 25
nodes. (b) Convergence of the D-PCP algorithm for different network sizes.
D-PCP attains the same estimation error as the centralized solver.

i.e., ed,n ∼ N (0,σ2). A simulated nominal egonet feature matrix with rank
r = 3 is generated from the bilinear factorization model X = WZT , where W
and Z are D × r and N × r matrices with i.i.d. entries drawn from Gaussian
distributions N (0, 100/D) and N (0, 100/N), respectively. Every entry of O
is randomly drawn from the set {−1, 0, 1} with Pr(od,n = −1) = Pr(od,n =
1) = 5 × 10−2. To simulate missing data, a sampling matrix Ω ∈ {0, 1}D×N

is generated with i.i.d. Bernoulli distributed entries od,n ∼ Ber(0.7) (30%
missing data on average). Finally, measurements are generated as PΩ(Y) =
Ω⊙ (X+O+E) [cf. (10.3.1)], and node n has available the n-th column y(n)
of PΩ(Y).

To experimentally corroborate the convergence and optimality of the D-
PCP algorithm for graph anomaly detection, the distributed iterations are
run and compared with the centralized benchmark (P1), obtained using the
solver in [YY13]. Parameters λ1 = 0.0141 and λ∗ = 0.346 are chosen as
suggested in [ZLW+10]. For both schemes, Figure 10.3.2b shows the evolution
of the global estimation errors eX [k] := ∥X[k] − X∥F /∥X∥F and eO[k] :=
∥O[k] − O∥F /∥O∥F . It is apparent that the D-PCP algorithm converges to
the centralized estimator, and as expected convergence slows down due to the
delay associated with the information flow throughout the network. The test
is also repeated for network sizes of N = 15 and 35, to illustrate that the time
till convergence scales gracefully as the network size increases.

10.3.2 Prediction from partially-observed network processes

Understanding the influence of topology on network processes has relied
on measuring and monitoring the network itself. In practice however, gather-
ing network-wide measurements scales poorly with the network size and may
thus be impractical for various networks of interest. For instance, large social
network surveys also pose a major logistic issue due to, for example, limited
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availability of individuals included in the survey. Tools such as tcpdump pro-
vide detailed packet-level information in Internet protocol (IP) networks, but
collecting all these data can demand excessive power and bandwidth. More-
over, errors due to measurement and data-handling are more likely to emerge
as the amount of data collected increases. A similar challenge arises when cap-
turing spatial and temporal structures in big data. There, one may be forced to
rely on partial (random) observations of the data so that inference algorithms
remain operational while coping with the data deluge. With these motivating
challenges in mind, this section surveys a recent joint topology- and data-
driven algorithm to enable network-wide prediction of dynamical processes
based on partial network observations, that is, measurements collected only
at a subset of network nodes [FRG14]. The known (graph-induced) network
structure and historical data are leveraged to design a dictionary for repre-
senting the network process. The novel approach draws from semi-supervised
learning to enable learning the dictionary with only partial network observa-
tions. Once the dictionary is learned, network-wide prediction becomes possi-
ble via a regularized LS estimate which exploits the parsimony encapsulated
in the design of the dictionary.

Consider an undirected weighted graph G(V , E), where V is the vertex
set with cardinality N = |V| and E is the edge set. The connectivity and
edge strenghts of G are characterized by the weighted adjacency matrix A ∈
RN×N , where the entry ai,j := [A]i,j > 0 if nodes vi and vj are connected,
and ai,j = 0 otherwise. At time instant t ∈ N, corresponding to each vertex
vn ∈ V there is a scalar variable xn,t ∈ R, which represents the network-wide
dynamical process of interest. All node variables are collected in a single vector
xt := [x1,t . . . xN,t]T ∈ RN . To account for missing data, it is assumed that
M < N vertices are measured at any given time. For simplicity in exposition,
the number of observed vertices M is assumed fixed. However, expressions and
algorithms derived in the subsequent sections can be readily modified to allow
for time-varying M . Let Mt ∈ RM×N denote a binary measurement matrix
with 0− 1 entries selecting the measured components of xt. Each row of Mt

corresponds to a vector of the canonical basis for RN , i.e., each row has only
one nonzero entry, which takes the value of 1, while all other entries are set
to 0. The M × 1 measurement vector at time t is modeled as:

yt = Mtxt + ϵt, t = 1, 2, . . . , (10.3.5)

where ϵt is a random error term capturing measurement imperfections.
Recently, a network process prediction algorithm was put forth in [FRG14],

where missing entries of xt are estimated from historical measurements in
TM := {yt}Tt=1 by leveraging the structural regularity of xt (induced by
the underlying graph) through a semi-supervised dictionary learning (DL)
approach. Under the DL framework, data-driven dictionaries for sparse sig-
nal representation are adopted as a versatile means of capturing parsimo-
nious signal structures; see e.g., [TF10] for a tutorial treatment. Propelled
by the success of compressive sampling (CS) [Don06], sparse signal model-
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ing has led to major advances in several machine learning, audio and image
processing tasks [HTF09, TF10]. Motivated by these ideas, it is postulated
in [FRG14] that graph signals can be represented as a linear combination
xt = Bst of a few (≪ Q) columns of an over-complete dictionary (basis) ma-
trix B := [b1, . . . ,bQ] ∈ RN×Q, where st ∈ RQ is a sparse vector of expansion
coefficients. Many signals including speech and natural images admit sparse
representations even under generic predefined dictionaries, such as those based
on the Fourier and the wavelet bases, respectively [TF10]. Like audio and nat-
ural images, vertex variables can exhibit strong correlations induced from the
structure of the underlying graph. For instance, Internet traffic volumes on
two links are highly correlated if they both carry common end-to-end flows,
as indicated by the corresponding routing matrix. DL schemes are attractive
due to their flexibility, since they utilize training data to learn an appropriate
over-complete basis customized for the data at hand. However, the use of DL
for modeling network data is well motivated but so far relatively unexplored.

10.3.2.1 Semi-supervised prediction of network processes

Suppose for now that either a learnt, or, a suitable pre-specified dictionary
B is available, and consider predicting the process on the unobserved vertices.
Data-driven learning of dictionaries from historical data will be addressed in
the ensuing subsection. To cope with the absence of some entries of xt not
present in yt, the idea here is to capitalize on the topology of G. To that
end, suppose wi,j represents a similarity weight between the time-dependent
variables associated with nodes vi and vj ; e.g., the correlation between xi,t

and xj,t. The topology of G, and thus the spatial correlation of the process,
is captured by its Laplacian matrix L := diag(A1N ) − A. Given B, L and
the measurements yt, contemporary tools developed in the area of CS and
semi-supervised learning can be used to form x̂t, which includes estimates for
the missing N −M vertex observations [Don06, BNS06, HTF09].

Given a snapshot of incomplete measurements yt during the operational
phase (where a suitable basis B is available), the sparse basis expansion coef-
ficient vector st is estimated as:

ŝt := argmin
st

∥yt −MtBst∥22 + λs∥st∥1 + λws
T
t B

TLBst, (10.3.6)

where λs and λw are tunable regularization parameters. The criterion in
(10.3.6) consists of a LS error between the observed and postulated net-
work measurements, along with two regularizers. The ℓ1-norm ∥st∥1 en-
courages sparsity in the coefficient vector ŝt [Don06, HTF09]. With xt :=
[x1,t, . . . , xN,t]T given by xt = Bst, the Laplacian regularization can be ex-

plicitly written as sTt B
TLBst = (1/2)

∑N
i=1

∑N
j=1 ai,j(xi,t − xj,t)2. It is thus

apparent that sTt B
TLBst encourages the vertex variables to be close if their

corresponding weights are large. Typically adopted for semi-supervised learn-
ing, such a regularization term encourages Bst to lie on a smooth mani-
fold approximated by G, which constrains how the measurements relate to
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xt [BNS06, RBL+07]. It is also common to use normalized variants of the
Laplacian instead of L [Kol09, p. 46].

The cost in (10.3.6) is convex but non-smooth, and customized solvers
developed for ℓ1-norm regularized optimization can be employed here as well,
e.g., [HTF09, p. 92]. Once ŝt is available, an estimate of the full vector of
network samples is readily obtained as x̂t := Bŝt. It is apparent that the
quality of the imputation depends on the chosen B, and DL from historical
network data in TM is described next.

