Santiago Segarra^{*}, Gonzalo Mateos[†], Antonio G. Marques[‡], and Alejandro Ribeiro^{*} E-mail: ssegarra@seas.upenn.edu *Electrical & Systems Engineering, University of Pennsylvania [†]Electrical & Computer Engineering, University of Rochester [‡]Signal Theory & Communications, King Juan Carlos University

Abstract

We postulate that diffusion processes can be modeled as outputs of graph filters. Leveraging recent advances in graph signal processing and classical blind deconvolution, we propose a convex algorithm for blind identification of graph filters with sparse inputs. This task amounts to finding the sources and diffusion coefficients that gave rise to an observed network state.

Graph signal processing - 101

- Network as graph $G = (\mathcal{V}, \mathcal{E}, W)$: encode pairwise relationships
- \blacktriangleright Interest here not in G itself, but in data associated with nodes in \mathcal{V} \Rightarrow The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph SP: need to broaden classical SP results to graph signals \Rightarrow Our view: GSP well suited to study network processes

Graph signals and graph-shift operator

- ► (Node) graph signals are mappings $x : \mathcal{V} \to \mathbb{R}$ \Rightarrow May be represented as a vector $\mathbf{x} \in \mathbb{R}^N$ (with $|\mathcal{V}| = N$)
- Graph G is endowed with a graph-shift operator S \Rightarrow Matrix $\mathbf{S} \in \mathbb{R}^{N \times N}$ satisfying: $S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$

6
5

1	$V S_{11}$	S_{12}	0	0	S_{15}	0	1
	S_{21}	S_{22}	S_{23}	0	S_{25}	0	
	0	S_{23}	S_{33}	S_{34}	0	0	
=	0	0	S_{43}	S_{44}	S_{45}	S_{46}	
	S_{51}	S_{52}	0	S_{54}	S_{55}	0	
(0	0	0	S_{64}	0	S_{66} /	

S captures local structure in G

Ex: Adjacency **A**, Degree **D** and Laplacian **L** \Rightarrow Time-shift operator when **S** = **A**_{dc} for G a directed cycle

Locality of S and frequency-domain representation

- ► S is a local linear operator \Rightarrow If $\mathbf{y} = \mathbf{S}\mathbf{x}$, $y_i = \sum_{j \in \mathcal{N}_i^+} S_{ij} x_j \Rightarrow 1$ -hop info
- Spectrum of S useful to analyze x \Rightarrow Consider diagonalizable shifts $S = V \Lambda V^{-1}$
- Leverage S to define graph Fourier transform (GFT) and iGFT

 $\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}, \qquad \mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$ (Ex: DFT, PCA)

► Key message: the two basic elements of GSP are **x** and **S**

Linear (shift-invariant) graph filter

- ► A graph filter $H : \mathbb{R}^N \to \mathbb{R}^N$ is a map between graph signals \Rightarrow Focus on linear filters $\Rightarrow N \times N$ matrix
- Filter **H** is a polynomial in **S** of degree L, with coeffs. $\mathbf{h} = [h_0, \ldots, h_L]^T$

$$\mathbf{H} := h_0 \mathbf{S}^0 + h_1 \mathbf{S}^1 + \ldots + h_L \mathbf{S}^L = \sum_{l=0}^L h_l \mathbf{S}^l$$

Key properties: shift-invariance and distributed implementation \Rightarrow Satisfies H(Sx) = S(Hx), only L-hop information to form y = Hx

