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ith pervasive sensors continuously collect-
ing and storing massive amounts of infor-

mation, there is no doubt this is an era of 
data deluge. Learning from these large vol-

umes of data is expected to bring significant 
science and engineering advances along with improvements in 
quality of life. However, with such a big blessing come big chal-
lenges. Running analytics on voluminous data sets by central pro-
cessors and storage units seems infeasible, and with the advent of 
streaming data sources, learning must often be performed in real 

time, typically without a chance to revisit past entries. “Work-
horse” signal processing (SP) and statistical learning tools have to 
be re-examined in today’s high-dimensional data regimes. This 
article contributes to the ongoing cross-disciplinary efforts in 
data science by putting forth encompassing models capturing a 
wide range of SP-relevant data analytic tasks, such as principal 
component analysis (PCA), dictionary learning (DL), compressive 
sampling (CS), and subspace clustering. It offers scalable archi-
tectures and optimization algorithms for decentralized and 
online learning problems, while revealing fundamental insights 
into the various analytic and implementation tradeoffs involved. 
Extensions of the encompassing models to timely data-sketching, 
tensor- and kernel-based learning tasks are also provided. Finally, 

[Konstantinos Slavakis, Georgios B. Giannakis, and Gonzalo Mateos]

[(Statistical) learning tools for our era of data deluge]

Modeling and  
Optimization for  

Big Data Analytics

W

©
 is

to
c

k
p

h
o

to
.c

o
m

/t
A

2Y
o

4N
o

R
i 



 IEEE SIGNAL PROCESSING MAGAZINE [19] SEPTEMBER 2014

the close connections of the presented framework with several big 
data tasks, such as network visualization, decentralized and 
dynamic estimation, prediction, and imputation of network link 
load traffic, as well as imputation in tensor-based medical imaging 
are highlighted. 

IntroductIon
The information explosion propelled by the advent of online social 
media, Internet, and global-scale communications has rendered 
data-driven statistical learning increasingly important. At any 
time around the globe, large volumes of data are generated by 
today’s ubiquitous communication, imaging, and mobile devices 
such as cell phones, surveillance cameras and drones, medical and 
e-commerce platforms, as well as social networking sites. The 
term big data is coined to describe this information deluge and, 
quoting a recent press article, “their effect is being felt everywhere, 
from business to science, and from government to the arts” [18]. 
Large economic growth and improvement in the quality of life 
hinge upon harnessing the potential benefits of analyzing massive 
data [18], [55]. Mining unprecedented volumes of data promises to 
limit the spread of epidemics and maximize the odds that online 
marketing campaigns go viral [35]; to identify trends in financial 
markets, visualize networks, understand the dynamics of emer-
gent social-computational systems, as well as protect critical infra-
structure including the Internet’s backbone network [48], and the 
power grid [26]. 

big data challenges and sP oPPortunities
While big data come with “big blessings,” there are formidable 
challenges in dealing with large-scale data sets. First, the sheer 
volume and dimensionality of data make it often impossible to 
run analytics and traditional inferential methods using stand-
alone processors, e.g., [8] and [31]. Decentralized learning with 
parallelized multicores is preferred [9], [22], while the data 
themselves are stored in the cloud or distributed file systems as 
in MapReduce/Hadoop [19]. Thus, there is an urgent need to 
explicitly account for the storage, query, and communication 
burden. In some cases, privacy concerns prevent disclosing the 
full data set, allowing only preprocessed data to be communi-
cated through carefully designed interfaces. Due to their possi-
bly disparate origins, big data sets are often incomplete and a 
sizable portion of them is missing. Large-scale data inevitably 
contain corrupted measurements, communication errors, and 
even suffer from cyberattacks as the acquisition and transporta-
tion cost per entry is driven to the minimum. Furthermore, as 
many of the data sources continuously generate data in real 
time, analytics must often be performed online subject to time 
constraints so that a high-quality answer obtained slowly can be 
less useful than a medium-quality answer that is obtained 
quickly [46], [48], [75]. 

Although past research on databases and information 
retrieval is viewed as having focused on storage, look-up, and 
search, the opportunity now is to comb through massive data 
sets, to discover new phenomena, and to “learn” [31]. Big data 
challenges offer ample opportunities for SP research [55], 

where data-driven statistical learning algorithms are envisioned 
to facilitate distributed and real-time analytics (cf. Figure 1). 
Both classical and modern SP techniques have already placed 
significant emphasis on time/data adaptivity, e.g., [69], robust-
ness [32], as well as compression and dimensionality reduction 
[43]. Testament to this fact is the recent “rediscovery” of sto-
chastic approximation and stochastic-gradient algorithms for 
scalable online convex optimization and learning [65], often-
times neglecting Robbins–Monro and Widrow’s seminal works 
that go back half a century [60], [69], [79]. While the principal 
role of computer science in big data research is undeniable, the 
nature and scope of the emerging data science field is certainly 
multidisciplinary and welcomes SP expertise and its recent 
advances. For example, Web-collected data are often replete 
with missing entries, which motivates innovative SP imputation 
techniques that leverage timely (low-rank) matrix decomposi-
tions [39], [52], or, suitable kernel-based interpolators [6]. Data 
matrices gathering traffic values observed in the backbone of 
large-scale networks can be modeled as the superposition of 
unknown “clean” traffic, which is usually low-rank due to tem-
poral periodicities as well as network topology-induced correla-
tions, and traffic volume anomalies that occur sporadically in 
time and space, rendering the associated matrix component 
sparse across rows and columns [38]. Both quantity and richness 
of high-dimensional data sets offer the potential to improve sta-
tistical learning performance, requiring however innovative 
models that exploit latent low-dimensional structure to effec-
tively separate the data “wheat from the chaff.” To learn these 
models however, there is a consequent need to advance online, 
scalable optimization algorithms for information processing 
over graphs (an abstraction of both networked sources of decen-
tralized data, and multiprocessor, high-performance computing 
architectures); see, e.g., GraphLab [42] and the alternating direc-
tion method of multipliers (ADMM) [9], [10], [51] that enjoy 
growing popularity for distributed machine learning tasks.