10.3.2.2 Data-driven dictionary learning

In its canonical form, DL seeks a (typically fat) dictionary B so that train-
ing data TN := {xt}Tt=1 are well approximated as xt ≈ Bst, t = 1, . . . , T , for
some sparse vectors st of expansion coefficients [TF10]. Standard DL algo-
rithms cannot, however, be directly applied to learn B since they rely on the
entire vector xt. To learn the dictionary in the training phase using incomplete
measurements TM instead of TN , the idea is to capitalize on the structure in
xt, of which G is an abstraction [FRG14]. To this end, one can adopt a similar
cost function as in the operational phase [cf. (10.3.6)], yielding the data-driven
basis and the corresponding sparse representation:

{Ŝ, B̂} := argmin
S,B:{∥bq∥2≤1}Q

q=1

T∑

t=1

[
∥yt −MtBst∥22+λs∥st∥1+λws

T
t B

TLBst
]
,

(10.3.7)
where Ŝ := [Ŝ1, . . . , ŜT ] ∈ RQ×T . The constraints {∥bq∥2 ≤ 1}Qq=1 remove the
scaling ambiguity in the productsBst, and prevent the entries inB from grow-
ing unbounded. Again, the combined regularization terms in (10.3.7) promote
both sparsity in st through the ℓ1-norm, and smoothness across the entries of
Bst via the Laplacian L. The regularization parameters λs and λw are typi-
cally cross-validated [HTF09, Ch. 7]. Although (10.3.7) is non-convex, a BCD
solver still guarantees convergence to a stationary point [BT99]. The BCD
updates involve solving for B and S in an alternating fashion, both doable
efficiently via convex programming [FRG14]. Alternatively, the online DL al-
gorithm in [MBPS10] offers enhanced scalability by sequentially processing
the data in TS . The training and operational (prediction) phases are summa-
rized in Figure 10.3.3, where Ct(B, s) denotes the t-th summand from the cost
in (10.3.7), and k = 1, 2, . . . indicate iterations of the BCD solver employed
during the training phase.

The explicit need for Laplacian regularization is apparent from (10.3.7).
Indeed, if measurements from a certain vertex are not present in TM , the cor-
responding row of B may still be estimated with reasonable accuracy because
of the third term in Ct(B, s). On top of that, it is because of Laplacian regular-
ization that the prediction performance degrades gracefully as the number of
missing entries in yt increases; see also Figure 10.3.4. It is worth stressing that
the time series {yt} need not be stationary or even contiguous in time. The
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min
wt

Ct(B[k], st)

min
∥bq∥≤1

T∑

t=1

Ct(B, st[k]) min
wt

Ct(B̂, st)

x̂t = B̂ŝt

St[k]

ŝt

B̂

B[k + 1]

yt, t > T

{yt}Tt=1

x̂t

Training Phase Operational Phase

FIGURE 10.3.3: Training and operational phases of the semi-supervised DL
approach for prediction of network processes that evolve over graphs [FRG14].

network-process prediction approach described so far can also be adapted to
accommodate time-varying network topologies, using a time-dependent Lapla-
cian Lt. A word of caution is due however, since drastic changes in either Lt

or in the statistical properties of the underlying process xt, will necessitate
re-training B to attain satisfactory performance.

10.3.2.3 Numerical tests

Next, a numerical test on link count data from the Internet2 measurement
archive [Int] is outlined. Consider an IP network comprising N nodes and L
links, carrying the traffic of F origin-destination flows (network connections).
Let xl,t denote the traffic volume (in bytes or packets) passing through link
l ∈ {1, . . . , L} over a fixed interval of time (t, t+∆t). Link counts across the
entire network are collected in the vector xt ∈ RL, e.g., using the ubiquitous
SNMP protocol. Since measured link counts are both unreliable and incom-
plete due to hardware or software malfunctioning, jitter, and communication
errors [ZRWQ09, Rou10], they are expressed as noisy versions of a subset of
S < L links

yt = Mtxt + ϵt, t = 1, 2, . . . ,

where Mt is an S×L selection matrix with 0-1 entries whose rows correspond
to rows of the identity matrix of size L, and ϵt is an S × 1 zero-mean noise
term with constant variance accounting for measurement and synchronization
errors. Given yt the aim is to form an estimate x̂t of the full vector of link
counts xt, which in this case defines the network state.

The data consists of link counts, sampled at 5 minute intervals, collected
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FIGURE 10.3.4: Link-traffic cartography of Internet2 data [Int]. Comparison
of NRE for different values of S [FRG14].

over several weeks. For the purposes of comparison, the training phase con-
sisted of 2, 000 time slots, with a random subset of 50 links measured (out
of L = 54 per time slot). Performance of the learned dictionary is then as-
sessed over the next T0 = 2, 000 time slots. Each test vector yt is constructed
by randomly selecting S entries of the full link count vector xt. The tun-
ing parameters are chosen via cross-validation (λs = 0.1 and λw = 10−5).
Figure 10.3.4 shows the normalized reconstruction error (NRE), evaluated as

(LT0)−1
∑T0

t=1 ∥yt − x̂t∥2 for different values of Q and S. For comparison, the
prediction performance with a fixed diffusion wavelet matrix [CPR07] (instead
of the data-trained dictionary), as well as that of the entropy-penalized LS
method [ZRLD05] is also shown. The latter approach solves a LS problem aug-
mented with a specific entropy-based regularizer, that encourages the traffic
volumes at the source/destination pairs to be stochastically independent. The
DL-based method markedly outperforms the competing approaches, especially
for low values of S. Furthermore, note how performance degrades gracefully
as S decreases. Remarkably, the predictions are close to the actual traffic even
when using only 30 link counts during the prediction phase.

10.4 Unveiling communities in social networks

Social networks generally exhibit community structure, which is charac-
terized by the existence of groups within which the edge density is relatively
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high compared to the edge density between groups [GN02]. Communities are
indicative of common functional roles or similar node behavior e.g., co-workers
on Facebook, or followers of a cause on Twitter.

The community detection task has attracted significant attention from
different disciplines, with several algorithms developed to tackle it. Traditional
approaches resort to graph partitioning and data clustering algorithms such
as k-means, hierarchical and spectral clustering [For10]. Graph partitioning
algorithms such as Min-Cut and Ratio-Cut divide the graph into k parts of
known size [For10]. However, these algorithms are not practical for community
detection because they are limited to settings where the number and size of
communities is known. On the other hand, hierarchical clustering, which is
sensitive to selection of a similarity metric, is well-motivated as node similarity
in social networks can be succinctly defined [HTF09].

Both k-means and spectral clustering are “workhorse” methods for
(non)linearly separable data clustering. Nevertheless, spectral clustering is
more appealing for community detection where the similarity graph is given.
More recently, modularity methods have emerged, which entail optimization
of a graph-clustering quality function [GN02]. Fortunato’s community de-
tection survey catalogs most of the contemporary community detection ap-
proaches [For10].

In general, most modern social networks are extremely large with millions
of nodes and edges, and attempts to efficiently unveil their communities need
to cope with typical big data challenges. To this end, a number of approaches
based on parallelization, random sampling, and random projections have been
advocated for clustering big data. Among these, parallelization is a relatively
mature technology as tasks in k-means can be easily distributed over a com-
puting cluster. However, randomized algorithms can reduce the computational
load per node, and therefore require fewer nodes.

This section focuses on spectral clustering and its connections to the more
general kernel k-means. In light of the aforementioned big data challenges,
a discussion of recent random sampling extensions to such settings is given.
It is also worth noting that the equivalence of spectral clustering with kernel
k-means can prove useful to reduction of the computational load.

