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e live in an era of 
data deluge, where 

data translate to 
knowledge and can 

thus contribute in var-
ious directions if harnessed and pro-
cessed intelligently. There is no doubt 
that signal processing (SP) is of utter-
most relevance to timely big data applica-
tions such as real-time medical imaging, 
smart cities, network state visualization 
and anomaly detection (e.g., in the power 
grid and the Internet), health informatics 
for personalized treatment, sentiment 
analysis from online social media, Web-
based advertising, recommendation sys-
tems, sensor-empowered structural 
health monitoring, and e-commerce 
fraud detection, just to name a few. 
Accordingly, abundant chances unfold to 
SP researchers and practitioners for fun-
damental contributions in big data the-
ory and practice. 

With such big blessings, however, 
come big challenges. The sheer volume 
and dimensionality of data often make it 
impossible to run analytics and traditional 
batch inferential methods on standalone 
processing units. With regards to scalabil-
ity, online data processing is well moti-
vated as the computational complexity of 
jointly processing the entire data set as a 
batch is prohibitive. Furthermore, there 
are many applications in which data 
themselves are made available in a 
streaming fashion, meaning that smaller 
chunks of data are acquired sequentially 
in time, e.g., nodes of a large network 
transmitting small blocks of data to a cen-
tral unit continuously and incoherently in 
time. As information sources unceasingly 

produce data in real time, analytics must 
often be performed on the fly, typically 
without a chance to revisit previous data. 
In addition, big data tasks are often sub-
ject to stringent time constraints so that a 
high-quality answer obtained slowly via 
batch techniques can be less useful than a 
medium-quality answer that is obtained 
fast in an online fashion. 

RELEVANCE
In this context, this lecture note presents 
recent advances in online learning for big 
data analytics. It is demonstrated that 
many of these approaches, mostly devel-
oped within the machine-learning disci-
pline, have strong ties with workhorse 
statistical SP tools such as stochastic 
approximation (SA) and stochastic gradi-
ent (SG) algorithms. Important differ-
ences and novel aspects are highlighted as 

well. A key message conveyed is that sem-
inal works on SA, such as by Robbins–
Monro and Widrow, which go back half a 
century, can play instrumental roles in 
modern online learning tasks for big data 
analytics. Consequently, ample opportu-
nities arise for the SP community to con-
tribute in this growing and inherently 
cross-disciplinary field, spanning multiple 
areas across science and engineering. 

PREREQUISITES
The required background includes basics 
of linear algebra, probability theory, con-
vex analysis, and stochastic optimization. 

STOCHASTIC APPROXIMATION BASICS
Consider the prototypical statistical learn-
ing problem in the realm of stochastic 
optimization (SO) [2], [3] where given a 
loss function ,f  one aims at minimizing 
the expected loss { ( ; )},w yfEy  possibly 
augmented with a complexity-controlling 
convex regularizer ( ),wr  with respect to 
(w.r.t.) a deterministic parameter (weight) 
vector .Ww !  An example of ( )wr  is the 
recently popular sparsity-promoting 
l1-norm of the p 1#  vector w  where 
( ) : .w wr wii

p
1 1

= =
=
/  Expectation 

{·}Ey  is taken w.r.t. the typically unknown 
probability distribution of data y  describ-
ing, e.g., input-response pairs in a super-
vised learning setting, and W  denotes a 
subset of some Euclidean space, intro-
duced here to cover general cases where 
constraints are imposed on .w  In lieu of 
the aforementioned distributional infor-
mation, given training data { }yt t

T
1=  one 

can instead opt for solving the empirical 
risk minimization problem 

 ( ; ) ( ),min w y w
T

f r1
Ww t

T

t
1

+
!

=

/  (1)

which is an approximation of its ensem-
ble counterpart, specifically min Ww!

[ { ( ; )} ( )] .w y wf rEy +  Beyond a purely 
learning paradigm, one should appreciate 
the generality offered by (1), since it can 
subsume, e.g., (constrained) maximum-
likelihood problems with f  identified as 
the log-likelihood function and data 
assumed statistically independent. 

