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Abstract—This paper deals with the problem of blind identi-
fication of a graph filter and its sparse input signal, thus broad-
ening the scope of classical blind deconvolution of temporal and
spatial signals to irregular graph domains. While the observations
are bilinear functions of the unknowns, a mild requirement on
invertibility of the filter enables an efficient convex formulation,
without relying on matrix lifting that can hinder applicability
to large graphs. On top of scaling, it is argued that (non-cyclic)
permutation ambiguities may arise with some particular graphs.
Deterministic sufficient conditions under which the proposed
convex relaxation can exactly recover the unknowns are stated,
along with those guaranteeing identifiability under the Bernoulli-
Gaussian model for the inputs. Numerical tests with synthetic
and real-world networks illustrate the merits of the proposed
algorithm, as well as the benefits of leveraging multiple signals
to aid the (blind) localization of sources of diffusion.

Index Terms—Graph signal processing, network diffusion,
bilinear equations, blind deconvolution, convex optimization.

I. INTRODUCTION

Network processes such as neural activities at different
regions of the brain [9], [10], vehicle trajectories over road
networks [4], or spatial temperature profiles measured by
a wireless sensor network [19], can be represented as sig-
nals supported on the nodes of a graph. Under the natural
assumption that the signal properties are influenced by the
graph topology (e.g., in a network diffusion or percolation
process), the goal of graph signal processing (GSP) is to
develop algorithms that exploit this relational structure. Ac-
cordingly, generalizations of fundamental signal processing
tasks have been widely explored in recent work; see [14]
for a comprehensive tutorial treatment. Notably graph filters –
which generalize classical time-invariant systems – were con-
ceived as information-processing operators acting on graph-
valued signals [18]. Mathematically, graph filters are linear
transformations that can be expressed as polynomials of the
so-termed graph-shift operator (Section II). The graph shift
offers an alegbraic representation of network structure and
can be viewed as a local diffusion operator. For the directed
cycle graph representing e.g., periodic temporal signals, it
boils down to the classical time-shift operator [18]. Given a
shift, the polynomial coefficients fully determine the graph
filter and are referred to as filter coefficients.
Problem outline and envisioned applications. In this paper,
we revisit the blind identification of graph filters with sparse
inputs, with emphasis on modeling diffusion processes and
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localization of the sources of diffusion [22]. Specifically, given
P observations of graph signals {yi}Pi=1 that we model as
outputs of a diffusion filter (i.e., a polynomial in a known
graph-shift operator), we seek to jointly identify the filter
coefficients h and the input signals {xi}Pi=1 that gave rise to
the network observations. This inverse problem broadens the
scope of classical blind deconvolution of temporal or spatial
signals to graphs [1], [11]. Since the resulting bilinear inverse
problem is ill-posed, we assume that the inputs are sparse
– a well-motivated setting when few seeding nodes inject a
signal that is diffused throughout a network [22]. Accord-
ingly, envisioned application domains include environmental
monitoring (where are the heat or seismic sources?), opinion
formation in social networks (who started the rumor?), neural
signal processing (which brain regions were activated?), and
epidemiology (who is patient zero for the disease outbreak?).
Related work and contributions. Different from most exist-
ing works dealing with source localization on graphs, e.g.,
[16], [20], [25], like [15] the advocated GSP approach is
applicable even when a single snapshot of the diffused signal
is available. Often the models of diffusion are probabilistic in
nature, and resulting maximum-likelihood source estimators
can only be optimal for particular (e.g., tree) graphs [16],
or rendered scalable under restrictive dependency assump-
tions [5]. Relative to [9], [15], the proposed framework can
accommodate signals defined on general undirected graphs
and relies on a convex estimator of the sparse sources of
diffusion. Furthermore, the setup where multiple output signals
are observed (each one corresponding to a different sparse
input), has not been thoroughly explored in convex-relaxation
approaches to blind deconvolution of (non-graph) signals,
e.g., [1], [13]; see [23] for a recent and inspiring alternative
that we leverage here.