10.4.1 Big data spectral clustering

The emphasis of this subsection will be on big data spectral clustering.
Although originally developed for data clustering, spectral clustering finds
applications in community detection as it exhibits good performance in arbi-
trary cluster configurations. Spectral clustering exploits the properties of the
similarity graph Laplacian L to group the vertices into a prescribed number
of k clusters. Let A ∈ RN×N denote the (weighted) adjacency matrix. The
graph Laplacian is defined as L := D − A, where D is a diagonal matrix
with [D]ii =

∑N
j=1[A]ij , and [A]ij denotes (i, j) entry of A. The key prop-

erty of L is the equivalence of algebraic multiplicity of the zero eigenvalue to
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the number of connected components. The corresponding eigenvectors are the
indicator vectors of each connected component. This can be verified by con-
sidering an eigenvalue λ = 0 of L and its corresponding eigenvector v ∈ RN .
Then:

Lv = 0⇒ vTLv = 0 =
1

2

N∑

i,j=1

[A]ij(vi − vj)
2, (10.4.1)

with vi denoting the i-th entry of v. As all terms of the sum must vanish
and [A]ij ≥ 0, the entries of v, for which [A]ij ̸= 0 must be equal. Thus
v should have constant entries corresponding to vertices of the connected
component. In a network with k completely separated clusters, the graph will
have k connected components, and hence L will have k zero eigenvalues. The
corresponding eigenvectors suffice to reveal the clusters in the network. This
however is not the case in social networks where the graph can be connected
with communities linked to each other by a few edges. Thus, L will have a
single all-ones (1 ∈ RN ) eigenvector, and k eigenvalues close to zero. While
the eigenvectors corresponding to these k eigenvalues will not be indicator
vectors, they can still be used to separate the clusters.

Spectral clustering algorithms find the k smallest, non-zero, eigenvalues
{λi}ki=1 of L, and their corresponding eigenvectors {vi ∈ RN}ki=1. With
V := [v1, ...,vk], vertex i is mapped to row i of V. This change of repre-
sentation enhances the separability of clusters in the graph, which can be re-
covered using simple algorithms such as k-means. The eigenvalue computation
can be performed using efficient methods such as the power iteration [GL12].
Algorithm 10.4.1 depicts the unnormalized spectral clustering algorithm. In
addition to the basic definition of L, certain spectral clustering approaches
leverage normalized graph Laplacians, which are equivalent to Min-Cut and
Ratio-Cut [SM00, NJW+02].

Although the number of clusters is not necessarily known, one can deduce
k by comparing the magnitudes of the eigenvalues of L. Since eigenvalues
corresponding to clusters are close to zero, one can assess the value of k by
finding the “jump” in the spectrum of the eigenvalues.

Spectral clustering also has strong connections to kernel PCA [HTF09]
and kernel k-means (Algorithm 10.4.2). Kernel k-means [DGK04] extends the
classic k-means algorithm, and is able to cluster even non-linearly separable
data. This is accomplished by mapping each datum to a higher-dimensional
space F , using a function φ : RD → F . The premise is that a mapping
exists to render the dataset linearly separable, and hence amenable to simple
and heuristic yet effective algorithms such as k-means. Even if F is infinite
dimensional, the Representer theorem [Wah90] guarantees that inner products
between data points on F suffice to perform clustering. Kernel k-means on
a N -point dataset with k clusters aims to minimize the following objective
function:

D =
k∑

j=1

N∑

i=1

∥φ(xi)− µCj∥22, (10.4.2)
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where φ(xi) is the feature space representation of data point xi, and the
centroid µCj := 1

|Cj |
∑

j∈Cj
φ(xj) is the sample mean of the points in cluster

Cj . Using the Representer theorem the distance of each point in F from the
centroid in (10.4.2) can be rewritten as:

∥φ(xi)− µC∥22 = [K]ii −
2

|C|
∑

j∈C

[K]ij +
1

|C|2
∑

j,l∈C

[K]jl, (10.4.3)

where K ∈ RN×N is the Gramian of the kernel used, and [K]ij denotes the in-
ner product between φ(xi) and φ(xj). Consequently, minimization of (10.4.2)
can be written as:

min
U,C

tr(K)− tr(C1/2UTKUC1/2) ⇐⇒ max
Û

tr(ÛTKÛ), (10.4.4)

where U := [ui . . .uk] is a cluster membership matrix with ui ∈ {0, 1}N ,
[ui]j = 1, if point j belongs to cluster i; the diagonal matrix C ∈ Rk×k col-

lects inverses of cluster cardinalities, C = diag( 1
|C1| , ...,

1
|Ck| ); and, Û :=

C1/2U. The optimization problem in (10.4.4) is non-convex as Û is binary. By
relaxing the binary constraint, and requiring ÛT Û = I, the problem can be
recast as the following convex surrogate with a well-known solution [GL12]:

max
ÛT Û=I

tr(ÛTKÛ) =
k∑

i=1

λi, (10.4.5)

where Û∗ = VQ, {λi}ki=1 are the largest eigenvalues of K, Q ∈ Rk×k denotes
an arbitrary orthonormal matrix, and the columns of V ∈ RN×k are formed
with the k eigenvectors corresponding to {λi}ki=1. This is equivalent to find-
ing the k trailing eigenvectors of I −K. Due to the relaxation, the columns
of Û∗ most likely do not represent natural clusterings, and as such post-
processing is required. Similarly, Ratio-Cut and Min-Cut can be converted to
trace maximization problems [Lux07]. Furthermore, kernel PCA finds the k
largest eigenvectors of the centered Gramian K̃.

Algorithm 10.4.1: Unnormalized spectral clustering

Require: k, L ∈ RN×N .
Ensure: Clustered vertices.
1: Compute the k smallest eigenvectors {vi}ki=1 of L.

Let V := [v1,v2, ...,vk] ∈ RN×k.
2: Let {xi ∈ Rk}Ni=1 be the rows of V; xi corresponds to the i-th vertex.
3: Group {xi}Ni=1 into k clusters {Ci}ki=1.

In large social networks, L is presumed to be sparse. In this case, methods
such as Arnoldi/Lanczos iterations [GL12] can be used to efficiently compute
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Algorithm 10.4.2: Kernel k-means

Require: k, K ∈ RN×N , maximum number of iterations T
Ensure: Clustered points
1: Randomly assign points to clusters.
2: repeat
3: for i = 1 to N do
4: For point φ(xi) calculate closest centroid using equation 10.4.3
5: end for
6: Update point assignments; Assign each point to the cluster whose cen-

troid is closest
7: t← t+ 1; update iteration counter
8: until No changes in assignments or t > T

the trailing eigenspace of L, as usually only matrix-vector products are re-
quired. Readily available packages that tackle large-scale sparse eigenvalue
problems exist [LSY98]. Distributed eigensolvers and parallel versions of k-
means [ZMH09] can also be used. Care should be taken when the number
of communities k is very large. While the trailing eigenvectors of L can be
computed efficiently, the final clustering step would require clustering N k-
dimensional vectors, which can prove challenging even for distributed versions
of k-means. Multiple approaches that aim to tackle specifically large-scale
spectral clustering tasks are available. These approaches come in three major
flavors: Parallelization/distributed processing, random sampling and random
projections.

A useful overview of performing spectral clustering for sparse Laplacian
matrices in parallel is given in [CSB+11]. The parallelization can be per-
formed using either MapReduce [DG08] or MPI [Sni98]. Pre-processing of the
data using k-means and random projection trees is investigated in [YHJ09].
In this method the preprocessing step reduces the original N datapoints to
M < N representatives and performs spectral clustering on these M repre-
sentatives, which results in a reduced graph which speeds up execution of the
spectral clustering algorithm. However, as usually only similiraties between
datapoints are given and not the datapoints themselves, algorithms such as
kernel k-means or k-medoids, that can work using only similarities have to be
employed.

Random sampling and random projections of the data are advocated in
[SI09]. The random projection step involves projecting the data points to
a lower dimensional space and computing the similarity matrix from these
lower-dimensional representations of the data points. Again, as usually only
the similarities are given and not the datapoints themselves, this part of the al-
gorithm cannot provide the needed computational time reduction. Afterwards
entries of the similarity matrix are randomly sampled and spectral clustering
is performed using this reduced similarity matrix. Nyström’s method is pro-
posed in [WLRB09] and [FBCM04], to form a low-rank similarity matrix,
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which is enabled by sampling the original similarity matrix and using the sim-
ilarities between the sampled and non-sampled points. Finding the eigenspace
of the new low-rank similarity matrix is much more efficient, however one
should perform the sampling carefully, as it can drastically influence the final
result. When the similarity matrix is sparse, the Nyström eigenspace can be
very similar to the original eigenspace, leading to highly accurate clustering.

Random sampling of the similarity matrix is explored in [ST11], whereby
entries of the similarity matrix are sampled randomly, based on a budget
constraint, and all other entries are set to zero. This sparsifies the similarity
matrix and leads to faster computation of the eigenvectors. Random sketch-
ing is promoted in [GKB13] and [LC10]. Entries of the similarity matrix are
randomly sketched using a random projection matrix to reduce the size of
the similarity matrix. This reduction allows for faster computation of the
eigenspace.