In big data settings, T  can be huge, 
potentially infinite in a real-time paradigm 
where t  identifies time instances of data 
acquisition. Moreover, the search space 
W can be excessively high-dimensional 
with complex structure. This observation 
justifies the inclusion of a regularizer in 
(1) to effectively reduce the dimensionality 
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and/or size of W and yield parsimonious 
models that are interpretable and have 
satisfactory predictive performance. 
Unsurprisingly, there has been growing 
interest over the last decade in devising 
scalable and fast online algorithms for big 
data learning tasks such as (1). 

The main premise of SO is centered 
around solving the minimization task 
[cf. (1)] 

 ( ): { ( ; )}min w w yfEy
w Rp

{ =
!
6 @ (2)

without having {·}Ey  available; see, e.g., 
[3]. (Compared to (1) and its ensemble 
version, both W and the regularizer r  
have been dropped here for brevity.) Key 
features present in SO algorithms are:  
1) The data comprise a sequence of either 
dependent vectors with (asymptotically) 
vanishing covariance, or, independent 
identically distributed (i.i.d.) realizations 
{ }yt t

T
1=  of ;y  and, 2) given ( , ),w yt  there 

is a means of obtaining an unbiased “sto-
chastic” gradient estimate ( ; ),w yf td  so 
that { ( ; )} ( ) .w y wfEy td d{=

For {  smooth, minimizing {  in (2) 
amounts to searching for a zero of 
( ): ( ),w wd{U =  i.e., a w0  such that (s.t.) 
( )w 00U =  [3]. The classical Newton–

Raphson (N-R) algorithm provides the 
means to achieve this goal. For w  scalar 
and with ' denoting differentiation, the 
sequence generated by the recursion 

: ( ) / ( ) ( ) /w w w w w wk k k k k k1 {U U= - = -+ l l  
( )wk{m  converges under mild conditions 

to a root of ( ),wU  and thus to a minimizer 
of ( ) .w{  An illustration of the N-R itera-
tion can be seen in Figure 1. Starting from 
w1  and using the derivatives { ( )}wk k 1U 3

=
+l  

in the N-R iteration, the resultant updates 
{ }wk k 2

3
=
+  gradually approach ,w0  where 

( ) .w 00U =  Such a simple recursion can 
be readily extended to the p 1#  vector 
case as :w wk k1 = -+ ( ) ( ),H w wk k

1 d{{
-  

where now ( )H wk{  stands for the p p#  
Hessian matrix of {  at wk  with ( , )i j th  
entry ( ) / ( ) .w w wk i j

22 2 2{  
Clearly, the N-R algorithm cannot be 

applied if {·}Ey  is not available; e.g., if the 
probability density function (pdf) of y  is 
unknown, or, when computing {·}Ey  
entails cumbersome integration over 
high-dimensional domains. To alleviate 
this burden, SA through the celebrated 
Robbins–Monro algorithm relies on  

the sequence of realizations { }yt  and 
 ingeniously uses the instantaneous 

( ; )w yf t td  instead of the ensemble 
( )wkd{ (indexes have been changed from 

k  to ,t  for time-adaptive operation). With 
tn  denoting the step-size, SA generates 

the online (or stochastic) gradient 
descent (OGD) iteration 

 ( ; ),w w w yft t t t t1 dn= -+  (3)

which “learns” expectations on the fly. 
This point is better illustrated in “Online 
Averaging as SA.”

Several well-known adaptive SP and 
online learning algorithms stem from OGD. 

LMS aS Sa
Consider, for instance, scalar dt  and vector 
xt  processes that comprise the training 
data collected in :yt =[ , ] ,xdt t

<<  and let 
( ; ) : ( ) /w y w xf dt t t

2= - < ,2  where  <  
stands for transposition. It can be readily 
verified that ( ; )w yf td = ( ) ,w x xdt t t-<  
and application of OGD yields w wt t1 = -+

( ) ,w x xdt t t tn -<  which is nothing but 
the celebrated least mean-squares (LMS) 
algorithm [3]. 