BLIND IDENTIFICATION OF GRAPH FILTERS WITH SPARSE INPUTS

Frequency response of a graph filter	Alq
► Using $\mathbf{S} = \mathbf{V} \wedge \mathbf{V}^{-1}$, filter is $\mathbf{H} = \sum_{l=0}^{L} h_l \mathbf{S}^l = \mathbf{V} \left(\sum_{l=0}^{L} h_l \wedge^l \right) \mathbf{V}^{-1}$	► F
Since Λ^{\prime} are diagonal, the GFT-iGT can be used to write $\mathbf{y} = \mathbf{H}\mathbf{x}$ as	
$ ilde{{f y}}=diag({f h}) ilde{{f x}}$	▶ (
\Rightarrow Output at frequency <i>K</i> depends only on input at frequency <i>K</i> Example Frequency response of filter H is $\tilde{\mathbf{h}} = \mathbf{W}\mathbf{h}$, where W is Vandermonde	
/ 1 $\lambda_1 \dots \lambda_1^L$	
$\mathbf{\Psi} := \left(\begin{array}{ccc} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{array} \right)$	► F
$\langle 1 \rangle_N \dots \rangle_{\overline{N}} \rangle$	
Note that GFT for signals ($\mathbf{x} = \mathbf{V}^{-1}\mathbf{x}$) and filters ($\mathbf{h} = \mathbf{\Psi}\mathbf{h}$) is different \Rightarrow If $\mathbf{S} = \mathbf{A}_{dc}$ (periodic signal), both $\mathbf{\Psi}$ and \mathbf{V}^{-1} equal the DFT	Mu
Diffusion processes as graph filter outputs	
\sim Upon observing a graph signal v how was this signal generated?	
 Postulate the following generative model 	▶ (
\Rightarrow An originally sparse signal $\mathbf{x} = \mathbf{x}^{(0)}$	▶ [
$\Rightarrow \text{Diffused via linear graph dynamics } \mathbf{S} \Rightarrow \mathbf{x}^{(l)} = \mathbf{S}\mathbf{x}^{(l-1)}$ $\Rightarrow \text{Observed } \mathbf{x} \text{ is a linear combination of the diffused signals } \mathbf{x}^{(l)}$	
\Rightarrow Observed y is a linear combination of the diffused signals x ⁽⁷⁾ L L	
$\mathbf{y} = \sum_{l=0}^{l} h_l \mathbf{x}^{(l)} = \sum_{l=0}^{l} h_l \mathbf{S}^l \mathbf{x} = \mathbf{H} \mathbf{x}$	
View few elements in supp $(\mathbf{x}) =: \{i : x_i \neq 0\}$ as sources or seeds	
Motivation and problem formulation	Nur
 Global opinion profile formed by spreading a rumor What was the rumor? Who started it? How do people combine the opinions heard to form their own? 	► F
\blacktriangleright Q: Can we determine x and the combination weights h from y = Hx ?	
Graph Filter	
	-
Unobserved Observed	Erro
Problem: Blind identification of graph filters with sparse inputs	
\Rightarrow Generalizes classic bind deconvolution to graphs \blacktriangleright III-nosed $\rightarrow (I + 1) + N$ unknowns and N observations	
$\Rightarrow \text{Assume } \mathbf{x} \text{ is } \mathbf{S}\text{-sparse i.e., } \ \mathbf{x}\ _0 := \text{supp}(\mathbf{x}) \leq S$	► F
"Lifting" the bilinear inverse problem	
• Leverage the frequency response of graph filters ($\mathbf{U} := \mathbf{V}^{-1}$)	Rec
$\mathbf{y} = \mathbf{V} diag(\mathbf{\Psi} \mathbf{h}) \mathbf{U} \mathbf{x}$	
\Rightarrow y is a bilinear function of h and x	
► Blind graph filter identification \Rightarrow Non-convex feasibility problem	
find $\{\mathbf{n}, \mathbf{x}\}$, s. to $\mathbf{y} = \mathbf{v} \operatorname{diag}(\mathbf{w}\mathbf{n})\mathbf{U}\mathbf{x}$, $\ \mathbf{x}\ _0 \leq S$.	1
Key observation: Using the Khatri-Rao product \odot can write y as $\mathbf{v} = \mathbf{V}(\mathbf{u} \mathbf{r}^T \odot \mathbf{U}^T)^T \mathbf{voc}(\mathbf{v} \mathbf{h}^T)$ (1)	: ب
$\mathbf{y} - \mathbf{v} (\mathbf{\Psi} \odot \mathbf{U}) \mathbf{v} = \mathbf{v} (\mathbf{\Lambda} \mathbf{U}) (\mathbf{U})$ $\Rightarrow \text{Reveals } \mathbf{v} \text{ is a linear combination of the entries of } 7 = \mathbf{x} \mathbf{h}^{T}$	2 E
• Matrix Z is of rank-1 and row-sparse \Rightarrow Linear matrix inverse problem	
$\min \operatorname{rank}(\mathbf{Z}), \text{s. to } \mathbf{y} = \mathbf{V}(\mathbf{\Psi}^T \odot \mathbf{U}^T)^T \operatorname{vec}(\mathbf{Z}), \ \mathbf{Z}\ _{2,0} \leq S$. .
\Rightarrow Pseudo-norm $\ Z\ _{2,0}$ counts the non-zero rows of Z	