EncompassIng modEls for succInct  
bIg data rEprEsEntatIons
This section introduces a versatile model to fit data matrices as 
a superposition of a low-rank matrix capturing correlations and 
periodic trends, plus a linearly compressed sparse matrix 
explaining data innovations parsimoniously through a set of 
(possibly latent) factors. The model is rich enough to subsume 
various statistical learning paradigms with well-documented 
merits for high-dimensional data analysis, including PCA [28], 
DL [56], compressive sampling CS [11], and principal compo-
nents pursuit (PCP) [12], [14], [52], to name a few. 

the “background” Plus “Patterns and 
innovations” model for matrix data
Let L RN T! #  denote a low-rank matrix ( ( ) { , }),min N Trank L %  
and S RM T! #  a sparse matrix with support size considerably 
smaller than .MT  Consider also the large-scale data set 
Y RN T! #  generically modeled as a superposition of 1) the low-
rank matrix ;L  the “data background or trend,” e.g., nominal 
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load curves across the power grid or the background scene cap-
tured by a surveillance camera, plus, 2) the “data patterns, (co)
clusters, innovations, or outliers” expressed by the product of a 
(possibly unknown) dictionary D RN M! #  times the sparse 
matrix ,S  and 3) a matrix ,V RN T! #  which accounts for mode-
ling and measurement errors; in short, .Y L DS V= + +  Matrix 
D  could be an overcomplete set of bases or a linear compression 
operator with .N M#  The aforementioned model offers a parsi-
monious description of ,Y  that is welcomed in big data analytics 
where data sets involve numerous features. Such parsimony facil-
itates interpretability, model identifiability, and it enhances the 
model’s predictive performance by discarding “noisy” features 
that bear little relevance to the phenomenon of interest [49]. 

To explicitly account for missing data in Y  introduce 1) the 
set { , , } { , , }N T1 1#f f3X  of index pairs ( , ),n t  and 2) the 
sampling operator P ( ),$X  which nulls entries of its matrix argu-
ment not in ,X  leaving the rest unchanged. This way, one can 
express incomplete and (possibly noise-)corrupted data as 

 P P( ) ( ) .Y L DS V= + +X X  (1)

Given P ( ),YX  the challenging goal is to estimate the matrix 
components L  and S (and D  if not given), which further entails 
denoising the observed entries and imputing the missing ones. 

An estimator leveraging the low-rank property of L  and the 
sparsity of S  will be sought to fit the data P ( )YX  in the least-
squares (LS) error sense, as well as minimize the rank of ,L  and 

the number of nonzero entries of : [ ]sS ,m t=  measured by its 
0, -(pseudo) norm. Unfortunately, albeit natural both rank and 
0, -norm criteria are in general NP-hard to optimize [53]. With 

( )Lkv  denoting the kth singular value of ,L  the nuclear norm 
: ( ),L L* kk

v=/  and the 1, -norm : sS ,, m tm t1 =/  are 
adopted as surrogates, as they are the closest convex approxim-
ants to ( )Lrank  and ,S 0  respectively, e.g., [14] and [48]. 
Accordingly, assuming known D  for now, one solves 

 P ,( )min 2
1 Y L DS L S

{ , }
* *

2
1 1FL S

m m- - + +X  (P1) 

where , 0* 1 $m m  are rank- and sparsity-controlling parameters. 
Being convex, (P1) is computationally appealing as elaborated in 
the section “Algorithms,” in addition to being widely applicable as 
it encompasses a gamut of known paradigms. Notice however 
that when D  is unknown, one obtains a bilinear model that gives 
rise to nonconvex estimation criteria. The approaches highlighted 
next can in fact accommodate more general models than (P1), 
where data-fitting terms other than the Frobenius-norm one and 
different regularizers can be utilized to account for various types 
of a priori knowledge, e.g., structured sparsity or smoothness. 

aPPlication domains and subsumed Paradigms
Model (1) emerges in various applications, such as 1) network 
anomaly detection outlined in the section “Inference and Imputa-
tion,” where Y RN T! #  represents traffic volume over N  links 
and T  time slots; L  captures the nominal link-level traffic (which 

[fIg1] sp-relevant big data themes.

Signal Processing
and Learning
for Big Data

Tasks

Dimensionality
Reduction

Regression,
Classification,

Clustering

Cleansing,
Imputation

Prediction,
Forecasting

Models and
Optimization

Parallel,
Decentralized

Time/Data
Adaptive

Robust

Succinct,
Sparse

Challenges

Cloud
Storage

Real-Time
Constraints

Outliers,
Missing
Values

Massive
Scale



 IEEE SIGNAL PROCESSING MAGAZINE [21] SEPTEMBER 2014

is low-rank due to temporal periodicities and topology-induced 
correlations on the underlying flows); D  represents a link #  flow 
binary routing matrix; and S  sparse anomalous flows [47], [48]; 
2) medical imaging, where dynamic magnetic resonance imaging 
separates the background L  from the motion component (e.g., a 
heart beating) modeled via sparse dictionary representation DS  
[25] (see also the section “Inference and Imputation”); 3) face 
recognition in the presence of shadows and specularities [12]; 
and 4) acoustic SP for singing voice separation from its music 
accompaniment [71], to name a few. 

In the absence of L  and missing data ( ,0L =  { , , }N1 #fX =  
{ , , }),T1 f  model (1) describes an underdetermined sparse signal 
recovery problem typically encountered with CS [11]. If in addi-
tion D  is unknown, (P1) boils down to DL [2], [46], [56], [67], or, 
to nonnegative matrix factorization (NNMF) if the entries of D  
and S  are nonnegative [39]. For ,0L =  { , , }N1 #fX =
{ , , },T1 f  and if the columns of Y  lie close to a union of a small 
number of unknown low-dimensional linear subspaces, then 
looking for a sparse S  in (1) with TM %  amounts to subspace 
clustering [78]; see also [70] for outlier-robust variants with 
strong performance guarantees. Without D  and with ,0V =  
decomposing Y  into L S+  corresponds to PCP, also referred to 
as robust PCA (R-PCA) [12], [14]. Even when L  is nonzero, one 
could envision a variant where the measurements are corrupted 
with correlated (low-rank) noise [15]. Last but not least, when 

0S =  and ,0V !  recovery of L  subject to a rank constraint is 
nothing else than PCA—arguably, the workhorse of high-dimen-
sional big data analytics [28]. This same formulation is adopted for 
low-rank matrix completion—the basic task carried out by recom-
mender systems—to impute the missing entries of a low-rank 
matrix observed in noise, i.e., P P( ) ( )Y L V= +X X  [13]. Based on 
the maximum likelihood principle, an alternative approach for 
missing value imputation by expectation-maximization can be 
found in [73]. 

algorIthms
As (P1) is jointly convex with respect to (w.r.t.) both L  and ,S  
various iterative solvers are available, including interior point 
methods and centralized online schemes based on (sub)gradient-
based recursions [65]. For big data however, off-the-shelf interior 
point methods are computationally prohibitive, and are not 
amenable to decentralized or parallel implementations. Sub-
gradient-based methods are structurally simple but are often 
hindered by slow convergence due to restrictive step size selec-
tion rules. The desiderata for large-scale problems are low-
complexity, real-time algorithms capable of processing massive 
data sets in a parallelizable and/or fully decentralized fashion. 
The few such algorithms available can be classified as decen-
tralized or parallel schemes, splitting, sequential, and online  
or streaming. 