RLS aS Sa
The OGD class can be further broadened 
by allowing matrix step-sizes { }Mt  
instead of scalar ones { }tn  to obtain 

( ; ) .w w M w yft t t t t1 d= -+  To highlight 
the potential of this extension, consider 
(jointly) wide sense stationary { , } ,xdt t t 1

3
=  

with : { },C x xE xxx t t= <  as well as :rdx =
{ } .xdE ,xd t t  It turns out that the solution 

of {( ) }min w xdE ,w xd t t
2- <  is the linear 

minimum mean-square error estimator 
.w C rxx dx0

1= -  However, without knowing 
Cxx  one relies on the sample average esti-
mate : ( / ) ,C x xt1t

t

1
= <

x
x

x=
t /  and on OGD 

with : ( / )M Ct1t t
1= -t  to obtain 

 ( )w w C x w xt d1
t t t t t t t1

1= - -<
+

-t  (4a)

 
/

( ) ,

C C C x x C

x C x

t
t

t

1
t t t t t t

t t t

1
1 1 1

1 1
1

1
1

1

= + -

+ <

<
+
- - -

+ +
-

+
-

+

t t t t

t

8

B
 

(4b)

where the matrix inversion lemma is 
applied to carry out efficiently the inver-
sion in (4b). Recursions (4) comprise the 
well-known recursive least-squares (RLS) 
algorithm [3]. 

ONLINE AVERAgINg AS SA

The solution of { / }min w y 2Ew y 2
2-  is clearly { } .w yEy0 =  Following the SA ratio-

nale, consider ( ; ): / .f w y w y 2t t 2
2= -  The OGD iteration is ( ),w w w yt t t t t1 n= - -+  

and if :w 01 = as well as : / ,t1tn =  simple mathematical induction yields wt 1 =+

( / ) ,yt1 t

1 x
x=
/  which in accordance with the law of large numbers converges to 

{ }w yEy0 =  as t " 3+  [3].

[fIg1] The N-R method for finding a w0  s.t.  ( ) .w 00U =

w0
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PERFORMaNCE OF Sa aLGORITHMS
Based on the samples { },yt  SA algorithms 
produce estimates { }wt  that allow for esti-
mation, tracking, and out-of-sample infer-
ence tasks, such as prediction. Performance 
analysis of SA schemes has leveraged 
advances in martingale and ordinary differ-
ential equation theories to establish, e.g., in 
the stationary case, convergence of { }wt  to 
a time-invariant w0  in probability, or with 
probability one, or in the mean-square 
sense [3]. In this stationary setting, conver-
gence of OGD requires step-sizes selected 
to diminish with a certain rate. Specifi-
cally, { }tn  must satisfy 1) 0t $n , 2) 
lim 0t tn ="3 , and 3) .tt 1

3n =+
3

=
/  

Clearly, 1)–3) are satisfied for : / ,t1tn =  
which vanishes as t " 3+  but not too fast 
so that 3) enables { }wt  to reach asymptoti-
cally the desired .w0  

Departing from the standard route of 
SA convergence analysis [3], recent results 
take advantage of convexity if it is present 
in the objective function. Specifically for 
convex costs, the OGD recursion (3) gener-
alizes to: P [ ( ; )],w w w yfWt t t t t1 dn= -+  
where P ( ): argminw w wW Ww 2= -! ll  
stands for the projection mapping onto a 
closed and convex constraint set W.  For 
{  differentiable and strongly convex with 
index ,c 02  it holds that ( ) ( )w w${ { +l  
( ) ( ) ( / ) ,w w w w wc 2 2

2d{- + -<l l  for 
all ( , ) .w w  With step-sizes selected as 

: /ttn n=  with / ( ),c1 22n  and for bound-
ed stochastic gradients as in sup Ew y  