Large-scale kernel k-means methods can also significantly speed-up the
clustering process. Results in [DGK07] have shown that using kernel k-means
instead of spectral clustering can reduce the computation time required. Again
care should be taken when using kernel k-means. While the Laplacian matrix
of a social network might be sparse, the similarity matrix in general is not,
possibly increasing the clustering time of kernel k-means (compared to spec-
tral clustering methods), especially in cases where the number of clusters k
is small. Methods to scale the kernel k-means algorithm are also available.
Random sampling of the kernel matrix is investigated in [CJHJ11], where
the centroids (cluster representatives) are forced to reside on the subspace
spanned by those sampled points. Simulated tests demonstrate that the re-
sultant algorithm can tackle large datasets effectively. Parallelization of the
kernel k-means algorithm is proposed in [EFKK14]. Here, low-dimensional
embeddings allow kernel k-means to be used in a distributed fashion using the
MapReduce framework.

A more recent method, called Sketching and Validation (SkeVa [TSG15])
proposes taking multiple sketches (random samples of M < N entries) of the
similarity matrix, performing kernel k-means to find clusterings, and relies on
different sets of random samples to validate these sketches by assigning a score
to them. Afterwards, the sketch that yielded the highest score is used to clus-
ter the remaining data. This structured trial-and-error approach has shown
promising results with respect to clustering accuracy and reduced computa-
tional time. Furthermore, as each of the sketching and validation runs is inde-
pendent, this approach admits easy parallelization, thereby combining random
sketching approaches and distributed computing, making it attractive for the
task at hand. Simulated and real data tests indicate that this algorithm can
tackle large-scale datasets much faster than traditional kernel k-means.

10.4.1.1 Numerical tests

Three methods are compared in this section with respect to clustering ac-
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TABLE 10.4.1: Clustering times for Facebook egonet.

Spectral
Clustering

Kernel
k-means

SkeVa
(150 samples)

SkeVa
(350 samples)

Time(s) 0.067 0.074 0.031 0.066

TABLE 10.4.2: Clustering times for arXiv General relativity collaboration
network.

Spectral
Clustering

Kernel
k-means

SkeVa
(500 samples)

SkeVa
(1, 000 samples)

Time(s) 3.1 2.51 0.4 0.85

curacy and required time: Spectral clustering, kernel k-means and the Sketch-
ing and Validation method for kernel k-means (Kernel SkeVa) introduced in
[TSG15]. Regarding spectral clustering, the normalized version of L is used
[NJW+02], and Lanczos iterations are employed to evaluate the eigenspace
of L. The kernel used for kernel k-means and kernel SkeVa is the short-
est path distance kernel K = (−1/2)JDJ, where D contains the shortest
path distances between every node pair in the graph and J = I − 1

N 11T

is the double centering operator, while 1 denotes the all-ones vector. Figure
10.4.1 shows the community detection result for the different algorithms on
the largest connected component of a Facebook egonet with N = 744 ver-
tices, and 30, 023 edges containing k = 5 communities [Les12]. Vertices of the
graph represent friends of a particular user, and edges between the vertices
indicate whether two people are friends with each other. All methods are able
to distinguish the clearly defined communities in this graph. Kernel SkeVa
misclassifies some nodes when only 150 nodes are sampled, but this is to be
expected as not all nodes are sampled. Since the size of this network is small
all methods require similar amounts of time to perform the clustering (see Ta-
ble 10.4.1). Figure 10.4.2 shows the community detection result on the largest
connected component of an arXiv collaboration network (General Relativity)
with N = 4, 158 vertices, and 13, 422 edges [Les11]. Vertices represent paper
authors and edges indicate whether two people have co-authored a paper. It
is assumed that k = 36 communities are present in this graph. Similar to the
Facebook network, all algorithms are able to recognize the tight communities
of this network, however the time required for kernel SkeVa is one order of
magnitude lower.



402 Graph-Based Social Media Analysis

(a) (b)

(c) (d)

FIGURE 10.4.1: Community detection results for a Facebook egonet withN =
744 nodes and k = 5 communities using: (a) Normalized spectral clustering;
(b) Kernel k-means; (c) Kernel SkeVa, where 150 nodes are sampled; and (d)
Kernel SkeVa, where 350 nodes are sampled. Different shades of gray represent
different communities.

10.4.2 Robust kernel PCA

Kernel (K)PCA is a generalization of (linear) PCA, seeking principal com-
ponents in a feature space nonlinearly related to the input space, where the
data in Tx live [SSM98]. KPCA has been shown effective in performing non-
linear feature extraction for pattern recognition [SSM98]. In addition, con-
nections between KPCA and spectral clustering [HTF09, p. 548] motivate
well the KPCA method outlined in this section, to robustly identify cohesive
subgroups (communities) from social network data.

Consider a nonlinear function φ : RD → H, that maps elements from the
input space RD to a feature space H of arbitrarily large – possibly infinite
– dimensionality. Given transformed training data TH := {φ(yn)}Nn=1, the
proposed approach to robust KPCA fits the model [cf. the low-rank subspace
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(a) (b)

(c) (d)

FIGURE 10.4.2: Community detection results for an arXiv collaboration net-
work (General Relativity) with N = 4, 158 nodes, and k = 36 communities us-
ing: (a) Normalized spectral clustering; (b) Kernel k-means; (c) Kernel SkeVa
where 500 nodes are sampled; and (d) Kernel SkeVa where 1, 000 nodes are
sampled. Different shades of gray represent different communities.

model in (10.3.3)]:

φ(yn) = m+Pqn + on + en, n = 1, . . . , N, (10.4.6)

where, again, on is an outlier vector, andm denotes the location (mean) vector
in feature space H. A natural criterion is (Φ := [φ(y1), . . . ,φ(yN )] and 1T

N is
the N × 1 row vector of all ones):

min
m,P,Q,O

∥Φ−m1T
N−PQT−O∥2F+

λ∗
2
(∥P∥2F+∥Q∥2F )+λ2

N∑

n=1

∥on∥2, (10.4.7)

where
∑N

n=1 ∥on∥2 is the so-termed group Lasso penalty [YL06]. It is a high-
dimensional extension of the ℓ1-norm, that encourages columnwise (vector)
sparsity on the estimator of O [cf. entrywise sparsity with the ℓ1-norm]. This
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way, one can declare whether the corresponding training vector φ(y1) is an
outlier or not. Except for the principal components’ matrix Q ∈ RN×ρ, both
the data and the unknowns in (10.4.7) are now vectors/matrices of generally
infinite dimension. In principle, this challenges the optimization task since
it is impossible to store, or, perform updates of such quantities directly. For
these reasons, assuming zero-mean data φ(yn), or, the possibility of mean
compensation for that matter, cannot be taken for granted here. Thus, it is
important to explicitly consider the estimation of m [which for instance, was
not explicitly accounted for in (10.3.3)].

Interestingly, this hurdle can be overcome by endowing H with the struc-
ture of a reproducing kernel Hilbert space (RKHS), where inner products
between any two members of H boil down to evaluations of the reproducing
kernel KH : RD × RD → R, i.e., ⟨φ(yi),φ(yj)⟩H = KH(yi,yj). Specifically,
it is possible to form the kernel matrix K := ΦTΦ ∈ RN×N , without directly
working with the vectors in H. This so-termed kernel trick is the crux of most
kernel methods in machine learning [HTF09], including kernel PCA [SSM98].
The problem of selecting KH (and φ indirectly) will not be considered here.

Building on these ideas, it is shown in [MG12b] that natural alternating-
minimization (AM) iterations one can devise to optimize (10.4.7) can be ker-
nelized, to solve (10.4.7) at affordable computational complexity and memory
storage requirements that do not depend on the dimensionality of H. Specif-
ically, for k ≥ 1, [MG12b] shows that the sequence of AM iterates obtained
to solve (10.4.7) can be written as m(k) = Φµ(k), P(k) = ΦΠ(k), and
O(k) = ΦΩ(k). The quantities µ(k) ∈ RN , Π(k) ∈ RN×ρ, and Ω(k) ∈ RN×N

are then recursively updated as in Algorithm 10.4.3, without the need of op-
erating with vectors in H.