decentralized and Parallel algorithms
In these divide-and-conquer schemes, multiple agents operate 
in parallel on disjoint or randomly subsampled subsets of the 
massive-scale data, and combine their outputs as iterations 

proceed to accomplish the original learning or inference task 
[34], [44]. Unfortunately, the nuclear-norm L *  in (P1) cannot 
be easily distributed across multiple learners, since the full sin-
gular value decomposition (SVD) of L  has to be computed cen-
trally, prior distributing its set of singular values to each node. 
In search of a nuclear-norm surrogate amenable to decentral-
ized processing, it is useful to recall that minimizing L *  is 
tantamount to minimizing ( ) / ,2P Q2 2

F F+  where ,L PQ= <  
with P RN! #t  and ,Q RT! #t  for some { , },min N T%t  is a bilin-
ear decomposition of the low-rank component L  [47], [72]. In 
other words, each column vector of L  is assumed to lie in a low 
t-dimensional range space spanned by the columns of .P  This 
gives rise to the following problem: 

 P ( ) ( ) .min 2
1

2Y PQ DS P Q S
{ }

*2 2 2
1 1

, , F F FP Q S

m m- - + + +<
X  

 (P2) 

Unlike (P1), the bilinear term PQ<  renders (P2) nonconvex, 
even if D  is known. Interestingly, [47, Prop. 1] offers a certifi-
cate for stationary points of (P2), qualifying them as global 
optima of (P1). 

Thanks to the decomposability of · 2
F  and · 1  across 

rows, and ignoring for a moment the operator P ,X  (P2) can be 
distributed over a number V  of nodes or processing cores V  
with cardinality V V| | ,=  where each node V!o  learns 
from a subset of rows R { , , } .N1 f1o  In other words, the N  
rows of Y  are distributed over a partition of rows R{ ,}V 1o o=  
where by definition R { , , },N1

V

1
f=

o
o

=
'  and R R ,0i j+ =o o Y  

if .i j!  Naturally, (P2) is equivalent to this (modulo P )X  task: 
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(2)

where , ,Y Po o  and Do  are submatrices formed by keeping only 
the Ro  rows of , ,Y P  and ,D  respectively. 

An obstacle in (2) is the coupling of the data-fitting term 
with the regularization terms via { , , } .P Q So  Direct utilization 
of iterative subgradient-type methods, due to the nonsmooth 
loss function, are able to identify local minimizers of (2), at the 
cost of slow convergence and meticulous choice of step sizes. 
In the convex analysis setting, successful optimization ap-
proaches to surmount this obstacle include the ADMM [10] 
and the more general Douglas–Rachford (DR) algorithm [5] 
that split or decouple variables in the nuclear-, 1, -, and Frobe-
nius-norms. The crux of splitting methods, such as ADMM and 
DR, lies on computing efficiently the proximal mapping of 
regularizing functions, which for a (non)differentiable lower-
semicontinuous convex function g  and ,02c  is defined as 

( ) : ( / ) ( ),arg min g1 2Prox A A A Ag
2
FA c= - +c l ll  A6  [5]. The 

computational cost incurred by Prox gc  depends on .g  For exam-
ple, if g  is the nuclear-norm, then ( )Prox A· * =c ( ) ,SoftU VR <

c  
where A U VR= <  is the computationally demanding SVD of ,A  
and ( )Soft Rc  is the soft-thresholding operator whose th( , )i j  
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entry is ( )] ([ ] ) { , |max 0[Soft sgn ,ij i jR R=c [ ] | } .,i j cR -  On the 
contrary, if ,·g 1=  then ( )Prox A· 1 =c  ( ),Soft Ac  which is a 
computationally affordable, parallelizable operation. 

Even if (2) is a nonconvex task, a splitting strategy mimicking 
ADMM and DR is promising also in the current context. If the 
network nodes or cores can also exchange messages, then (2) can 
be decentralized. This is possible if e.g., V!o  has a neighbor-
hood N V,1o  where N!o o  and all members of No  exchange 
information. The decentralized rendition of (P2) becomes

V
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 (P3) 

where consensus constraints are enforced per neighborhood 
N ,o  and { , , }P Q So o ol l l  are utilized to split the LS cost from the 
Frobenius- and 1, -norms. Typically, (P3) is expressed in uncon-
strained form using the (augmented) Lagrangian framework. 
Decentralized inference algorithms over networks, implement-
ing the previous splitting methodology, can been found in [22], 
[47], [51], and [62]. ADMM and DR are convergent for convex 
costs, but they offer no convergence guarantees for the noncon-
vex (P3). There is, however, ample experimental evidence in the 
literature that supports empirical convergence of ADMM, espe-
cially when the nonconvex problem at hand exhibits “favorable” 
structure [10], [47]. 

Methods offering convergence guarantees for (P3), after 
encapsulating consensus constraints into the loss function, are 
sequential schemes, such as the block coordinate descent 
methods (BCDMs) [59], [77]. BCDMs minimize the underlying 
objective sequentially over one block of variables per iteration, 
while keeping all other blocks fixed to their most up-to-date val-
ues. For example, a BCDM for solving the DL subtask of (2), 
that is when { , }P Qo  are absent from the optimization problem, 
is the K-SVD algorithm [2]. Per iteration, K-SVD alternates 
between sparse coding of the columns of Y  based on the cur-
rent dictionary and updating the dictionary atoms to better fit 
the data. For a consensus-based decentralized implementation 
of K-SVD in the cloud, see [58]. 

It is worth stressing that (P3) is convex w.r.t. each block 
among { , , , , , },P Q S P Q So o o o o ol l l  whenever the rest are held con-
stant. Recent parallel schemes with convergence guarantees 
take advantage of this underlying structure to speed-up decen-
tralized and parallel optimization algorithms [33], [64]. Addi-
tional BCDM examples will be given next in the context of 
online learning. 

online algorithms for streaming analytics
So far, Y  has been decomposed across its rows corresponding to 
network agents or processors; in what follows, Y  will be split 
across its columns. Aiming at online solvers of (P2), with t  

indexing the columns of : [ , , ],Y y yt1 f=  and { } t
1Xx x=  indicat-

ing the locations of known data values across time, consider the 
analytics engine acquiring a stream of vectors P ( ),yttX  .t6  An 
online counterpart of (P2) is the following exponentially 
weighted LS estimate [48] 
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(P4)
 

where ,P RN! #t  { } ,q Rt
1 1x x

t
=  { } ,s RM1x  and ( , ]0 1!d  

denotes the so-termed forgetting factor. With ,11d  past data 
are exponentially discarded to track nonstationary features. 
Clearly, P tX  can be represented by a matrix ,tX  whose rows are 
a subset of the rows of the N-dimensional identity matrix. 