( ; ) ,f w y 2
2d # D$ .  it can be verified  

that the error ,w wEy t 0 2
2-$ .  where 

w0 = { ( ; )},argmin w yfEWw y!  satisfies 
the following finite-sample bound [2]: 

{ }
( )

,

( ) : / ( ),

.

max

w w

w w

t
Q

Q c2 1

with

Ey t 0 2
2

2 2

1 0
2

#
n

n n nD

-

= -

-

"
,

If, in addition, d{  is L-Lipschitz 
continuous, i.e., ( ) ( )w w 2d d #{ {- l

,w wL 2- l  ,w6  ,wl  then a similar 
finite-sample bound holds also for the 
sequence of function values { ( )}wt{  [2] 

 ,{ ( ) ( )}
( )

w w
t

LQ
2

Ey t 0 #{ {
n

-

where expectation is taken over { },wt  which 
involves stochastic gradients. 

Performance analysis of SA algorithms 
deals with convergence of { },wt  whereas 
the online convex optimization framework 
outlined in a subsequent section starts 
from (1), invokes fewer or no assumptions 
on the underlying pdfs, and asserts con-
vergence of the costs { ( ; )},w yf t t  rather 
than { }wt . 

Recently, SA was combined with the 
alternating direction method of multipli-
ers (ADMM) which is attractive for offline 
optimization of composite costs [4]. The 
resultant SA-ADMM solver [5] is suitable 
for online optimization of composite costs 
such as [ { ( ; )} ( )],min w y wf rEWw y +!  in 
a fully distributed fashion—an operational 
mode that is highly desirable for big data 
applications. 

SEQUENTIaL OPTIMIZaTION  
aND DaTa SKETCHING
The importance of sequential optimiza-
tion along with the attractive operation 
of random sampling (also known as 
sketching) of big data will be illustrated 
in this subsection in the context of the 
familiar LS task: 

 
( ) ,

min X w d

x w

T

T
d

2
1

1
2
1

w

t

T

t t

2
2

1

2

Rp
-

= -<

<

!

=

=

G/
 

(5)

where : [ , , ]X x xT1 f=  denotes the p T#  
matrix that gathers all available regressor 
or input vectors, and : [ , , ]d d dT1 f= <   
the T 1#  vector of desired outputs 
(responses). Although irrelevant to the 
minimization in (5), the normalization 
with T  is included to draw connections 
with (1). In this sense, the loss function 
becomes ( ; ) ( ) / ,w y x wf d 2t t t

2= -<  with 
: [ , ] ,y xdt t t= <<  and its gradient (·; )yf td  

is Lipschitz continuous with constant 
.xLt t 2

2=  Different from the previous 

discussion, here T  is fixed, and “online” 
means processing { , }xdt t t

T
1=  sequentially. 

Searching for a solution w0  of (5) 
requires eigen-decomposition of ,XX<  
which incurs complexity O ( ) .T p2  Alter-
natively, the standard gradient descent 
recursion ( )w w XX w Xdk k k k1 n= - -<

+  
entails O ( )p2  computations per iteration 

.k  Both cases are prohibitive in big data 
settings where the number of samples, ,T  
is massive and/or the data dimensionality, 

,p  can be huge. To surmount these 
obstacles, solving for w0  can rely on 
subsampling (also known as sketching to 
obtain a subset of) the rows of ,X<  along 
with the corresponding entries of ,d  to 
reduce complexity w.r.t. ,T  while visiting 
them in a sequential fashion that scales 
linearly with .p

Kaczmarz’s algorithm, a special case of 
the projections onto convex sets (POCS) 
method [6], produces a sequence of esti-
mates { }wk  to solve (5). For an arbitrary 
initial estimate ,w1  the kth  iteration of 
Kaczmarz’s algorithm selects a row ( )t k  
of ,X<  together with the corresponding 
entry ,d ( )t k  and projects the current esti-
mate wk  onto the set of all minimizers 
H : { }w x w d( ) ( ) ( )t k t k t k= =<  of ( ; ),w yf ( )t k  
which is nothing but a hyperplane (a 
closed and convex set). Hence, the ( )k 1 st+  
estimate is 