A noteworthy approach was put forth in [22], which casts
the (bilinear) blind graph-filter identification task as a linear
inverse problem in the “lifted” rank-one, row-sparse matrix
xhT . While the rank and sparsity minimization algorithms
in [17], [22] can successfully recover sparse inputs along
with low-order graph filters, reliance on matrix lifting can
hinder applicability to large graphs. Beyond this computational
consideration, the overarching assumption of [22] is that the
inputs {xi}Pi=1 share a common support. Here instead we show
how a mild requirement on invertibility of the graph filter
facilitates an efficient convex formulation for the multi-signal
case with arbitrary supports (Section III); see also [23] for a
time-domain precursor. In Section IV we take a closer look
at inherent scaling and (non-cyclic) permutation ambiguities
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arising with some particular graphs. We also briefly comment
on identifiability under the Bernoulli-Gaussian model for the
inputs [12], and state deterministic sufficient conditions under
which the proposed convex relaxation can exactly recover
the unknowns. Numerical tests with synthetic graphs and
a structural brain network corroborate the effectiveness of
the proposed approach in recovering the sparse input signals
(Section V). Concluding remarks are given in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a weighted and undirected network graph G =
(V,A), where V is the set of vertices with cardinality |V| =
N , and A ∈ RN×N is the symmetric graph adjacency matrix
whose entry Aij denotes the edge weight between nodes i and
j. As a more general algebraic descriptor of network structure,
one can define a graph-shift operator S ∈ RN×N as any
matrix having the same sparsity pattern as G [18]. Accordingly,
S can be viewed as a local diffusion (or averaging) operator.
Common choices are to set it to either A (and its normalized
counterparts) or variations of adjacency and Laplacian matri-
ces [6], [14]. Since S is real and symmetric, it is diagonalizable
so that S = VΛVT , with Λ = diag(λ1, . . . , λN ). Lastly, a
graph signal x : V 7→ RN is an N -dimensional vector, where
entry xi represents the signal value at node i ∈ V .
A. Graph-filter models of network diffusion processes

Let y be a graph signal supported on G, which is generated
from an input graph signal x via linear network dynamics of
the form

y = α0

∏∞
l=1(I− αlS)x =

∑∞
l=0 βlS

lx. (1)

While S encodes only one-hop interactions, each successive
application of the shift in (1) diffuses x over G. Indeed, any
process that can be understood as the linear propagation of a
seed signal through a static graph can be written in the form
in (1), and subsumes heat diffusion, consensus and the classic
DeGroot model of opinion dynamics as special cases [3].

The diffusion expressions in (1) are polynomials on S
of possibly infinite degree, yet the Cayley-Hamilton theo-
rem asserts they are equivalent to polynomials of degree
smaller than N . Upon defining the vector of coefficients
h := [h0, . . . , hL−1]T and the shift-invariant graph filter

H := h0IN+h1S+h2S
2+. . .+hL−1S

L−1 =
L−1∑
l=0

hlS
l, (2)

the signal model in (1) becomes y =
(∑L−1

l=0 hlS
l
)
x := Hx,

for some particular h and L ≤ N . Due to the local structure
of S, graph filters represent linear transformations that can
be implemented in a distributed fashion [21], e.g., via L − 1
successive exchanges of information among neighbors.

Leveraging the spectral decomposition of S, graph filters
and signals can be represented in the frequency domain.
Specifically, let us use the eigenvalues of S to define the
N × L Vandermonde matrix ΨL, where Ψij := λj−1i . The
frequency representations of a signal x and filter h are defined
as x̃ := VTx and h̃ := ΨLh, respectively. The latter follows
since the output y=Hx in the frequency domain is given by

ỹ = diag
(
ΨLh

)
VTx = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (3)

This identity can be seen as a counterpart of the convolution
theorem for temporal signals, where ỹ is the elementwise
product (◦) of x̃ and the filter’s frequency response h̃ := ΨLh.