A provably convergent BCDM approach to efficiently solve a 
simplified version of (P4) was put forth in [48]. Each time t  a new 
datum is acquired, only qt  and st  are jointly updated via Lasso for 
fixed ,P Pt 1= -  and then (P4) is solved w.r.t. P  to update Pt 1-  us-
ing recursive LS (RLS). The latter step can be efficiently split across 
r o w s  ( )arg min yp p q d s, , , ,

t
nn t

t
n n1

2
p d ~= - - +<<x

x
x x x x x

-

=
/  

( / )2 p*
2m —an attractive feature facilitating parallel processing, 

which nevertheless entails a matrix inversion when .11d  Since 
first introduced in [48], the idea of performing online rank-mini-
mization leveraging the separable nuclear-norm regularization in 
(P4) has gained popularity in real-time NNMF for audio SP [71], 
and online robust PCA [21], to name a few examples. In the case 
where , { }P q t

1x x=  are absent from (P4), an online DL method of 
the same spirit as in [48] can be found in [46], [67]. 

Algorithms in [48] are closely related to timely robust sub-
space trackers, which aim at estimating a low-rank subspace P  
from grossly corrupted and possibly incomplete data, namely 
P P( ) ( ),  , , .t 1 2y Pq s vt t t tt t f= + + =X X  In the absence of 
sparse outliers { } ,st t 1

3
=  an online algorithm based on incremental 

gradient descent on the Grassmannian manifold of subspaces was 
put forth in [4]. The second-order RLS-type algorithm in [16] 
extends the seminal projection approximation subspace tracking 
(PAST) algorithm to handle missing data; see also [50]. When 
outliers are present, robust counterparts can be found in [15] and 
[29]. Relative to all aforementioned works, the estimation prob-
lem (P4) is more challenging due to the presence of the (com-
pression) dictionary .Dt  

Reflecting on (P1)–(P4), all objective functions share a com-
mon structure: they are convex w.r.t. each of their variable 
blocks, provided the rest are held fixed. Naturally, this calls for 
BCDMs for minimization, as in the previous discussion. How-
ever, matrix inversions and solving a batch Lasso per slot t  may 
prove prohibitive for large-scale optimization tasks. Projected or 
proximal stochastic (sub)gradient methods are attractive low-
complexity online alternatives to BCDMs mainly for optimizing 
convex objectives [65]. Unfortunately, due to their diminishing 
step-sizes, such first-order solutions exhibit slow convergence 
even for convex problems. On the other hand, accelerated vari-
ants for convex problems offer quadratic convergence of the 
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objective function values, meaning they are optimally “fast” 
among first-order methods [54], [80]. Although quadratic con-
vergence issues for nonconvex and time-varying costs as in (P4) 
are largely unexplored, the online, accelerated, first-order 
method outlined in Figure 2 offers a promising alternative for 
generally nonsmooth and nonconvex minimization tasks [68].

Let x( )i  be a block of variables, which in (P4) can be ,P  or 
{ } ,q t

1x x=  or { } ;s t
1x x=  that is, { , , };i 1 2 3!  and let x( )i-  denote all 

blocks in : ( , , )x x x( ) ( )I1 f=  except for .x( )i  Consider the 
sequence of loss functions ( ) : ( ) ( ),F f gx x x( )

i
I

t t i
i

1
= +

=
/  where 

ft  is nonconvex, and Lipschitz continuously differentiable but 
convex w.r.t. each ,x( )i  whenever { }x( )j

j i!  are held fixed; { }gi i
I

1=  
are convex and possibly nondifferentiable; hence, Ft  is nons-
mooth. Clearly, the data fit term in (P4) corresponds to ,ft  

( ) : ( / ) ,g 2x P( )
*1

1 2
Fm=  while g2  and g3  describe the other two 

regularization terms. 
The acceleration module Accel of [80], developed originally 

for offline convex analytic tasks, is applied to Ft  in a sequential, 
per-block (Gauss–Seidel) fashion. Having x( )i-  fixed, unless 

( ) ( )min f gx x xH
( ) ( ) ( )

t
i

t
i

i
i

x( )i
i ; +!

-  is easily solvable, Accel is 
employed for R 1i $  times to update .x( )i  The same procedure 
is carried over to the next block ,x( )i 1+  until all blocks are 
updated, and subsequently to the next time instant t 1+  
 (Figure 2). Unlike ADMM, this first-order algorithm requires no 
matrix inversions, and can afford inexact solutions of minimiza-
tion subtasks. Under several conditions, including (statistical) 

stationarity of { } ,Ft t 1
3
=  it also guarantees quadratic-rate conver-

gence to a stationary point of { },FE t  where {·}E  denotes expec-
tation over noise and input data distributions [68]. An 
application of this method to the dictionary-learning context 
can be found in the “Inference and Imputation” section. 

data skEtchIng, tEnsors, and kErnEls
The scope of the “Algorithms” section can be broadened to 
include random subsampling schemes on Y  (also known as 
data sketching), as well as multiway data arrays (tensors) and 
nonlinear modeling via kernel functions. 

data sketching
Catering to decentralized or parallel solvers, all variables in (P3) 
should be updated in parallel across learners of individual net-
work nodes. However, there are cases where solving all learning 
subtasks simultaneously may be prohibitive or inefficient for two 
main reasons. First, the data size might be so large that comput-
ing function values or first-order information over all variables is 
impossible. Second, the nature and structure of data may prevent 
a fully parallel operation; e.g., when data are not available in their 
entirety, but are acquired either in batches over time or where 
not all of the network nodes are equally responsive or functional. 

A recent line of research aiming at obtaining informative subsets 
of measurements for asynchronous and reduced-dimensionality 
processing of big data sets is based on (random) subsampling or data 

[fIg2] the online, accelerated, sequential (gauss–seidel) optimization scheme for asymptotically minimizing the sequence ( )Ft t N!  of 
nonconvex functions.
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sketching (via P )X  of the massive Y  [45]. The basic principles of 
data sketching will be demonstrated here for the overdetermined 
( )N & t  LS : arg minq P y* q R!= @

! t y Pq 2-  [a task sub-
sumed by (P2) as well], where @  denotes pseudo-inverse, and 

( ) ,P P P P1=@ << -  for P  full column-rank. Popular strategies to 
obtain q*  include the expensive SVD; the Cholesky decomposition if 
P  is full column-rank and well conditioned; and the slower but 
more stable QR decomposition [45]. 