 

P:

,

( )w w

w
x

x w
x

d

H

( )

( ) ( )
( )

k k

k
t k

t k k t k
t k

1

2
2

( )t k=

= -
-<

+

 
(6)

where PH ( )t k  stands for the projection 
mapping onto H .( )t k  Notice here that the 
complexity of computing P ( )wH k( )t k  
scales linearly with .p  If every ( , )xdt t  is 
visited infinitely often, then under several 
conditions (6) converges to a solution of 
(5) [6]. Visiting each ( , )xdt t  a large num-
ber of times is prohibitive with big data 
since T  can be excessively large. In con-
trast, poor selection of rows can slow 
down convergence; see Figure 2. Never-
theless, randomly drawing rows with 
equal probabilities has been shown empir-
ically to accelerate convergence relative to 
cyclic revisits of rows [7]. Judicious sam-
pling schemes can yield further speedups, 
as highlighted in “Accelerating SG via 
Nonuniform Sampling.”

THE OCO fRAMEWORk 
CAN BE VIEWED AS A 
MULTIROUND gAME 
BETWEEN A PLAyER 
(LEARNER) AND AN 

ADVERSARy.
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LEARNINg VIA ONLINE  
CONVEX OPTIMIZATION
Recently, online learning approaches based 
on a online convex optimization (OCO) 
framework have attracted significant 
attention, as they do not require elaborate 
statistical models for data and yet can pro-
vide robust performance guarantees. This 
is true even under an adversarial setup, 
where the data sequence { }yt  may be gen-
erated strategically in reaction to the 
learner’s iterates { },wt  as in the humans-
in-the-loop applications such as the Web 
advertising optimization. 

The OCO framework can be viewed as 
a multiround game between a player 
(learner) and an adversary [10]. In the 
context of the learning formulation in (1), 
the learner plays an action Wwt !  in 
round ,t  where W  is assumed to be 
closed and convex. Based on the action 
wt  that the player took, the adversary 
provides some feedback information F ,t  
manifested in the data (feature) vector ,yt  
based on which a convex loss function 
L W: { }Rt " , 3+  is constructed, such 
as L ( ): ( ; ) ( ) .w w y wf rt t= +  The learner 
then suffers the loss at ,wt  specifically, 
L ( ) .wt t  The overall process is depicted 
in Figure 3. 

The learner’s goal is to minimize the 
so-termed regret ( )R T  over T  rounds, 
defined as 

L L( ): ( ) ( ),minw wR T
Ww

t
t

T

t t
t

T

1 1
= -

!
= =

/ /  
(7)

which captures how much worse the 
learner performed cumulatively, com-
pared to the case where a single best 
action is chosen with the knowledge of the 
entire sequence of cost functions L{ }t t

T
1=  

in hindsight. In particular, OCO aims at 
producing a sequence { },wt  which gives 
rise to sublinear regret, that is, the one 
with ( ) /R T T 0"  as T  grows. The key 
question now for the learner is how to 
pick wt  in each round .t  

OCO aLGORITHMS  
aND PERFORMaNCE
An important class of algorithms that 
can achieve the desired sublinear regret 
bound is based on the online mirror 
descent (OMD) iteration [11]. In a nut-
shell, the method minimizes a first-order 

approximation of Lt  at the current iter-
ate ,wt  while encouraging the search in 
the vicinity of .wt  Specifically, OMD 
computes the next round iterate wt 1+  as 

 
L( ) ( )

( , ),

arg minw w w w

w wD1
Ww

t t t t

t

1

n

= -

+

<

!