B. Problem formulation

For given shift operator S and filter order L, suppose
we observe P output signals collected in a matrix Y =
[y1, . . . ,yP ] ∈ RN×P such that Y = HX, where X =
[x1, . . . ,xP ] ∈ RN×P is sparse having at most S � N
non-zero entries per column. The goal is to perform blind
identification of the graph filter (and its input signals), which
amounts to estimating sparse X and the filter coefficients
h up to scaling and (possibly) permutation ambiguities; see
Section IV. Sparsity is well motivated when the signals in Y
represent diffused versions of a few localized sources in G,
here indexed by supp(X) := {(i, j) | Xij 6= 0}. Moreover,
the non-sparse formulation is ill-posed, since the number of
unknowns NP + L in {X,h} exceeds the NP observations
in Y.

All in all, using (3) the diffused source localization task can
be stated as a feasibility problem of the form

find {X,h}s. to Y = Vdiag
(
ΨLh

)
VTX, ‖X‖0 ≤ PS, (4)

where the `0-(pseudo) norm ‖X‖0 := |supp(X)| counts the
non-zero entries in X. In words, the goal is to find the solution
to a system of bilinear equations subject to a sparsity constraint
in X; a hard problem due to the non-convex `0-norm as well as
the bilinear constraints. To deal with the latter, building on [23]
we will henceforth assume that the filter H is invertible.

III. CONVEX RELAXATION FOR INVERTIBLE FILTERS

Here we show how to efficiently tackle the blind graph
filter identification problem, through a convex relaxation of
(4) when the diffusion filter is invertible.

To that end, note from (3) that graph filter H is invertible
if and only if h̃i =

∑L−1
l=0 hlλ

l
i 6= 0, for all i = 1, . . . , N . In

words, the frequency response of the filter should not vanish
at the graph frequencies {λi}. In such case one can show
that the inverse operator G := H−1 is also a graph filter on
G, which can be uniquely represented as a polynomial in the
shift S of degree at most N − 1 [18, Theorem 4]. To be more
specific, let g ∈ RN be the vector of inverse-filter coefficients,
i.e., G =

∑N−1
l=0 glS

l. Then one can equivalently rewrite the
generative model Y = HX for the observations as

X = GY = Vdiag(g̃)VTY, (5)

where g̃ := ΨNg ∈ RN is the inverse filter’s frequency
response and ΨN ∈ RN×N is Vandermonde. Naturally,
G = H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency
responses, where 1N denotes the N × 1 vector of all ones.
Leveraging (5), one can recast (4) as a linear inverse problem

min
{X,g̃}

‖X‖0, s. to X = Vdiag(g̃)VTY, X 6= 0. (6)

This approach is markedly different from the matrix lifting
technique used in [22] to handle the bilinear equations in (4).

The `0 norm in (6) makes the problem NP-hard to optimize.
Over the last decade or so, convex-relaxation approaches to
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Algorithm 1 Iteratively-reweighted `1 minimization for (7)
1: Input: Matrix YTV �V, δ > 0 and ε > 0.
2: Initialize t = 0, w(0) = 1NP and X(0) = 0.
3: repeat
4: Solve

g̃(t+1) = argmin
g̃

∥∥∥w(t) ◦
[
(YTV �V)g̃

]∥∥∥
1

s. to 1TN g̃ = 1.

5: Form X(t+1) = (YTV �V)g̃(t+1).
6: Update w(t+1)

i = 1
[vec(X(t+1))]i+δ

, i = 1, 2, ..., NP .
7: t← t+ 1.
8: until ‖X(t+1) −X(t)‖1/‖X(t)‖1 ≤ ε
9: return ˆ̃g := g̃(t+1) and X̂ := X(t+1)

tackle sparsity minimization problems have enjoyed remark-
able success, since they often entail no loss of optimality.
Accordingly, we instead: (i) seek to minimize the `1-norm
convex surrogate of the cardinality function, that is ‖X‖1 =∑
i,j |Xij |; and (ii) express the filter in the graph spectral

domain as in (5) to obtain the cost

‖X‖1 = ‖GY‖1 = ‖Vdiag(g̃)VTY‖1 = ‖(YTV �V)g̃‖1,

where � denotes the Khatri-Rao (i.e., columnwise Kronecker)
product. This suggests solving the convex `1-synthesis prob-
lem (in this case a linear program), e.g., [24], namelŷ̃g = argmin

g̃∈RN

‖(YTV �V)g̃‖1, s. to 1TN g̃ = 1. (7)

While the linear constraint in (7) avoids ̂̃g = 0, it also serves
to fix the scale of the solution.