orithmic approach via convex relaxation

Rank minimization s. to row-cardinality constraint is NP-hard. Relax! \Rightarrow Nuclear norm $\|\mathbf{Z}\|_* := \sum_k \sigma_k(\mathbf{Z})$ a convex proxy of rank

 $\Rightarrow \ell_2/\ell_1 \text{ mixed norm } \|\mathbf{Z}\|_{2,1} := \sum_{i=1}^N \|\mathbf{z}_i^T\|_2 \text{ surrogate of } \|\mathbf{Z}\|_{2,0}$ Convex relaxation

 $\min_{\mathbf{Z}} \|\mathbf{Z}\|_* + \alpha \|\mathbf{Z}\|_{2,1}, \quad \text{s. to } \mathbf{y} = \mathbf{V} (\mathbf{\Psi}^T \odot \mathbf{U}^T)^T \operatorname{vec}(\mathbf{Z})$

 \Rightarrow Scalable algorithm using method of multipliers

Refine estimates via iteratively-reweighted optimization

 \Rightarrow Weights $\alpha_i(k) = (\|\mathbf{z}_i(k)^T\|_2 + \delta)^{-1}$ per row *i*, per iteration k

tiple output signals

Leverage multiple output signals to aid the blind identification task We have access to a collection of *P* output signals $\{\mathbf{y}_p\}_{p=1}^{P}$ \Rightarrow Corresponding to different sparse inputs \mathbf{x}_{ρ} but a *common* filter **H** Consider the stacked vectors $\bar{\mathbf{y}} := [\mathbf{y}_1^T, ..., \mathbf{y}_P^T]^T$ and $\bar{\mathbf{x}} := [\mathbf{x}_1^T, ..., \mathbf{x}_P^T]^T$ Define the rank-one matrices $\mathbf{Z}_{p} := \mathbf{x}_{p} \mathbf{h}^{T}$, p = 1, ..., P, and stack them: \Rightarrow (i) Vertically in $\overline{\mathbf{Z}}_{\mathbf{V}} := [\mathbf{Z}_{1}^{T}, ..., \mathbf{Z}_{P}^{T}]^{T} = \overline{\mathbf{x}}\mathbf{h}^{T} \in \mathbb{R}^{NP \times L}$

 \Rightarrow (ii) Horizontally in $\overline{\mathsf{Z}}_h := [\mathsf{Z}_1, ..., \mathsf{Z}_P] \in \mathbb{R}^{N \times PL}$.