}

+ l

 
(8)

where ' denotes a (sub)gradient of a func-
tion, 02n  is a learning rate parameter, 
and ( , )w vD}  is the Bregman divergence 
associated with a continuously differentia-
ble and strongly convex ,}  defined as 

 
( , ) : ( ) ( )

( ) ( ).

w v w v

w v v

D

d

} }

}

= -

- - <

}
 

(9)

ACCELERATINg Sg VIA NONUNIfORM SAMPLINg 

In the noiseless case ,X w d=<^ h  randomly drawing rows in proportion to their 
Lipschitz constants Lt  is known to provide finite-sample bounds of the form [7] 

 ,{ } ( )w w X w w1ER k
k

0 2
2 2

1 0 2
2# l- - --6 @  

where ( )Xl  stands for the condition number of ,X  and {·}ER  denotes expecta-
tion w.r.t. the distribution over which { , }d xt t  are selected. The previous nonuni-
form sampling scheme yields better convergence rates than those resulting from 
uniform sketching [7]. More information on (non)uniform sketching and its 
application to SG descent methods can be found in [8] and [9].

w0
w6 w4 w2

w3

w1

w5

w6

w4

w2

w5
w3

3

2

1

[fIg2] kaczmarz’s algorithm for three hyperplanes H{ }t t 1
3
=  with the nonempty 

intersection H{ } .w t t0 1
3+= =  Row (hyperplane) selection affects convergence rate; 

{ },wk  which alternates between H1  and H2  approaches w0  faster than { },wk  
which is generated via H H .,2 3
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[fIg3] OCO as a multiround game.
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In the special case of using ( ):w} =

/ ,w 22
2  the corresponding ( , )w vD =}

/ ,w v 22
2-  and the OMD update in (8) 

boils down to OGD [10], establishing an 
immediate link between OCO and SA. 
In general, a judicious choice of }  can 
capture the structure of the search 
space ,W  leading to an efficient update 
formula for .wt  For example, when W  is 
the probability simplex, i.e., W {w ;=

, },w w0 1i ii
$ =/  sett ing ( ):w} =

logw wii i/  in (8) and (9) yields the expo-
nentiated gradient algorithm, which obvi-
ates the need to explicitly impose the 
probability simplex constraints [10]. Aim-
ing at an efficient use of prior information 
on ,w  a notable generalization of OMD is 
offered by the “COMID Algorithm.” 

Both COMID and OMD (which is a spe-
cial case of COMID) can attain sublinear re-
gret bounds. Specifically, ( )R T =O T^ h 
in general, and the bound becomes 
O ( )logT  when Lt  is strongly convex [10], 
[12]. Noteworthy differences between SA 
and OCO are outlined in “SA vis-à-vis OCO.”

ONLINE LEaRNING WITH  
BaNDIT FEEDBaCK
The bandit setup of OCO refers to the case 
where the feedback Ft  from the adversary 

does not explicitly reveal the cost function 
Lt $^ h but only the sample cost L ( )wt t  
due to action ;wt  refer also to Figure 3. 
For example, wt  may represent the adver-
tising budget allocated to different media 
channels, and L ( )wt t  the corresponding 
overall cost (e.g., the total advertising 

expense minus the resulting income). In 
this case, it may be difficult to know the 
explicit form of L ,t  but L ( )wt t  can be 
easily observed. 

The idea of bandit OCO is to estimate 
the necessary gradient using SA in the 
context of OGD. Specifically, a key obser-
vation is that if one can evaluate a func-
tion :f R Rp "  at w  perturbed by a small 

,vd  where 02d  and v  is uniformly dis-
tributed on the surface of a unit sphere, 
then / ( )w v vp fd d+^ h  offers an unbiased 
estimate of the gradient at w  of a locally 
smoothed version of f  [14]. Thus, plug-
ging this noisy gradient directly into the 
OGD update in the spirit of SA, one can 
still establish a sublinear regret bound. 
However, the best bound found in [14] is 
O ( ),T /3 4  slower than the O ( )T -bound 
for the full information case, illustrating 
the price to pay for the lack of information. 