As a result, under the pragmatic assumption that the diffu-
sion filter is invertible, one can readily use e.g., an off-the-shelf
interior-point method or a specialized sparsity-minimization
algorithm to solve (7) efficiently. Different from the solvers
in [17], [22], the aforementioned algorithmic alternatives are
free of expensive singular-value decompositions per iteration.
We have found that overall performance can be improved
via the iteratively-reweighted `1-norm minimization procedure
tabulated under Algorithm 1; see also [2] for a justification of
such refinement. In any case, notice that once the frequency
response ̂̃g of the inverse filter is recovered, one can readily
reconstruct the sources via X̂ = (YTV�V)g̃ as well as the
filter H, if desired.

In the next section we will take a closer look at the inherent
ambiguities associated with the bilinear model Y = HX,
some of which are unique to the network setting dealt with
here. These are of course important to delineate the scope of
identifiability (i.e., uniqueness) results. We will complete our
discussion with deterministic sufficient conditions under which
the convex relaxation (7) is tight.

IV. IDENTIFIABILITY AND EXACT RECOVERY

To establish further connections with blind deconvolution
of periodic discrete-time signals, recall these can be viewed
as graph signals supported on the directed cycle graph (whose

Fig. 1. Toy undirected graph (left) used to illustrate the symmetric permutation
ambiguity between nodes 2 and 4. The fourth eigenvector v4 of S = A
(center) has the problematic form. Then if {X0, h̃0} satisfies the bilinear
equations Y = Vdiag(h̃)VTX, so does {PX0, diag(p)h̃0} for the shown
permutation matrix P (right) and p = [1, 1, 1,−1, 1, 1, 1]T .

circulant adjacency matrix is diagonalized by the DFT ba-
sis) [18]. In this special case, the blind identification task is
known to suffer from unavoidable scaling and circulant-shift
ambiguities; see e.g., [1], [23]. Here we examine more general
symmetric permutation ambiguities arising with unweighted
graphs, and briefly outline a relevant identifiability result as
well as preliminary exact recovery conditions for (7).

A. Permutation ambiguities for some unweighted graphs

In solving the bilinear inverse problem formulated in Sec-
tion II, for some particular graphs in addition to scaling we
may also encounter (non-cyclic shift) permutation ambiguities.
We can resolve the scaling ambiguity by e.g., a fortiori setting
‖g̃0‖1 = 1 as in the experiments of Section V, where g̃0 is the
ground-truth frequency response of the inverse filter. Inspired
by the identifiability studies for sparsity-constrained bilinear
problems [12], here we examine said permutation ambiguities
for unweighted graphs with shift S = VΛVT .

Let {X0, h̃0} collect the ground-truth sparse input signals
and the filter’s frequency response, respectively. Let u(i,j) ∈
RN be a unit-norm vector with zero entries except for u(i,j)i =

−u(i,j)j = 1/
√

2. As we show next, a permutation ambiguity
arises if, say, the kth eigenvector of S (i.e., the kth column of
V) has the form u(i,j). Indeed, in that case one could introduce
a binary signed vector p ∈ {−1, 1}N with a single negative
entry pk = −1, to construct another solution of the form

X1 := PX0, h̃1 := diag(p)h̃0, (8)

where P = IN − 2u(i,j)(u(i,j))T = Vdiag(p)VT is a
symmetric permutation matrix that interchanges the signal
values at nodes i (xi) and j (xj) when applied to the graph
signal x. It is immediate that the pair in (8) satisfies the
generative model Y = HX = Vdiag(h̃)VTX. So, if u(i,j)

is an eigenvector of S then we can not distinguish the values
at nodes i and j and the problem remains non-identifiable.

To exemplify this situation, consider the toy graph illustrated
in Fig 1-(left). One can consider the adjacency matrix as the
shift (S = A) and denote the corresponding eigenvectors as
V = [v1, · · · ,v7]. Fig 1-(center) shows that v4 = u(2,4). Then
it follows that for the matrix P in Fig 1-(right) and the vector
p = [1, 1, 1,−1, 1, 1, 1]T , one can construct another solution
{X1, h̃1} 6= {X0, h̃0} using (8). In other words, nodes 2 and
4 are indistinguishable.