In order to run the robust KPCA algorithm (tabulated as Algorithm
10.4.3), one does not have to store or process the quantities m(k), U(k),
and O(k). As per [MG12b, Prop. 4], the iterations can be equivalently car-
ried out by cycling through finite-dimensional ‘sufficient statistics’ µ(k) →
Π(k) → Q(k) → Ω(k). In other words, the iterations of the robust kernel
PCA algorithm are devoid of algebraic operations among vectors in H. Recall
that the size of matrix Q is independent of the dimensionality of H.

BecauseO(k) = ΦΩ(k) and upon convergence of the algorithm, the outlier
vector norms are computable in terms ofK, i.e., [∥o1(∞)∥22, . . . , ∥oN (∞)∥22]T =
diag[ΩT (∞)KΩ(∞)]. These are critical towards identifying outlying vectors
yn, since for those ∥on(∞)∥2 > 0. Moreover, the principal component corre-
sponding to any given new data point y is obtained through the projection
1 = PT (∞)[φ(y)−m(∞)] = ΠT (∞)ΦTφ(x)−ΠT (∞)Kµ(∞), which is again
computable after N evaluations of the kernel function KH.

10.4.2.1 Numerical tests

Here robust KPCA is used to identify communities and outliers in a social
network of N = 115 college football teams, by capitalizing on the connection
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Algorithm 10.4.3: : Robust KPCA solver

Initialize Ω(0) = 0N×N , Q(0) randomly, and form K = ΦTΦ.
for k = 1, 2, . . . do

Update µ(k) = [IN −Ω(k − 1)]1N/N.
Form Φo(k) = IN − µ(k)1T

N −Ω(k − 1).
Update Π(k) = Φo(k)Q(k − 1)[QT (k − 1)Q(k − 1) + (λ∗/2)Iρ]

−1.
Update Q(k) = ΦT

o (k)KΠ(k)[ΠT (k)KΠ(k) + (λ∗/2)Iρ]
−1.

Form δn(k) = eN,n − µ(k)−Π(k)qn(k), n = 1, . . . , N

Form ∆(k) = diag

(
(δT1 (k)Kδ1(k)−

λ2
2 )+

δT1 (k)Kδ1(k)
, . . . ,

(δTN (k)KδN (k)−λ2
2 )+

δTN (k)KδN (k)

)
.

Update Ω(k) = [IN − µ(k)1T
N −Π(k)QT (k)]∆(k).

end for

between KPCA and spectral clustering [HTF09, p. 548]. Nodes in the network
graph represent teams belonging to eleven conferences (plus five independent
teams), whereas (unweighted) edges joining pairs of nodes indicate that both
teams played against each other during the Fall 2000 Division I season [GN02].
The kernel matrix used to run robust KPCA is K = ζIN + D−1/2AD−1/2,
where A and D denote the graph adjacency and degree matrices, respectively;
while ζ > 0 is chosen to render K positive semi-definite. The choice of the
normalized graph Laplacian as kernel matrix is at the heart of the equivalence
between KPCA and spectral clustering [HTF09]. The tuning parameters are
chosen as λ2 = 1.297 so that ∥Ô∥0 = 10, while λ∗ = 1, and ρ = 3. Figure 10.4.3
(a) shows the entries of K, where rows and columns are permuted to reveal
the clustering structure found by robust KPCA (after removing the outliers);
see also Figure 10.4.3 (b). The quality of the clustering is assessed through the
adjusted rand index (ARI) after excluding outliers [FKG11], which yielded the
value 0.8967. Four of the teams deemed as outliers are Connecticut, Central
Florida, Navy, and Notre Dame, which are indeed independent teams not
belonging to any major conference. The community structure of traditional
powerhouse conferences such as Big Ten, Big 12, ACC, Big East, and SEC
was identified exactly.

10.5 Topology tracking from information cascades

It has been observed in many settings that information often spreads in
cascades by following implicit links between nodes in a network. Examples in-
clude the propagation of viral news events between blogs, adoption of emerging
fashion trends within an age group, or acquisition of new buying habits by
consumer groups. Consider the example of a terrorist attack reported within
minutes on mainstream news websites. An information cascade may emerge
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(a)

(b)

FIGURE 10.4.3: (a) Entries of K after removing the outliers, where rows
and columns are permuted to reveal the clustering structure found by robust
KPCA; and (b) Graph depiction of the clustered network [MG12b]. Teams
belonging to the same estimated conference (cluster) are colored identically.
The outliers are represented as diamond-shaped nodes.
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because these websites’ readership includes bloggers who subsequently write
about the attack, influencing their own readers in turn to do the same. The un-
derlying dynamics for propagation of such information are remarkably similar
to those governing the rapid spread of infectious diseases within a population,
leading to the so-termed contagions [Rog95, EK10, BMG14]. In general, one
is only able to observe the nodes of such networks and the times when they
got “infected” by a contagion, but not their link topology.

Knowledge of the network topology is crucial for several reasons. Viral
web advertising can be more effectively achieved if a small set of influential
initiators are identified through the link structure. Furthermore, knowledge of
the structure of hidden needle-sharing networks among communities of inject-
ing drug users can aid formulation of policies for curbing contagious diseases.
Other examples include assessment of the reliability of heavily inter-connected
systems such as the power grid, or, estimating risk exposure among invest-
ment banks in a highly interdependent global economy. In general, unveiling
the network topology can be used to predict the behavior of complex sys-
tems [Kol09, RLS10, BMG14].

Key to topology identification from a cascade is the ease of observation of
its evolution over the unknown network. Indeed, this is tantamount to simply
recording the times when each node got infected by a cascade. Well-studied
diffusion models based on epidemiological studies have been put forth to iden-
tify an underlying network topology [VR07, EK10, Jac10]. Undoubtedly a
challenging inference task, analysis of information cascades over modern so-
cial networks leads to the fundamental big data challenges. Cascades typically
propagate over very large web-scale networks, and are acquired sequentially
in infinite streams. More importantly, the underlying network topology is gen-
erally dynamic and varies over time.

Network inference from temporal traces of infection events has recently
emerged as an active area of research. According to the taxonomy in [Kol09,
Ch. 7], this can be viewed as a problem involving inference of association net-
works. Two other broad classes of network topology identification problems en-
tail (individual) link prediction, or, tomographic inference. Several approaches
postulate probabilistic models and rely on maximum likelihood estimation
(MLE) to infer static edge weights as pairwise transmission rates between
nodes [RBS11, ML13]. MLE-based stochastic gradient descent (SGD) itera-
tions have been leveraged for inference of temporal diffusion networks [RLS10].
Most contemporary diffusion models attribute node infection events to the
network topology alone (endogenous factors), and ignore exogenous factors
such as non-topological information sources. Modeling causal endogenous and
exogenous factors is the mainstay of structural equation models (SEMs), and
the rest of this section will focus on such a general approach that was recently
advocated in [BMG14].
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10.5.1 Dynamic SEMs for tracking cascades

Structural equation modeling refers to a family of statistical methods that
model causal relationships between interacting variables in a complex sys-
tem; see e.g., [Kap09]. Their appeal can be attributed to simplicity and the
inherent ability to capture edge directionalities in graphs. They have been
adopted in economics, psychometrics [Mut84], social sciences [Gol72], and ge-
netics [LdH08, CBG13], among others.

Reasoning that infection times depend on both topological (endogenous)
and external (exogenous) influences, a novel SEM-based scheme was proposed
in [BMG14] for cascade modeling. Topological influences are modeled as linear
combinations of infection times of other nodes in the network, whose weights
correspond to entries in a time-varying asymmetric adjacency matrix. External
influences such as those due to on-site reporting in news propagation contexts
are useful for model identifiability, as they have been shown necessary to re-
solve directional ambiguities [BBG13]. It is assumed that the network varies
slowly with time, facilitating adaptive parameter estimation by minimizing a
sparsity-promoting exponentially-weighted LS criterion. Furthermore, inher-
ent sparse connectivity of social networks is accounted for by ℓ1-norm regu-
larization [CGH09, ABG10, KST11, AG11].

FIGURE 10.5.1: Two cascades propagating over a dynamic directed 16-node
network during time intervals t = 1 and t = 2. Both cascades are initially
observable at 4 nodes and they propagate to include 4 extra nodes during
t = 2. Changes to the network topology are depicted by the new, thicker
edges during t = 2.