The basic premise of the subsampling or data sketching tech-
niques is to largely reduce the number of rows of Y  prior to solving 
the LS task [45]. A data-driven methodology of keeping only the 
“most” informative rows relies on the so-termed (statistical) lever-
age scores and is outlined next as a three-step procedure. Given the 
(thin) SVD :P U VR= <  (S1) find the normalized leverage scores 
{ } ,ln n

N
1=  where :l e UU en n n

1t= =<<- ,e PP en n
1t < @-  with e Rn

N!  
being the nth canonical vector. Clearly, ln equals the (normalized) 
nth diagonal element of ,PP@  and since PP UU=@ <  is the orthog-
onal projector onto the linear subspace spanned by the columns of 

,P  it follows that PP y@  offers the best approximation to y  within 
this subspace. Then, (S2) for an arbitrarily small ,02e  and by us-
ing { }ln n

N
1=  as an importance sampling distribution, randomly 

sample and rescale by ( )rln
1-  a number of O ( )logr 2e t t= -  

rows of ,P  together with the corresponding entries of .y  Such a 
sampling and rescaling operation can be expressed by a matrix 

.Rr N!W #  Finally, (S3) solve the reduced-size LS problem 
.( )arg minq y Pq*

2
q R! W -! tu  With ( )$l  denoting condition 

number and : ,y UU y1c = <-  it holds that [45] 

 ( )1y Pq y Pq* *# e- + -u  (3a) 

 ( ) 1q q P q*
2# l ce- --* *u  (3b) 

so that performance degrades gracefully after reducing the 
number of equations.

Similar to the nuclear-norm, a major difficulty is that lever-
age scores are not amenable to decentralized computation [cf. 
discussion prior (P2)], since the SVD of P  is necessary prior to 
decentralizing the original learning task. To avoid computing 
the statistical leverage scores, the following data-agnostic strat-
egy has been advocated [45]: 1) Premultiply P  and y  with the 
N N#  random Hadamard transform ,HND  where HN  is 
defined inductively as

 , : ,
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and D  is a diagonal matrix whose nonzero entries are drawn inde-
pendently and uniformly from { , },1 1- +  2) uniformly sample 
and rescale a number of O ( · )log log logr N N1t t e t= + -  rows 
from H PND  together with the corresponding components from 

,H yND  and 3) find ,( )arg minq H y Pq* N
2

q R! W D -! tu  where 
W  stands again for the sampling and rescaling operation. Error 
bounds similar to those in (1) can be also derived for this precondi-
tioning strategy [45]. Key to deriving such performance bounds is 

the Johnson–Lindenstrauss lemma, which loosely asserts that for 
any ( , ),0 1!e  any set of t  points in N  dimensions can be (lin-
early) embedded into ( ) lnr 4 2 31 2 1 3 1$ e e t-- - -  dimensions, 
while preserving the pairwise Euclidean distances of the original 
points up to a multiplicative factor of ( ) .1 ! e  

Besides the previous overdetermined LS task, data sketching 
has been employed to ease the computational burden of several 
large-scale tasks ranging from generic matrix multiplication, 
SVD computation, to k -means clustering and tensor approxi-
mation [20], [45]. In the spirit of ,HND  methods utilizing 
sparse embedding matrices have been also developed for over-
constrained LS and p, -norm regression, low-rank and leverage 
scores approximation [17]; in particular, they exhibit complexity 
O O(| ( ) |) ( ( ))logsupp P l3 2 3 2e et t+ - -  for solving the LS task 
satisfying (3a), where | ( ) |supp P  stands for the cardinality of 
the support of ,P  and .l N*!  Viewing the sampling and rescal-
ing operator W  as a special case of a (weighted) PX  allows car-
rying over the algorithms outlined in the “Encompassing 
Models for Succinct Big Data Representations” and “Algo-
rithms” sections to the data sketching setup as well. 

big data tensors
Although the matrix model in (1) is quite versatile and can sub-
sume a variety of important frameworks as special cases, the 
particular planar arrangement of data poses limitations in cap-
turing available structures that can be crucial for effective inter-
polation. In the example of movie recommender systems, matrix 
models can readily handle two-dimensional structures of people 
#  movie ratings. However, movies are classified in various gen-
res and one could explicitly account for this information by 
arranging ratings in a sparse person #  genre #  title three-way 
array or tensor. In general, various tensor data analytic tasks for 
network traffic, social networking, or medical data analysis aim 
at capturing an underlying latent structure, which calls for 
high-order factorizations even in the presence of missing data 
[1], [50]. 

A rank-one three-way array [ ] ,yY Ri i i
I I I

a b c
a b c!= # #  where 

the underline denotes tensors, is the outer product a b c% %  of 
three vectors , , :a b cR RR I I Ia b c! ! ! .y a b ci i i i i ia b c a b c=  One 
can interpret ,aia  ,bib  and cic  as corresponding to the people, 
genre, and title components, respectively, in the previous exam-
ple. The rank of a tensor is the smallest number of rank-one ten-
sors that sum up to generate the given tensor. These notions 
readily generalize to higher-way tensors, depending on the appli-
cation. Notwithstanding, this is not an incremental extension 
from low-rank matrices to low-rank tensors, since even comput-
ing the tensor rank is an NP-hard problem in itself [36]. Defining 
a convex surrogate for the rank penalty such as the nuclear norm 
for matrices is not obvious either, since singular values when 
applicable, e.g., in the Tucker model, are not related to the rank 
[74]. Although a three-way array can be “unfolded” to obtain a 
matrix exhibiting latent Kronecker product structure, such an 
unfolding typically destroys the structure that one looks for. 

These considerations, motivate forming a low-rank approxi-
mation of tensor Y  as 
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 .Y a b cr
r

r r
1
% %.

t

=

/  (4) 

Low-rank tensor approximation is a relatively mature topic in 
multilinear algebra and factor analysis, and when exact, the 
decomposition (4) is called parallel factor analysis (PARAFAC) 
or canonical decomposition (CANDECOMP) [36]. PARAFAC is 
the model of choice when one is primarily interested in reveal-
ing latent structure. Unlike the matrix case, low-rank tensor 
decomposition can be unique. There is deep theory behind this 
result, and algorithms recovering the rank-one factors [37]. 
However, various computational and big data-related chal-
lenges remain. Missing data have been handled in rather ad 
hoc ways [76]. Parallel and decentralized implementations have 
not been thoroughly addressed; see, e.g., ParCube and GigaTen-
sor algorithms for recent scalable approaches [57]. 