While it is challenging to obtain a formal characterization
of problematic graphs, in practice we have encountered issues
with dense networks as well as with some very sparse graphs.
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For (continuous-valued) weighted graphs such ambiguities
effectively disappear. Before moving on to issues of exact
recovery, a remark on identifiability of (4) for a simple but
widely adopted (random) sparsity model is in order.

Remark 1 (Identifiability for Bernoulli-Gaussian model)
Because of its analytical tractability, the Bernoulli-Gaussian
model is widely adopted to describe and generate random
sparse matrices such as X ∈ RN×P (we also use it for
the simulations in Section V). Sparse matrices adhering to
the model are X = Ω ◦ R, where Ω ∈ RN×P is an i.i.d.
Bernoulli matrix with parameter θ (i.e., P[Ωij = 1] = θ),
and R ∈ RN×P is an independent random matrix with
i.i.d. symmetric random variables drawn from a standard
Gaussian distribution. Under the Bernoulli-Gaussian model,
[12, Proposition 40] asserts that problem (6) is identifiable
(up to scaling and symmetric permutation ambiguities) with
probability at least 1 − exp(−cθP ), for 1

N < θ < 1
4 and

P > cN log(N), where c > 0 is a sufficiently large constant.

B. Exact recovery conditions

Suppose that (6) is identifiable and let {X0, g̃0} be the
solution. The following proposition (that relies heavily on
[24, Theorem 1]) offers sufficient conditions under which the
convex relaxation (7) succeeds in exactly recovering {X0, g̃0}.

Proposition 1 Let I := supp(vec(X0)) index the non-zero
entries of vectorized X0, and let Ic be the complement of I.
Moreover, define Z := YTV �V ∈ RNP×N and let ZS be
the submatrix of Z with rows indexed by S ⊂ {1, 2, ..., NP}.
Then, the solution to (7) is unique and equal to g̃0 if the two
following conditions are satisfied:
C1) rank(ZIc) = N − 1; and
C2) There exists a vector f ∈ RNP such that ZT f = γ1N for
some γ 6= 0, such that fI = sign(ZI g̃0) and ‖fIc‖∞ < 1.

Proof: As per [24, Theorem 1], g̃0 is the unique solution of
(7) if ker(ZIc) ∩ ker(1N ) = {0}. But since g̃0 ∈ ker(ZIc)
and g̃0 6∈ ker(1N ) because of the constraint in (7), then C1)
ensures said intersection is {0}. Optimality condition C2)
essentially requires 1N to belong to the set of subgradients
of ‖Zg̃‖1 at g̃0; see [24, Theorem 1] for further details. �

Naturally, a more insightful exact recovery and sample
complexity result along the lines of the one in Remark 1
would be most valuable [i.e., when are C1)-C2) satisfied for
the Bernoulli-Gaussian model?], but left as future work.

V. NUMERICAL RESULTS

We assess the performance of our proposed approach by
testing the iteratively-reweighted `1-norm minimization pro-
cedure in Algorithm 1. The per-iteration sparse recovery
problems are solved using CVX [7].
Simulation setup. In all cases we consider undirected graphs
with graph-shift operator chosen as the normalized adjacency
matrix S = D−

1
2 AD−

1
2 , where D := diag(A1N ) is a

diagonal matrix of node degrees. The ground-truth sparse input
matrix X0 is drawn from a Bernoulli-Gaussian model as in
Remark 1, for varying parameters N , P , and sparsity level

(i.e., number of nonzero entries) S. Filter coefficients h0 are
generated according to h0 = (e1 + αb)/‖e1 + αb‖1, where
e1 = [1, 0, · · · , 0]T ∈ RL is the first canonical basis vector and
entries of b ∈ RL are drawn independently from a standard
Gaussian distribution. Such a model for h0 is inspired by
[23], and we later corroborate that the recovery performance
improves as α decreases. Also note that h0 is normalized to
unit `1-norm to fix the scale of the problem. Finally, given
X0 and H0 = Vdiag(ΨLh0)VT , the N × P matrix of
observations is generated as Y = H0X0.