10.5.1.1 Model and problem statement

Consider a dynamic N -node network observed over time intervals t =
1, . . . , T , represented by a graph whose temporal topology is encoded through
a time-series of unknown, time-indexed, and weighted adjacency matrices
{At ∈ RN×N}Tt=1. Per convention in network studies, entry (i, j) ofAt (hence-
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forth denoted by atij) is nonzero only if a directed edge connects nodes i and
j during the time interval t. The network topology is assumed to remain fixed
per time interval t, but can change across intervals.

Over the course of the observation interval, many contagions propagate
over the time-varying network as illustrated in the 16-node directed network
in Figure 10.5.1. Suppose a fixed number of contagions C is sampled, and the
difference between infection time of node i by contagion c and the earliest
observation time is denoted by ytic ≥ 0. For uninfected nodes at interval t, ytic
is infinite and will be set to a large positive value for practical considerations.
Assume that the susceptibility xic of node i to external (non-topological)
infection by contagion c is known and time invariant over the observation
interval. In the web context, xic can be set to the search engine rank of website
i w.r.t. keywords associated with c.

The model in [BMG14] postulates that ytic is linearly related to xic and the
infection times of its single-hop neighbors. Events adhering to this model of
network-facilitated propagation abound on the web where mention of e.g., a
major baseball event by a blog will not only depend on the times when similar
blogs first reported the event, but also the level of interest of the blogger
in baseball as a sport. Similarly, in epidemiological studies an individual’s
infection time by an infectious disease depends on both the infection times
of her immediate contacts as well as her immunity level to the disease. As
a result ytic is modeled according to the following linear dynamic structural
equation model (SEM):

ytic =
∑

j ̸=i

atijy
t
jc + btiixic + etic, (10.5.1)

where btii captures the time-varying level of influence of external sources, and
etic accounts for measurement errors and unmodeled dynamics. It follows from
(10.5.1) that if atij ̸= 0, then ytic is affected by the value of ytjc. Rewriting
(10.5.1) for the entire network leads to the vector model:

yt
c = Atyt

c +Btxc + etc, (10.5.2)

where the N × 1 vector yt
c := [yt1c, . . . , y

t
Nc]

T
collects the node infection times

by contagion c during interval t, Bt := diag(bt11, . . . , b
t
NN ); and likewise xc :=

[x1c, . . . , xNc]
T and etc := [et1c, . . . , e

t
Nc]

T
. Collecting observations for all C

contagions yields the dynamic matrix SEM:

Yt = AtYt +BtX+Et, (10.5.3)

where Yt := [yt
1, . . . ,y

t
C ], X := [x1, . . . ,xC ], and Et := [et1, . . . , e

t
C ] are all

N × C matrices. Given {Yt}Tt=1 and X, the goal is to track the underly-
ing network topology {At}Tt=1, and the effect of external influences {Bt}Tt=1.
In order to cope with constraints due to limited measurement budgets, it is
desirable that C ≪ N . Unfortunately without further constraints, this com-
promises the identifiability of (10.5.3). The approach outlined next overcomes
this limitation by leveraging the edge sparsity inherent to social networks.
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10.5.1.2 Exponentially-weighted least-squares estimator

For the sake of exposition, consider the static setting with all {Yt}Tt=1

available. Leveraging the squared error cost leads to the batch problem:

{Â, B̂} = arg min
A,B

1

2

T∑

t=1

∥Yt −AYt −BX∥2F + λ∥A∥1

s. t. aii = 0, bij = 0, ∀i ̸= j, (10.5.4)

where λ > 0 controls the sparsity level of Â. Reasonably assuming the absence
of a self-loop at node i leads to the constraint aii = 0, while having bij =

0, ∀i ̸= j, ensures that B̂ is diagonal as in (10.5.2). Note that the estimator
(10.5.4) tacitly assumes equal residual variances since the infection times per
cascade result from the same contagion over the entire network.

In big data settings, measurements are more likely to be acquired sequen-
tially over large social networks (≥ 106 nodes), motivating online estimation
algorithms with minimal storage requirements. As a result, preference is given
to recursive solvers facilitating sequential topology inference. Incorporating a
“forgetting factor” that assigns more weight to more recent residuals then
makes it possible to track slow temporal topological variations. Note that the
batch estimator (10.5.4) yields the single estimates {Â, B̂} that best fit the
data {Yt}Tt=1 and X over the entire measurement horizon t = 1, . . . , T , and
as such (10.5.4) neglects potential network variations across time intervals.

For t = 1, . . . , T , the sparsity-regularized exponentially-weighted LS esti-
mator (EWLSE) is given by:

{Ât, B̂t} = arg min
A,B

1

2

t∑

τ=1

βt−τ∥Yτ −AYτ −BX∥2F + λt∥A∥1

s. t. aii = 0, bij = 0, ∀i ̸= j, (10.5.5)

where β ∈ (0, 1] is the forgetting factor that forms estimates {Ât, B̂t} us-
ing all measurements acquired until time t. Whenever β < 1, past data are
exponentially discarded thus enabling tracking of dynamic network topolo-
gies. The first summand in the cost corresponds to an exponentially-weighted
moving average (EWMA) of the squared model residuals norms. The EWMA
can be seen as an average modulated by a sliding window of equivalent length
1/(1−β), which clearly grows as β → 1. In the so-termed infinite-memory set-
ting whereby β = 1, (10.5.5) boils down to the batch estimator (10.5.4). Notice
that λt is allowed to vary with time in order to capture the generally changing
edge sparsity level. In a linear regression context, a related EWLSE was put
forth in [ABG10] for adaptive estimation of sparse signals; see also [KST11]
for a projection-based adaptive algorithm.
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10.5.2 Topology tracking algorithm

Proximal gradient (PG) algorithms have been popularized for ℓ1-norm reg-
ularized linear regression problems, through the class of iterative shrinkage-
thresholding algorithms (ISTA); see e.g., [DDM04] and [PB13] for a compre-
hensive tutorial treatment. The main advantage of ISTA over off-the-shelf
interior point methods is its computational simplicity. Iterations boil down to
matrix-vector multiplications involving the regression matrix, followed by a
soft-thresholding operation [HTF09, p. 93].

Introducing the optimization variable V := [A B], it follows that the
gradient of f(V) := 1

2

∑t
τ=1 β

t−τ∥Yτ−AYτ−BX∥2F is Lipschitz continuous,
i.e., ∥∇f(V1)−∇f(V2)∥ ≤ Lf∥V1−V2∥, ∀V1, V2 in the domain of f . The
Lipschitz constant Lf is time varying, but its dependence on t is kept implicit
for notational convenience. Instead of directly optimizing the cost in (10.5.5),
PG algorithms minimize a sequence of overestimators evaluated at judiciously
chosen points.

Let k = 1, 2, . . . denote iterations and define g(V) := λt∥A∥1, PG algo-
rithms iteratively solve:

V[k] := argmin
V

{
Lf

2
∥V −G(V[k − 1])∥2F + g(V)

}
, (10.5.6)

whereG(V[k−1]) := V[k−1]−(1/Lf )∇f(V[k−1]) corresponds to a gradient-
descent step taken from V[k− 1], with step-size equal to 1/Lf . The optimiza-
tion problem (10.5.6) is known as the proximal operator of the function g/Lf

evaluated at G(V[k − 1]), and is denoted as proxg/Lf
(G(V[k − 1])). Hence-

forth adopting the notation G[k− 1] := G(V[k− 1]) for convenience, the PG
iterations can be compactly rewritten as V[k] = proxg/Lf

(G[k − 1]).
A key element to the success of PG algorithms stems from the possibility

of efficiently evaluating the proximal operator (cf. (10.5.6)). Specializing to
(10.5.5), note that (10.5.6) decomposes into:

A[k] := argmin
A

{
Lf

2
∥A−GA[k − 1]∥2F + λt∥A∥1

}

= Sλt/Lf
(GA[k − 1]) (10.5.7)

B[k] := argmin
B

{
∥B−GB [k − 1]∥2F

}
= GB [k − 1], (10.5.8)

subject to the constraints in (10.5.5), which so far have been left im-
plicit, and G := [GA GB ]. Letting Sµ(M) with (i, j)-th entry given by
sign(mij)max(|mij | − µ, 0) denote the soft-thresholding operator, it follows
that proxλt∥·∥1/Lf

(·) = Sλt/Lf
(·), e.g., [DDM04, HTF09]. Because there is no

regularization on the matrix B, the corresponding update (10.5.8) boils-down
to a simple gradient-descent step.