With reference to (4), introduce the factor matrix :A =  
[ , , ] ,a a R I

1
af ! #

t
t  and likewise for B R Ib! #t  and .C R Ic! #t  

Let , , ,i I1Yi c cc f=  denote the i thc  slice of Y  along its third 
(tube) dimension, such that ( , ) .i i yYi a b i i ic a b c=  It follows that 
(4) can be compactly represented in matrix form, in terms of 
slice factorizations ( ) , .idiagY A e C Bi i cc c 6= <<  Capitalizing on 
the Frobenius-norm regularization (P2), decentralized algo-
rithms for low-rank tensor completion under the PARAFAC 
model can be based on the optimization task:
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(5)
 

Different from the matrix case, it is unclear whether the regu-
larization in (5) bears any relation with the tensor rank. Inter-
estingly, [7] asserts that (5) provably yields a low-rank Yt  for 
sufficiently large ,*m  while the potential for scalable BCDM-
based interpolation algorithms is apparent. For an online algo-
rithm, see also (9) in the section “Big Data Tasks” and [50] for 
further details. 

kernel-based learning
In imputing random missing entries, prediction of multiway 
data can be viewed as a tensor completion problem, where an 
entire slice (say, the one orthogonal to the tube direction repre-
senting time) is missing. Notice that since (5) does not specify a 
correlation structure, it cannot perform this extrapolation task. 
Kernel functions provide the nonlinear means to infuse correla-
tions or side information (e.g., user age range and educational 
background for movie recommendation systems) in various big 
data tasks spanning disciplines such as 1) statistics, for inference 
and prediction [28], 2) machine learning, for classification, 
regression, clustering, and dimensionality reduction [63], and 3) 
SP, as well as (non)linear system identification, sampling, inter-
polation, noise removal, and imputation; see, e.g., [6] and [75]. 

In kernel-based learning, processing is performed in a high-, 
possibly infinite-dimensional reproducing kernel Hilbert space 
(RKHS) H,  where function Hf !  to be learned is expressed as 

a superposition of kernels; i.e., ( ) : ( , ),f x x xi ii 1
{ l=

3

=
/  where 

X X: R"#l  is the kernel associated with H,  { }i i 1{ 3
=  

denote the expansion coefficients, and X, ,x xi !  i6  [63]. 
Broadening the scope of (5), a kernel-based tensor completion 
problem is posed as follows. With index sets X : { , , },I1a af=  
X : { , , },I1b bf=  and X : { , , },I1c cf=  and associated kernels 

( , ),i iX a aal l  ( , )i iX b bbl l  and ( , ),i iX c ccl l  tensor entry yi i ia b c  is 
approximated using functions from the set F : { ( , , )f i i ia b c= =  

H H H( ) ( ) ( ) , , },a i b i c i a b cX X Xrr a r b r c r r r1 a b c; ! ! !t

=
/  where 
t  is an upper bound on the rank. Specifically, with binary 
weights { }i i ia b c~  taking value 0 if yi i ia b c  is missing (and 1 other-
wise), fitting low-rank tensors is possible using 
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(6)
 

If all kernels are selected as Kronecker deltas, (6) reverts back to 
(5). The separable structure of the regularization in (6) allows 
application of Representer’s theorem [63], which implies that 

,ar  ,br  and cr  admit finite dimensional representations given 
by ( ) ( , ),a i i iXr a rii

I
a a1 a

a

a
aa l=

=
lll

/  ( ) ( , ),b i i iXr b rii

I
b b1 b

b

b
bb l=

=
lll

/  
and ( ) ( , ),c i i iXr c rii

I
c c1 c

c

c
cc l=

=
lll

/  respectively. Coefficients 
: [ ],A riaa= l
t t  : [ ],B ribb= l

t t  and : [ ]C ricc= l
t t  turn out to be solutions 

of [cf. (5)] 
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 [ ],trace A K A B K B C K CX X X* a b cm+ + +< <<  (P5) 

where : [ ( , )],i iK XX a aa al= l  and likewise for KXb  and ,KXc  
stand for kernel matrices formed using (cross-)correlations esti-
mated from historical data as detailed in, e.g., [7]. Remarkably, 
the cost in (P5) is convex w.r.t. any of { , , },A B C  whenever the 
rest of them are held fixed. As such, the low-complexity online 
accelerated algorithms of the “Algorithms” section carry over to 
tensors too. Having At  available, the estimate riaa lt  is obtained, 
and likewise for ribb l

t  and .ribc lt  The latter yield the desired pre-
dicted values as : ( ) ( ) ( ) .y a i b i c i yi i i rr a r b r c i i i1a b c a b c.= t

=
t t t t/

bIg data tasks
The tools and themes outlined so far will be applied in this sec-
tion to a sample of big data SP-relevant tasks. 

dimensionality reduction

NETwORK vISuALIZATION
The rising complexity and volume of networked (graph-valued) 
data presents new opportunities and challenges for visualization 
tools that capture global patterns and structural information 
such as hierarchy, similarity, and communities [3], [27]. Most 
visualization algorithms tradeoff the clarity of structural char-
acteristics of the underlying data for aesthetic requirements 
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such as minimal edge crossing and fixed internode distance. 
Although efficient for relatively small networks or graphs 
 (hundreds of nodes), embeddings 
for larger graphs using these tech-
niques are seldom structurally 
informative. The growing interest 
in analysis of big data networks has 
prioritized the need for effectively 
capturing structure over aesthetics 
in visualization. For instance, lay-
outs of metro-transit networks that 
show hierarchically the bulk of traf-
fic convey a lucid picture about the 
most critical nodes in the event of a 
terrorist attack. To this end, [3] cap-
tures hierarchy in networks or graphs through well-defined 
measures of node importance, collectively known as centrality 
in the network science community. Examples are the between-
ness centrality, which describes the extent to which information 
is routed through a specific node by measuring the fraction of 
all shortest paths traversing it, as well as closeness, eigenvalue, 
and Markov centrality [3]. 