Note that $\overline{\mathbf{Z}}_{\nu}$ is a rank-one matrix and $\overline{\mathbf{Z}}_{h}$ is row-sparse

$$\min_{\{\mathbf{Z}_{P}\}_{p=1}^{P}} \|\bar{\mathbf{Z}}_{\nu}\|_{*} + \tau \|\bar{\mathbf{Z}}_{h}\|_{2,1}, \quad \text{s. to} \quad \bar{\mathbf{y}} = \left(\mathbf{I}_{P} \otimes \left(\mathbf{V}(\mathbf{\Psi}^{T} \odot \mathbf{U}^{T})^{T}\right)\right) \operatorname{vec}(\bar{\mathbf{Z}}_{h})$$

merical tests: Known support, random graph models

Performance in Erdős-Rényi and scale-free graphs of varying size

- \Rightarrow Assume known supp $(\mathbf{x}) \Rightarrow \mathbf{x} = [\bar{\mathbf{x}}^T, \mathbf{0}]^T$
- \Rightarrow Error quantified as $\|\bar{\mathbf{x}}^* \mathbf{h}^*^T \bar{\mathbf{x}} \mathbf{h}^T\|_{\mathsf{F}}$
- \Rightarrow Two settings (i) L = 5, S = 20; and (ii) L = 5, S = 40
- \Rightarrow Nuclear norm (left) vs. naive least-squares of (1) (right)

Rank minimization achieves perfect recovery when $N \ge 2(L + S)$ \Rightarrow Well-below $N_0 := L \times S$ needed for least-squares to succeed \Rightarrow Rank minimization is more robust to the type of graph

covery rate in random graphs: unknown support

Recovery rates on Erdős-Rényi graphs (N = 50) for varying L and S P=1 (left), P=1 + reweighted $\ell_{2,1}$ (mid), P=5 + reweighted $\ell_{2,1}$ (right)

Exact recovery over non-trivial (L, S) region

 \Rightarrow Iteratively-reweighted optimization markedly improves recovery

 \Rightarrow Multiple outputs further increase recovery success

2015 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing

R	e	C	0	V	e
I U	C	C	U	V	

References

- D. I. Shuman, et al., "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98. Mar. 2013.
- A. Sandryhaila and J.M.F. Moura, "Discrete signal processing on graphs," IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, Apr. 2013.
- S. Segarra, A. G. Marques, and A. Ribeiro, "Distributed implementation of linear network operators using graph filters," in Proc. 53rd Allerton Conf. on Commun. Control and Computing, Monticello, IL, Sept. 30- Oct. 2, 2015.
- A. Ahmed, B. Recht, and J. Romberg, "Blind deconvolution using convex programming," IEEE Trans. Inf. *Theory*, vol. 60, no. 3, pp. 1711–1732, Mar. 2014.
- P. Hagmann, et al., "Mapping the structural core of human cerebral cortex," *PLoS Biol*, vol. 6, no. 7, pp. e159, 2008.

ery rate in a brain graph: unknown support

 \blacktriangleright Consider a brain structural graph (N = 66) [Hagmann] \blacktriangleright $P = 1 + reweighted <math>\ell_{2,1}$ (left), $P = 5 + reweighted \ell_{2,1}$ (right)

Encouraging results even for real-world graphs \Rightarrow Gradual performance decay for increasing L and S

Performance comparison with alternative methods

► Human brain graph of N = 66 brain regions, L = 6 and S = 6

Proposed method outperforms alternating-minimization and LS solvers \Rightarrow Unknown supp(**x**) \approx Need twice as many observations

Discussion and road ahead

Identifiability conditions

- \Rightarrow Q: When is {**x**, **h**} the unique solution (up to scaling)?
- \Rightarrow Deterministic or probabilistic model assumptions
- Exact recovery conditions
 - \Rightarrow Q: When does the convex relaxation succeed?
 - \Rightarrow Lower bound on N to guarantee recovery for given L and S
 - \Rightarrow Depends on algebraic features of the graph-shift S
 - \Rightarrow Some graphs are more amenable to blind identification that others
- \blacktriangleright Unknown shift **S** \Rightarrow Network topology inference

Envisioned application domains

- \Rightarrow Opinion formation in social networks
- \Rightarrow Identify sources of epileptic seizure
- \Rightarrow Event-driven information cascades
- \Rightarrow Trace "patient zero" for an epidemic outbreak

S. Ling and T. Strohmer, "Self-calibration and biconvex compressive sensing," arXiv preprint, 2015.