What remains now is to obtain expressions for the gradient of f(V) with
respect to A and B, which are required to form the matrices GA and GB . To
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this end, note that by incorporating the constraints aii = 0 and bij = 0, ∀j ̸=
i, i = 1, . . . N, one can simplify the expression of f(V) as:

f(V) :=
1

2

t∑

τ=1

N∑

i=1

βt−τ∥(yτ
i )

T − aT−iY
τ
−i − biix

T
i ∥2F , (10.5.9)

where (yτ
i )

T and xT
i denote the i-th row of Yτ and X, respectively; while aT−i

denotes the 1 × (N − 1) vector obtained by removing entry i from the i-th
row of A, and likewise Yτ

−i is the (N − 1)× C matrix obtained by removing
row i from Yτ . It is apparent from (10.5.9) that f(V) is separable across
the trimmed row vectors a⊤−i, and the diagonal entries bii, i = 1, . . . , N . The
sought gradients are:

∇a−if(V) = Σt
−ia−i + Ȳt

−ixibii − σt
−i (10.5.10)

∇biif(V) = aT−iȲ
t
−ixi +

1− βt

1− β
bii∥xi∥22 − (ȳτ

i )
Txi, (10.5.11)

where (ȳt
i)

T denotes the i-th row of Ȳt :=
∑t

τ=1 β
t−τYτ , and Ȳt

−i :=∑t
τ=1 β

t−τYτ
−i. Similarly, σt

−i :=
∑t

τ=1 β
t−τYτ

−iy
τ
i and Σt

−i is obtained by

removing the i-th row and i-th column from Σt :=
∑t

τ=1 β
t−τYτ (Yτ )T . From

(10.5.7)-(10.5.8) and (10.5.10)-(10.5.11), the parallel ISTA iterations:

∇a−if [k] = Σt
−ia−i[k] + Ȳt

−ixibii[k]− σt
−i (10.5.12)

∇biif [k] = aT−i[k]Ȳ
t
−ixi +

(1− βt)

1− β
bii[k]∥xi∥22 − (ȳt

i)
Txi (10.5.13)

a−i[k + 1] = Sλt/Lf

(
a−i[k]− (1/Lf )∇a−if [k]

)
(10.5.14)

bii[k + 1] = bii[k]− (1/Lf )∇biif [k] (10.5.15)

are provably convergent to the globally optimal solution {Ât, B̂t} of (10.5.5),
as per the general convergence results available for PG methods and ISTA in
particular [DDM04, PB13].

Computation of the gradients in (10.5.12)-(10.5.13) requires one matrix-
vector mutiplication by Σt

−i and one by Ȳt
−i, in addition to three vector

inner-products, plus a few (negligibly complex) scalar and vector additions.
Both the update of bii[k + 1] as well as the soft-thresholding operation in
(10.5.14) entail negligible computational complexity. Per iteration, the actual
rows of the adjacency matrix are obtained by zero-padding the updated a−i[k],
namely setting:

aTi [k] = [a−i,1[k] . . . a−i,i−1[k] 0 a−i,i[k] . . . a−i,N [k]]. (10.5.16)

This way, the desired SEM parameter estimates at time t are given by Ât =
[a⊤1 [k], . . . , a

⊤
N [k]]T and B̂t = diag(b11[k], . . . , bNN [k]), for k large enough so

that convergence has been attained.
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Algorithm 10.5.1: Pseudo real-time ISTA for topology tracking

Require: {Yt}Tt=1, X, β.

1: Initialize Â0 = 0N×N , B̂0 = Σ0 = IN , Ȳ0 = 0N×C ,λ0.
2: for t = 1, . . . , T do
3: Update λt, Lf and Σt, Ȳt via (10.5.17).

4: Initialize A[0] = Ât−1, B[0] = B̂t−1, and set k = 0.
5: while not converged do
6: for i = 1 . . . N (in parallel) do
7: Compute Σt

−i and Ȳt
−i.

8: Form gradients at a−i[k] and bii[k] via (10.5.12)-(10.5.13).
9: Update a−i[k + 1] via (10.5.14).

10: Update bii[k + 1] via (10.5.15).
11: Update ai[k + 1] via (10.5.16).
12: end for
13: k = k + 1.
14: end while
15: return Ât = A[k], B̂t = B[k].
16: end for

Solving (10.5.5) over the entire time horizon t = 1, . . . , T . To track the
dynamically-evolving network topology, one can go ahead and solve (10.5.5)
sequentially for each t = 1, . . . , T as data arrive, using (10.5.12)-(10.5.15).
Because the network is assumed to vary slowly across time, it is convenient
to warm-restart the ISTA iterations, that is, at time t initialize {A[0],B[0]}
with the solution {Ât−1, B̂t−1}. This way, for smooth network variations one
expects convergence to be attained after few iterations.

To obtain the new SEM parameter estimates via (10.5.12)-(10.5.15), it
suffices to update (possibly) λt and the Lipschitz constant Lf , as well as the
data-dependent EWMAs Σt, and Ȳt. Interestingly, the potential growing-
memory problem in storing the entire history of data {Yt}Tt=1 can be avoided
by performing the recursive updates:

Σt = βΣt−1 +Yt(Yt)T , Ȳt = βȲt−1 +Yt. (10.5.17)

The complexity in evaluating the Gram matrix Yt(Yt)T dominates the per-
iteration computational cost of the algorithm. To circumvent the need of re-
computing the Lipschitz constant per time interval, the step-size 1/Lf in
(10.5.14)-(10.5.15) can be selected by a line search [PB13]. One choice is the
backtracking step-size rule [BT09], for which convergence to {Ât, B̂t} can be
established as well.

Algorithm 10.5.1 summarizes the steps outlined in this section for track-
ing the dynamic network topology, given temporal traces of infection events
{Yt}Tt=1 and susceptibilities X. It is termed pseudo real-time ISTA, since in
principle one needs to run multiple (inner) ISTA iterations till convergence
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per time interval t = 1, . . . , T . This will in turn incur an associated delay, that
may (or may not) be tolerable depending on the specific network inference
problem at hand. Nevertheless, numerical tests indicate that in practice 5-10
inner iterations suffice for convergence; see [BMG14] for further details.

10.5.2.1 Accelerated convergence

For big data applications, first-order methods such as ISTA are often the
only admissible option. Recently, several efforts have led to improvement of
the sublinear global rate of convergence exhibited by PG algorithms while
retaining their computational simplicity see e.g., [Nes83, Nes05, BT09] and
references therein.

The so-termed accelerated (A)PG algorithm has been shown to remark-
ably attain convergence speedups in [Nes05]. APG algorithms generate the
following sequence of iterates:

V[k] = argmin
V

Q(V,U[k − 1]) = proxg/Lf
(G(U[k − 1])),

where

U[k] := V[k − 1] +

(
c[k − 1]− 1

c[k]

)
(V[k − 1]−V[k − 2]) (10.5.18)

c[k] =
1 +

√
4c2[k − 1] + 1

2
. (10.5.19)

The accelerated PG algorithm [a.k.a. fast (F)ISTA] utilizes a linear combina-
tion of the previous two iterates {V[k−1],V[k−2]}. The iteration-dependent
combination weights are a function of the scalar sequence (10.5.19). FISTA
affords a (worst-case) convergence rate guarantee of O(1/

√
ϵ) iterations to

return an ϵ-optimal solution measured by its objective value (ISTA instead
affords O(1/ϵ)) [BT09, Nes05]. With a few minor changes, (10.5.12)-(10.5.15)
can be modified to attain accelerated convergence (see [BMG14] for details). A
slight compromise to adopting FISTA is the increased memory cost for storing
the two prior estimates of A and B.