Consider an undirected graph G V E( , ),  where V  denotes 
the set of vertices (nodes, agents, or processing cores) with car-

dinality V V| | ,=  and E  stands for 
edges (links) that represent pairs of 
nodes that can communicate. Fol-
lowing (P3), node V!o  commu-
nicates with its single- or multihop 
neighboring peers in N V.1o  
Given a set of observed feature vec-
tors { } ,y RV

P1!o o  and a pre-
scribed embedding dimension 
p P% (typically { , }p 2 3!  for visu-
alization), the graph embedding 
amounts to finding a set of 
{ }z RV

p1!o o  vectors that preserve 
in the very low-dimensional R p  the network structure observed 
via { } .y V!o o  The dimensionality reduction module of [3] is 
based on local linear embedding (LLE) principles [61], which 
assume that the observed { }y V!o o  live on a low-dimensional, 
smooth, but unknown manifold, with the objective of seeking 
an embedding that preserves the local structure of the manifold 
in the lower dimensional .R p  In particular, LLE accomplishes 
this by approximating each data point via an affine combination 
(real weights summing up to 1) of its neighbors, followed by 
construction of a lower-dimensional embedding that best pre-
serves the weights. If 1: [ , , ]Y y y R N| |P

N| |f != #
o o o

o

ol l  gathers all 
the observed data within the neighborhood of node ,o  and 
along the lines of LLE, the centrality constrained (CC-)LLE 
method comprises the following two steps: 
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(7)

 

where { }c RV 1!o o  are centrality metrics, (·)h  is a monotone 
decreasing function that quantifies the centrality hierarchy, e.g., 

( ) ( ),exph c c= -o o  and 11s =<  enforces the local affine 
approximation of yo  by { } .y N!o o ol l  In other words, and in the 
spirit of (P3), yo  is affinely approximated by the “local” diction-
ary : .D Y=o o  It is worth stressing that both objective and con-
straints in step 1 of (7) can be computed solely by means of the 
inner-products or correlations .{ , }Y y Y Y V

<<
!o o o o o  Hence, knowl-

edge of { }y V!o o  is not needed in CC-LLE, and only a given set of 
dissimilarity measures { } V( , ) 2d !oo o ol l  suffices to formulate (7), 
where ,R 0!d $ool  ,d d=oo o ol l  and ,0d =oo  V( , ) ;26 !o ol  e.g., 

: | |1 y y y y1 1d = - <
oo o o o o

- -
l l l  in (7). 
After relaxing the nonconvex constraint ( )h cY s 2 2=o o  to 

the convex ( )h cY s 2 2#o o  one, a BCDM approach is followed to 
solve (7) efficiently, with computational complexity that scales lin-
early with the network size [3]. Figure 3 depicts the validation of 
CC-LLE on large-scale degree visualizations of snapshots of the 
Gnutella peer-to-peer file-sharing network V(| | , ,26 518=  
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[fIg3] the visualization of two snapshots of the large-scale 
network gnutella [40] by means of the cc-llE method. the 
centrality metric is defined by the node degree. hence, nodes 
with low degree are placed far from the center of the embedding.  
(a) gnutella-04 (08/04/2012). (b) gnutella-24 (08/24/2012).
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E| | , )65 369=  [40]. Snapshots of this directed network were cap-
tured on 4 and 24 August 2002, respectively, with nodes represent-
ing hosts. For convenience, undirected renditions of the two 
networks were obtained by symmetrization of their adjacency 
matrices. Notice here that the method can generalize to the 
directed case too, at the price of increased computational com-
plexity. The centrality metric of interest was the node degree, and 
dissimilarities were computed based on the number of shared 
neighbors between any pair of hosts. It is clear from Figure 3 that 
despite the dramatic growth of the network over a span of 20 days, 
most new nodes had low degree, located thus far from the center 
of the embedding. The CC-LLE efficiency is manifested by the low 
running times for obtaining embeddings in Figure 3; 1,684 s for 
Gnutella-04, and 5,639 s for Gnutella-24 [3]. 

inference and imPutation

DECENTRALIZED ESTIMATION  
Of ANOMALOuS NETwORK TRAffIC
In the backbone of large-scale networks, origin-to-destination 
(OD) traffic flows experience abrupt changes that can result in 
congestion and limit the quality of service provisioning of the 
end users. These traffic “anomalies” could be due to external 
sources such as network failures, denial of service attacks, or 
intruders [38]. Unveiling them is a crucial task in engineering 
network traffic. This is challenging however, since the available 
data are high-dimensional noisy link-load measurements, which 
comprise the superposition of “clean” and anomalous traffic.

Consider as in the section “Dimensionality Reduction” an 
undirected, connected graph G V E( , ) .  The traffic ,Y RN T! #  
carried over the edges or links E  E(| | )N=  and measured at 
time instants { , , }t T1 f!  is modeled as the superposition of 
unknown “clean” traffic flows ,L*  over the time horizon of 
interest, and the traffic volume anomalies S*  plus noise ;V  

.Y L S V* *= + +  Common temporal patterns among the traf-
fic flows in addition to their periodic behavior render most 
rows (respectively columns) of L*  linearly dependent, and 
thus L*  typically has low rank [38]. Anomalies are expected 
to occur sporadically over time, and only last for short peri-
ods relative to the (possibly long) measurement interval. In 
addition, only a small fraction of the flows is anomalous at 
any time slot. This renders matrix S*  sparse across rows and 
columns [48]. 

In the present context, real data including OD flow traffic levels 
and end-to-end latencies are collected from the operation of the 
Internet2 network (Internet backbone network across the United 
States) [30]. OD flow traffic levels were recorded for a three-week 
operation (sampled per 5 min) of Internet2-v1 during 8–28 
December 2003 [38]. To better assess performance, large spikes of 
amplitude equal to the largest recorded traffic across all flows and 
time instants were injected into 1% randomly selected entries of 
the ground-truth matrix .L*  Along the lines of (P3), where the 
number of links ,N 121=  and ,T 504=  the rows of the data 
matrix Y  were distributed uniformly over a number of V 11=  
nodes. (P3) is solved using ADMM, and a small portion ( )50 50#  
of the estimated anomaly matrix St  is depicted in Figure 4(a). 

[fIg4] decentralized estimation of network traffic anomalies measured in byte units over 5 min time intervals: (a) only a small 
portion ( )50 50#  of the sparse matrices S*  and St  entries are shown; (b) relative estimation error versus admm iteration index 
and central processing unit (cpu) time over networks with V  number of nodes. the curve obtained by the centralized r-pca 
method [12] is also depicted.
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As a means of offering additional design insights, further valida-
tion is provided here to reveal the tradeoffs that become relevant as 
the network size increases. Specifically, comparisons in terms of 
running time are carried out w.r.t. its centralized counterpart. 
Throughout, a network modeled as a square grid (uniform lattice) 
with agents per row/column is adopted. To gauge running times as 
the network grows, consider a fixed size data matrix 

.Y R , ,2 500 2 500! #  The data are synthesized according to the previ-
ous model of ,Y L S V* *= + +  details for which can be found in 
[47, Sec. V]. Rows of Y  are uniformly split among the network 
nodes. Figure 4(b) illustrates the relative estimation error 

/S S S* *F F-t  (St  stands for the estimate of )S*  versus both iter-
ation index of the ADMM and CPU time over various network sizes. 