LESSONS LEARNED  
AND fUTURE AVENUES
This lecture note offered a short exposi-
tion of recent advances in online learning 
for big data analytics, highlighting their 
differences and many similarities with 
prominent statistical SP tools such as SA 
and SO methods. It was demonstrated 
that the seminal  Robbins–Monro algo-
rithm, the workhorse behind several clas-
sical SP tools such as the LMS and RLS 
algorithms, carries rich potential for solv-
ing large-scale learning tasks under low 
computational budget. It was also 
explained that sequential or online learn-
ing schemes together with random sam-
pling or data sketching methods are 
expected to play a principal role in solving 
large-scale optimization tasks. A short 
description of the OCO framework 
revealed its flexibility on the variety of 
optimization tasks that can be accommo-
dated, including scenarios where data are 
provided in an adversarial fashion or with 
limited feedback. Yet, such a flexibility 
comes at a price; OCO-based statistical 
analysis refers mostly to bounds of the 
regret cost. Based on the common ground 
between OCO and SA, OCO can only ben-
efit from the rich theoretical armory of 
SA, e.g., the martingale theory, where 
results pertain also to convergence of the 
primal (random) variables of the optimi-
zation task at hand. Vice versa, SA can 
also profit from the powerful toolbox of 
convex analysis, the engine behind OCO, 
for establishing strong analytical claims in 
the big data context. In closing, Figure 4 
depicts the unique and complementary 
strengths SA, SO, and OCO offer to online 
learning, as well as adaptive SP theory and 
big data applications. 

COMID ALgORITHM 

While the OMD update provides a computationally attractive solution to (1), the lin-
earization involved often defeats one of the purposes of the regularizer ,r  which is to 
promote a priori known structure in the solution. For example, setting ( )r w  propor-
tional to the 1, -norm of w  encourages sparsity in .w  To properly capture such a ben-
efit, one has to respect the composite structure of L ,t  which decomposes into the 
data-dependent part ( ): ( ; )f fw w yt t=  and the invariant part ( )r w  [12], [13]. In partic-
ular, the composite objective mirror descent (COMID) algorithm relies on [12] 

 ( ) ( ) ( ) ( , ),argmin f r Dw w w w w w w1
W

n t t t t
w

1
n

= - + +<

!
}+ l  (S1)

where it is seen that the regularizer is not linearized.

SA VIS-A-VIS OCO 

Compared to the SA approaches, the OCO framework does not require stochastic mod-
els. This is a salient departure from typical SA setups, since the regret bounds are guar-
anteed even for { }yt  that may have been generated adversarially, i.e., with yt  arbitrary 
correlated to past actions { }w t#x x and past data { } .y t1x x  On the other hand, the 
bounds pertain to convergence of the sequence of costs rather than the iterates { }wt  
themselves. Nonetheless, building upon the flexibility offered by OCO, certain limited 
feedback learning tasks are feasible as elaborated in the "Online Learning with Bandit 
Feedback" section, where, interestingly, the SA ideas prove instrumental once again.

SEQUENTIAL OR  
ONLINE LEARNINg  

SCHEMES TOgETHER  
WITH RANDOM SAMPLINg 

OR DATA SkETCHINg 
METHODS ARE EXPECTED 

TO PLAy A PRINCIPAL ROLE 
IN SOLVINg LARgE-SCALE 

OPTIMIZATION TASkS.



 IEEE SIGNAL PROCESSING MAGAZINE [129] NOVEMBER 2014

ACkNOWLEDgMENTS
The work in this lecture note was sup-
ported by the National Science Founda-
t ion grants EARS-1343248 and  
EAGER-1343860, and the MURI grant 
AFOSR FA9550-10-1-0567.

AUTHORS
Konstantinos Slavakis (kslavaki@umn.
edu) is a research associate professor in the 
Department of Electrical and Computer 
Engineering and Digital Technology Cen-
ter, University of Minnesota, United States.

Seung-Jun Kim (sjkim@umbc.edu) is 
an assistant professor in the Department of 
Computer Science and Electrical Engi-
neering, University of Maryland, Baltimore 
County, United States.