10.5.3 Real-time operation

Under streaming big data settings, it may be impractical to run multiple
inner (F)ISTA iterations per time interval in the quest for convergence. Infact
a high-quality answer obtained slowly may not be as valuable as a medium-
quality answer that is obtained quickly. The remainder of this section focuses
on strategies for online operation of the topology tracking algorithms, namely:
i) termination of inner iterations prematurely; and ii) pursuing stochastic
gradient iterations.
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FIGURE 10.5.2: a) MSE (i.e.,
∑

i,j(â
t
ij−atij)

2/N2) performance of Algorithm
10.5.1 versus time. For each t, (10.5.5) is solved “inexactly” for k = 1, 5, 10,
and 15 inner iterations. It is apparent that k = 5 iterations suffice to attain
convergence to the minimizer of (10.5.5) per t, especially after a short tran-
sient where the warm-restarts offer increasingly better initializations. b) MSE
performance of real-time algorithms versus time. Real-time FISTA, Algorithm
10.5.2 (SGD), as well as inexact versions of Algorithm 10.5.1 (ISTA) and the
ADMM solver in [BMG13] are compared.

10.5.3.1 Premature termination

Consider a scenario where the underlying network processes are station-
ary (or piecewise stationary with sufficiently long coherence time). Prema-
ture termination is justified by the fact that the solution of (10.5.5) for each
t = 1, . . . , T does not need to be very accurate since it is just an intermediate
step in the outer loop matched to the time-instants of data acquisition. In
fact, it may be reasonable to run a single inner-iteration (so that k coincides
with the time index t).

For synthetically-generated data according to the setup described
in [BMG14], Figure 10.5.2 shows the time evolution of the mean-square error
(MSE) estimation performance upon running FISTA. For each time interval
t, (10.5.5) is solved “inexactly” after running only k = 1, 5, 10 and 15 inner
iterations. Note that realtime operation corresponds to k = 1.

10.5.3.2 Stochastic gradient descent iterations

Supposing β = 0 in (10.5.5), the resulting cost function can be expressed
as ft(V) + g(V), where V := [AB] and ft(V) := (1/2)∥Yt −AYt −BX∥2F
only accounts for data acquired during time interval t. Solving the simplified
optimization problem based only on instantaneous data can be accomplished
by following stochastic gradient descent (SGD) iterations whose simplicity
and tracking capabilities are well documented. Thus, one obtains the following
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Algorithm 10.5.2: SGD algorithm for topology tracking

Require: {Yt}Tt=1, X, η.
1: Initialize A[1] = 0N×N ,B[1] = IN ,λ1.
2: for t = 1, . . . , T do
3: Update λt.
4: for i = 1 . . . N (in parallel) do
5: Form gradients at a−i[t] and bii[t] via (10.5.20)-(10.5.21).
6: Update a−i[t+ 1] via (10.5.22).
7: Update bii[t+ 1] via (10.5.23).
8: Update ai[t+ 1] via (10.5.16).
9: end for

10: return Ât = A[t+ 1], B̂t = B[t+ 1].
11: end for

updates:

∇a−ift[t] = Yt
−i

(
(Yt

−i)
Ta−i[t] + xibii[t]− yt

i

)
(10.5.20)

∇biift[t] = aT−i[t]Y
t
−ixi + bii[t]∥xi∥2 − (yt

i)
Txi (10.5.21)

a−i[t+ 1] = Sλt/η

(
a−i[t]− η∇a−ift[t]

)
(10.5.22)

bii[t+ 1] = bii[t]− η∇biift[t]. (10.5.23)

Compared to the parallel ISTA iterations in Algorithm 10.5.1 [cf. (10.5.12)-
(10.5.14)], three main differences are noteworthy: (i) iterations k are merged
with the time intervals t of data acquisition; (ii) the stochastic gradients
∇a−ift[t] and ∇biift[t] involve the (noisy) data {Yt(Yt)T ,Yt} instead of their
time-averaged counterparts {Σt, Ȳt}; and (iii) a generic constant step-size η
is utilized for the gradient descent steps.

The overall SGD algorithm is tabulated under Algorithm 10.5.2. Acceler-
ated versions could be developed as well, at the expense of a marginal increase
in computational complexity and doubling of memory requirements.

10.5.4 Experiments on real data

The tracking algorithms were tested on real cascade data obtained by
monitoring blog posts and news articles on the web between March 2011 and
February 2012 (45 weeks) [LK14]. Popular textual phrases (a.k.a. memes) due
to globally-popular topics during this period were identified and the times
when they were mentioned on the websites were recorded as Unix timestamps
(i.e., number of hours since midnight on January 1, 1970). In order to test the
tracking algorithms, cascade traces related to two keywords were extracted:
i) “Kim Jong-un” the current leader of North Korea whose popularity rose
after the death of his father (and predecessor); and ii) “Reid Hoffman” the
founder of LinkedIn. Only significant cascades that propagated to at least 7
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FIGURE 10.5.3: (Top) Visualization of estimated networks from information
cascades related to the topic “Kim Jong-un” at t = 10 and t = 40 weeks.
(Bottom) Evolution of total number of inferred edges [BMG14].
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FIGURE 10.5.4: (Top) Visualization of estimated networks obtained by track-
ing “Reid Hoffman” cascades at t = 5 and t = 30 weeks. (Bottom) Evolution
of total number of inferred edges [BMG14].

websites were retained. This resulted in N = 360 websites, C = 466 cascades,
and T = 45 weeks for “Kim Jong-un” memes. Similarly, N = 125, C = 85,
and T = 41 weeks for “Reid Hoffman”.

In cases where website i made no mention of cascade c during interval t,
ytic was set to 100tmax (i.e., a large number), where tmax denotes the largest
timestamp in the dataset. The entries of marix X typically capture prior
knowledge about susceptibility of nodes to contagions. In the web context,
xic could be aptly set to the average search engine ranking of website i on
keywords pertaining to c. In the absence of such real data for the observation
interval, the entries of X were uniformly sampled over the interval [0, 0.01].

Experimental results. Algorithm 10.5.1 was run on both datasets with
β = 0.9 and λt = 100. Figure 10.5.3 (top) depicts drawings of the inferred
network for Kim Jong-un at t = 10 and t = 40 weeks. Speculation about the
possible successor of the dying North Korean ruler, Kim Jong-il, rose until his
death on December 17, 2011 (week 38). He was succeeded by Kim Jong-un on
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December 30, 2011 (week 40). The visualizations show an increasing number
of edges over the 45 weeks, illustrating the growing interest of international
news websites and blogs in the new ruler, about whom little was known in
the first 10 weeks. Unfortunately, the observation horizon does not go beyond
T = 45 weeks. A longer span of data would have been useful to investigate
the rate at which global news coverage on the topic eventually subsided.

Figure 10.5.3 (bottom) depicts the time evolution of the total number of
edges in the inferred dynamic network. Of particular interest are the weeks
during which: i) Kim Jong-un was appointed as the vice chairman of the
North Korean military commission; ii) Kim Jong-il died; and iii) Kim Jong-
un became the ruler of North Korea. These events were the topics of many
online news articles and political blogs, an observation that is reinforced by
the experimental results shown in the plot.

The results of running Algorithm 10.5.1 on the second dataset are shown
in Figure 10.5.4. Although Reid Hoffman was already popular in technology
media coverage, his visibility in popular news and blogs increased tremen-
dously following the highly successful initial public offering (IPO) of LinkedIn
on May 19, 2011. Towards the end of 2011, a number of other successful tech-
nology companies like Groupon and Zynga went public, possibly stabilizing
the amount of media coverage on Reid Hoffman. In fact, the drop in num-
ber of edges towards week 41 could be attributed to the captivation of media
attention by the IPOs that occurred later in the year.

10.6 Conclusion

Big data analytics has risen to prominence within the last few years, and
it remains a very active research area for the foreseeable future. In parallel,
computational analysis of social networks has recently emerged as a versatile,
cross-disciplinary field. Interestingly, a number of problems encountered in
mining the web, learning and prediction of consumer behavior, and the dy-
namics of the spread of infectious diseases, all lie at the intersection of social
networks, big data, and efficient (online) optimization.

Towards addressing these big data problems, signal processing and ma-
chine learning offer a robust framework for advanced data analytics. A fair
and totally balanced survey of all pertinent issues and approaches is impos-
sible within the scope of one chapter. Nevertheless, this chapter presented
several interesting problems of recent interest within the social media com-
munity, namely: visualization of large social graphs, inference and imputation
over social networks, community discovery, and tracking dynamic network
topologies from information cascades. Efficient algorithms scaling well un-
der big data settings along with experimental tests have been presented, and
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wherever possible, references to contemporary and prior approaches have been
highlighted.
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