DyNAMIC LINK LOAD TRAffIC  
PREDICTION AND IMPuTATION
Consider again the previous undirected graph G V E( , ) .  Connec-
tivity and edge strengths of G  are described by the adjacency 

matrix ,W RV V! #  where [ ] 0W 2ool  if nodes o  and ol are con-
nected, while [ ] 0W =ool  otherwise. At every ,t N 0! 2  a variable 

,Rt !| o  which describes a network-wide dynamical process of 
interest, corresponds to a node V.!o  All node variables are col-
lected in : [ , , ] .RV

Vt t t1 f !| | |= <  A sparse representation of 
the process over G  models t|  as a linear combination of “few” 
atoms in an N M#  dictionary ,D  with ;M N$  and ,Dst t| =  
where s Rt

M!  is sparse. Further, only a portion of t|  is observed 
per time slot .t  Let now ,Rt

N N!X #l  ,N N#l  denote a binary 
measurement matrix, with each row of tX  corresponding to the 
canonical basis vector for ,RN  selecting the measured compo-
nents of .y Rt

N!  In other words, the observed data per slot t  are 
,y vt t t t|X= +  where vt  denotes noise. To impute missing 

entries of t|  in ,yt  the topology of G  will be utilized. The spatial 
correlation of the process is captured by the (unnormalized) graph 
Laplacian matrix : ( ) ,diag W1 WNK = -  where 1 RN

N!  is the 
all-ones vector. Following Figure 2 and given a “forgetting factor” 

( , ],0 1!d  to gradually diminish the effect of past data (and thus 
account for nonstationarity), define 

 
( , ) :

( )

F 2
1

2s D

s D

y Ds s D Ds

D

( )

( ) ( )

t
t

t
t

f

g g

1

1 1

2

,s D

s D

t

1 2

d

m k

m
D

X K= - + < <x

x

x x
K-

=

,+ +

6 7 844444444444 44444444444

H F

/
 

(8)

where : ,t
t

t
1
dD = x

x

-

=
/  and Dk  stands for the indicator function 

of D : { [ , , ] , { , , }},m M1 1D d d dRM
N M

m1 f f! # !;= = #  
i.e., ( ) 0DDk =  if D,D !  and ( )DD 3k =+  if DD "  (note that 

,06 2c  ProxckD  is the metric projection onto the closed convex 
D  [5]). The term including the known K  quantifies the a priori 
information on the topology of G,  and promotes “smooth” solu-
tions over strongly connected nodes of G  [23]. This term is also 
instrumental for accommodating missing entries in ( ) .t t N 0| ! 2  

The algorithm of Figure 2 was validated on estimating and 
tracking network-wide link loads taken from the Internet2 
measurement archive [30]. The network consists of N 54=  
links and nine nodes. Using the network topology and routing 
information, network-wide link loads ( ) Rt t

N
N 0 1| ! 2  become 

available (in gigabits per second). Per time slot ,t  only N 30=l  
of the t|  components, chosen randomly via ,tX  are observed in 

.y Rt
N! l  Cardinality of the time-varying dictionaries is set to 
,M 80=  .t6  To cope with pronounced temporal variations of 

the Internet2 link loads, the forgetting factor d  in (8) was set 
equal to 0.5. Figure 5 depicts estimated values of both observed 
(dots) and missing (crosses) link loads, for a randomly chosen 
link of the network. The normalized squared estimation error 
between the true t|  and the inferred ,t|t  specifically 

,t t t
2 2| | |- -t  is also plotted in Figure 5 versus time .t  The 

accelerated algorithm was compared with the state-of-the-art 
scheme in [23] that relies on ADMM, to minimize a cost closely 
related to (8) w.r.t. ,s  and uses BCD iterations requiring matrix 
inversion to optimize (8) w.r.t. .D  On the other hand, R 11 =  
and R 102 =  in the algorithm of Figure 2. It is worth noticing 
here that ADMM in [23] requires multiple iterations to achieve a 
prescribed estimation accuracy, and that no matrix inversion 

[fIg5] link load tracking (dots and triangles) and imputation 
(crosses and circles) on Internet2 [30]. the proposed method is 
validated versus the admm-based approach of [23].
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was incorporated in the realization of the proposed scheme. 
Even if the accelerated first-order method operates under lower 
computational complexity than the ADMM approach, estimation 
error performance both on observed and missing values is 
almost identical. 

CARDIAC MRI
Cardiac magnetic resonance imaging (MRI) is a major imag-
ing tool for noninvasive diagnosis of heart diseases in clinical 
practice. However, time limitations posed by the patient’s 
breath-holding time, and thus the need for fast data acquisition 
degrade the quality of MRI images, resulting often in missing 
pixel values. In the present context, imputation of the missing 
pixels utilizes the fact that cardiac MRI images intrinsically con-
tain low-dimensional components. 

The FOURDIX data set is considered, which contains 263 car-
diac scans with ten steps of the entire cardiac cycle [24]. Each 
scan is an image of size 512 512#  pixels, which is divided into 
64 ( )32 32# -dimensional patches. Placing one after the other, 
patches form a sequence of slices of a tensor .Y R ,32 32 67 328! # #  
Randomly chosen 75% of the Y  entries are dropped to simulate 

missing data. Operating on such a tensor via batch algorithms is 
computationally demanding, due to the tensor’s size and the 
computer’s memory limitations. Motivated by the batch formula-
tion in (5), a weighted LS online counterpart is [50] 
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where 02d  is a forgetting factor, and ex  is the xth t-dimensional 
canonical vector. The third dimension t  of Y  in (9) indicates the 
slice number. To solve (9), the variables { , , }A B C  are sequentially 
processed; fixing { , },A B  (9) is minimized w.r.t. ,C  while gradient 
steepest descent steps are taken w.r.t. each one of A  and ,B  having 
the other variables held constant. The resultant online learning 
algorithm is computationally light, with 256 2t  operations (on 
average) per .t  The results of its application to a randomly chosen 
scan image, for different choices of the rank ,t  are depicted in 
 Figure 6 with relative estimation errors, ,/Y Y YF F-x x x

t  equal 
to 0.14 and 0.046 for 10t =  and 50, respectively. 

[fIg6] the imputation of missing functional mrI cardiac images by using the parafac tensor model and the online framework of (9). 
the images were artificially colored to highlight the differences between the obtained recovery results. (a) the original image.  
(b) the degraded image (75% missing values). (c) the recovered image )( 10t =  with relative estimation error 0.14. (d) the recovered 
image )( 05t =  with relative estimation error 0.046.
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Additional approaches for batch tensor completion of both vis-
ual and spectral data can be found in [41] and [66], whereas the 
algorithms in [1] and [7] carry out low-rank tensor decompositions 
from incomplete data and perform imputation as a by-product. 
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