BLIND IDENTIFICATION OF GRAPH FILTERS WITH SPARSE INPUTS
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Abstract Frequency response of a graph filter Algorithmic approach via convex relaxation Recovery rate in a brain graph: unknown support

» Using S = VAV filteris H = Z,L:O hS' =V (Z,L_O h, ’) " » Rank minimization s. to row-cardinality constraint is NP-hard.
= Nuclear norm ||Z||.. .= >_, 0k(Z) a convex proxy of rank

T = (/01 mixed norm ||Z||2.1 :== S, ||2] ||2 surrogate of ||Z]|2. -
y = diag(h)x Lt 1}

» Consider a brain structural graph (N = 66) [Hagmann]
» P =1+ reweighted /> 1 (left), P = 5 + reweighted ¢, 1 (right)

We postulate that diffusion processes can be modeled as outputs of graph
filters. Leveraging recent advances in graph signal processing and classical
blind deconvolution, we propose a convex algorithm for blind identification
of graph filters with sparse inputs. This task amounts to finding the sources

» Since N\ are diagonal, the GFT-IGT can be used to write y = Hx as

and diffusion coefficients that gave rise to an observed network state.

Graph signal processing - 101

» Network as graph G = (V, £, W): encode pairwise relationships

» Interest here not in G itself, but in data associated with nodes in V
=- The object of study is a graph signal

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

X\V\_ 0.7

» Graph SP: need to broaden classical SP results to graph signals
= Our view: GSP well suited to study network processes

Graph signals and graph-shift operator

» (Node) graph signals are mappings x : V — R
= May be represented as a vector x ¢ R" (with |[V| = N)

» Graph G is endowed with a graph-shift operator S
= Matrix S € RV*N satisfying: Sj = 0for i # jand (i,j) ¢ £
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» Ex: Adjacency A, Degree D and Laplacian L
= Time-shift operator when S = A, for G a directed cycle

\ S captures local
structure in G
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Locality of S and frequency-domain representation

> S is a local linear operator = If y = SX, y; = > _;c\+ SjjX; = 1-hop info

» Spectrum of S useful to analyze x
= Consider diagonalizable shifts S = VAV~

» Leverage S to define graph Fourier transform (GFT) and iGFT

X =V 'x X = VX

[> the two basic elements of GSP are x and S

Linear (shift-invariant) graph filter

» A graph filter H : RN — RN is a map between graph signals
= Focus on linear filters = N x N matrix

» Filter H is a polynomial in S of degree L, with coeffs. h = [hy, ..., h]"

L
H: = hoS°+h1S1 —I-...—I—hLSL: Zh/S’
[=0

> shift-invariance and distributed implementation
= Satisfies H(Sx) = S(Hx), only L-hop information to form y = Hx

https://www.seas.upenn.edu/~ssegarra/
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= Qutput at frequency k depends only on input at frequency k
» Frequency response of filter H is h = Wh, where W is Vandermonde
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» Note that GFT for signals (X = V- 'x) and filters (h h) is different
= If S = A4 (periodic signal), both W and V- equal the DFT

Diffusion processes as graph filter outputs

» Q: Upon observing a graph signal y, how was this signal generated?

» Postulate the following generative model
= An originally sparse signal x = x(©)
= via linear graph dynamics S = x{) = Sx(=1)
— Observed y is a linear combination of the diffused signals x{/

L L
y = Z hx\) = Z h/S'x = Hx
I~0

I=0

» View few elements in supp(x) =: {/ : x; # 0} as sources or seeds

Motivation and problem formulation

» Global opinion profile formed by spreading a rumor
= What was the rumor? Who started it?
= How do people combine the opinions heard to form their own?

» Q: Can we determine x and the combination weights h from y = Hx?
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Unobserved Observed

» Problem: Blind identification of graph filters with sparse inputs
= Generalizes classic blind deconvolution to graphs

» lll-posed = + N unknowns and N observations
= Assume X is S-sparse i.e., ||X||o := |supp(X)| < S

“Lifting” the bilinear inverse problem

» Leverage the frequency response of graph filters (U := V~7)
y = Vdiag(Wh)Ux
=y is a bilinear function of h and x
» Blind graph filter identification = Non-convex feasibility problem
find {h,x}, s.to y=Vdiag(Wh)Ux, |x[o<S.

> Using the Khatri-Rao product © can write y as

y=VW" oU" vec(xh’) (1)

= Reveals y is a linear combination of the entries of Z := xh’

» Matrix Z is of rank-1 and row-sparse =- Linear matrix inverse problem
minrank(z), s.toy=V(w o U") vec(z), [Z|zo<S

= Pseudo-norm ||Z||2,0 counts the non-zero rows of Z
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» Convex relaxation
min |[Z]l + a[[Z]}21, s. 10y = V(v oUT) vec(2)
= Scalable algorithm using method of multipliers

» Refine estimates via iteratively-reweighted optimization
= Weights a;(k) = (||zi(k)"||2 + &)~ per row i, per iteration k

Multiple output signals

» Leverage multiple output signals to aid the blind identification task

» We have access to a collection of P output signals {yp}/{;1
= Corresponding to different sparse inputs x, but a common filter H

» Consider the stacked vectors y .= [y/,...,y}]" and x := [x], ..., x]]"

» Define the rank-one matrices Z, := x,h’, p =1, ..., P, and stack them:
= (i) Vertically in Z, .= [Z47,...,Zp"]T = xhT € RNPxL
= (i) Horizontally in Z;, := [Z4, ..., Zp] € RN*FL,

» Note that Z, is a rank-one matrix and 7, is

' 7 v T T
{2;21 1Z,)|s + 7||Zn||l2.1, s. 1O y—(lp®(V(w ®U") ))vec( )

Numerical tests: Known support, random graph models

» Performance in Erdos-Rényi and scale-free graphs of varying size
= Assume known supp(x) = x =[x", 0]’
= Error quantified as ||[X*h*" — Xh'||r
= Two settings (i) L=95, S=20;and (i) L=5, S =40
= Nuclear norm (left) vs. naive least-squares of (1) (right)
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» Rank minimization achieves perfect recovery when N > 2(L + S)
= Well-below Ny := L x S needed for least-squares to succeed
= Rank minimization is more robust to the type of graph

Recovery rate in random graphs: unknown support

» Recovery rates on Erdos-Rényi graphs (N = 50) for varying L and S
» P=1 (left), P=1 + reweighted ¢, 1 (mid), P=5 + reweighted /> 1 (right)

» Exact recovery over non-trivial (L, S) region
= lteratively-reweighted optimization markedly improves recovery
= Multiple outputs further increase recovery success

» Encouraging results even for real-world graphs
=- Gradual performance decay for increasing L and S

Performance comparison with alternative methods

» Human brain graph of N = 66 brain regions, L=6and S =6
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» Proposed method outperforms alternating-minimization and LS solvers
= Unknown supp(x) ~ Need twice as many observations

Discussion and road ahead

» |dentifiability conditions
= Q: When is {x, h} the unique solution (up to scaling)?
=- Deterministic or probabilistic model assumptions

» Exact recovery conditions
= Q: When does the convex relaxation succeed?
= Lower bound on N to guarantee recovery for given L and S
= Depends on algebraic features of the graph-shift S
= Some graphs are more amenable to blind identification that others

» Unknown shift S = Network topology inference

» Envisioned application domains
= Opinion formation in social networks
= ldentify sources of epileptic seizure
= Event-driven information cascades
=- Trace “patient zero” for an epidemic outbreak
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