Gonzalo Mateos (gmateosb@ece. 
rochester.edu) is an assistant professor in 
the Department of Electrical and Comput-
er Engineering, University of Rochester, 
New York, United States.

Georgios B. Giannakis (georgios@
umn.edu) is a professor in the Department 
of Electrical and Computer Engineering 
and director of the Digital Technology 
Center, University of Minnesota, Minneap-
olis, United States. 

REfERENCES
[1] K. Slavakis, G. B. Giannakis, and G. Mateos, 
“Modeling and optimization for big data analytics,” 
IEEE Signal Processing Mag., vol. 31, no. 5, pp. 
18–31, Sept. 2014.  

[2] A. Nemirovski, A. Juditski, G. Lan, and A. Sha-
piro, “Robust stochastic approximation approach to 
stochastic programming,” SIAM J. Optim., vol. 19, 
no. 4, pp. 1574–1609, 2009.
[3] H. J. Kushner and G. G. Yin, Stochastic Approxi-
mation Algorithms and Applications. New York: 
Springer, 1997.
[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and 
Distributed Computation: Numerical Methods, 2nd 
ed. Belmond, MA: Athena Scientific, 1997. 
[5] I. D. Schizas, G. Mateos, and G. B. Giannakis, 
“Distributed LMS for consensus-based in-network 
adaptive processing,” IEEE Trans. Signal Process-
ing, vol. 57, no. 6, pp. 2365–2381, 2009.
[6] H. H. Bauschke and J. M. Borwein, “On projec-
tion algorithms for solving convex feasibility prob-
lems,” SIAM Review, vol. 38, no. 3, pp. 367–426, 
Sept. 1996.
[7] T. Strohmer and R. Vershynin, “A randomized 
Kaczmarz algorithm with exponential convergence,” J. 
Fourier Anal. Appl., vol. 15, no. 2, pp. 262–278, 2009.
[8] D. Needell, N. Srebro, and R. Ward. (2013, Feb.). 
Stochastic gradient descent and the randomized 
Kaczmarz algorithm. ArXiv e-prints. [Online]. 
Available: arXiv:1310.5715v2

[9] A. Nedić and D. P. Bertsekas, “Incremental sub-
gradient methods for nondifferentiable optimization,” 
SIAM J. Optim., vol. 12, no. 1, pp. 109–138, 2001. 

[10] S. Shalev-Shwartz, “Online learning and online 
convex optimization,” Found. Trends Mach. Learn., 
vol. 4, no. 2, pp. 107–194, Mar. 2012.

[11] A. Beck and M. Teboulle, “Mirror descent and 
nonlinear projected subgradient methods for convex 
optimization,” Oper. Res. Lett., vol. 31, no. 3, pp. 
167–175, 2003. 

[12] J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and 
A. Tewari, “Composite objective mirror descent,” in 
Proc. Conf. Learning Theory, Haifa, Israel, June 
2010, pp. 14–26.

[13] L. Xiao, “Dual averaging methods for regular-
ized stochastic learning and online optimization,” 
J. Mach. Learn. Res., vol. 11, pp. 2543–2596, Oct. 
2010.

[14] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, 
“Online convex optimization in the bandit setting: 
Gradient descent without a gradient,” in Proc. ACM-
SIAM Symp. Discrete Algorithms, Vancouver, Jan. 
2005, pp. 385–394.

 [SP]

SA

SO

OCO• Random Samples (i.i.d. or Mixing)

• Convexity

• Lipschitz Continuity

• Gradient-Free Optimization

• Random Samples Not Necessary
• Repeated Learner-Nature Game
 (Nature Can Be Adversarial)

• (In)Complete Information (Bandit)Adaptive SP Algorithms: LMS, RLS, . . .

Convergence (pr, w.p.1, mss)
of {wt } and {f (wt ;yt )}

• Conditions on Loss Functions
• Stepsize Selection

Online Learning: OMD, COMID, . . .

Convergence of Costs Only
(Sublinear Regret)
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