The relative recovery error eX = ‖X̂ − X0‖/‖X0‖ is
adopted as figure of merit to evaluate algorithmic performance.
We estimate the rate of successful recovery for synthetic and
real-world graphs under different parameters by defining a
successful recovery as one with eX < 0.01.
Random graphs. Consider Erdős-Rényi random graphs with
N = 50 nodes, where edges are formed independently
with probability p = 0.3. The rate of successful recovery
is estimated for realizations of random graphs which are
connected and do not give rise to permutation ambiguities (cf.
Section IV-A). Figures 2(a) and 2(b) depict the recovery rates
as a function of P and S for α = 0.1 and 0.3, respectively,
averaged over 100 realizations for (invertible) graph filters of
order L = 5. As expected, in both cases recovery is more
challenging for larger S and smaller P ; see the dark-gray area
of low-success probability around the top-left corner. More-
over, decreasing α makes successful recovery more likely.
For instance, for α = 0.1 [Fig. 2(a)] we can successfully
recover dense input signals with e.g., S ≈ N/2 = 25 and
only P = 10 observations. For (effectively) lower-order filters
resulting in more localized diffusion dynamics, one obtains
favorable recovery performance.

We also compare the proposed approach against its less-
scalable, matrix lifting-based precursor in [22]. Figures 2(c)
and 2(d) respectively show the recovery rates for both methods
as a function of sparsity S and filter order L, for N = 50,
p = 0.3, P = 10, and α = 0.5 averaged over 20 realiza-
tions. Apparently, Algorithm 1 [Fig. 2(c)] can be successful
over a larger range of values of L. Moreover, it uniformly
outperforms the algorithm in [22, Problem (9)]; see Fig. 2(d).
Brain graph. We also consider a structural brain graph with
N = 66 nodes or neural regions of interest (ROIs), and
edge weights given by the density of anatomical connections
between regions [8]. The level of activity of each ROI can be
represented by a graph signal x, thus successive applications
of S model a linear evolution of the brain activity pattern.
Supposing we observe a linear combination (filter) of the
evolving states of an originally sparse brain signal, then blind
identification amounts to jointly estimating which regions
were originally active, the activity in these regions and the
coefficients of the linear combination.

We repeat the recovery-rate analysis performed for Erdős-
Rényi graphs averaged over 20 realizations, and report the
results in Figs. 2(e)–(h). Figures 2(e) and 2(f) showcase
that our algorithm successfully identifies the initial excitation
regions as well as the diffusion coefficients over a broad
region in parameter space. By comparing Figs. 2(g) and 2(h),
it is apparent that also in this setting the proposed approach
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Fig. 2. Rate of recovery of X as a function of S (number non-zero entries in X) and P (number of observations) in N = 50-node Erdős-Rényi graphs with
p = 0.3 (edge existence probability) for (a) α = 0.1 and (b) α = 0.3, using Algorithm 1. Plots (e) and (f) are counterparts of (a) and (b), respectively, for
the structural brain network in [8]. Recovery rate in Erdős-Rényi graphs (N = 50, p = 0.3) as a function of S and L (filter order) using (c) Algorithm 1
and (d) the matrix-lifting approach of [22]. Plots (g) and (h) are counterparts of (c) and (d), respectively, for the aforementioned structural brain network.

outperforms the state-of-the-art method in [22], corroborating
the effectiveness of Algorithm 1.

VI. CONCLUSION

We studied the problem of blind graph filter identification,
which extends blind deconvolution of time (or spatial) domain
signals to graphs. By introducing a mild assumption on
invertibility of the graph filter, we obtained a computationally
simpler convex relaxation for (diffused) source localization in
the multi-signal case. Ongoing work includes deriving suitable
graph-dependent conditions under which exact (and stable)
recovery can be guaranteed, even when only a fraction of
nodes is observed. This is a challenging problem, since the
favorable (circulant) structure of time-domain filters is no
longer present in the network-centric setting dealt with here.
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