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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as undirected graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Study graph signals, data associated with N nodes in V

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing fundamentals

I Graph signals mappings x : V → R, represented as vectors x ∈ RN

⇒ As.: Signal properties related to topology of G

I To process graph signals ⇒ Graph-shift operator S ∈ RN×N

⇒ Local Sij = 0 for i 6= j and (i , j) /∈ E ⇒ Ex: A or L = D− A

⇒ Spectrum of symmetric S = VΛVT

I Graph Fourier Transform (GFT) for signals: x̃ = VTx

I Graph filters H : RN → RN are maps between graph signals

⇒ Polynomial in S with coefficients h ∈ RL ⇒ H :=
∑L−1

l=0 hlSl

⇒ Orthogonal frequency operator: H = Vdiag(h̃)VT

⇒ Freq. response (GFT for filters): h̃ = Ψh and [Ψ]k,l = λk
l−1

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs 3



Diffusion processes as graph filter outputs

I Q: Upon observing a graph signal y, how was this signal generated?

I Postulate y is the response of linear diffusion to a sparse input x

y = α0

∞∏
l=1

(I− αlS)x =
∞∑
l=0

βlS
lx

⇒ Common generative model, e.g., heat diffusion, consensus

I Cayley-Hamilton asserts we can write diffusion as (L ≤ N)

y =

( L−1∑
l=0

hlS
l

)
x := Hx

I Model: Observed network process as output of a graph filter

⇒ View few elements in supp(x) =: {i : xi 6= 0} as sources
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Motivation and problem statement

I Ex: Global opinion/belief profile formed by spreading a rumor

⇒ What was the rumor? Who started it?

⇒ How do people weigh in peers’ opinions to form their own?

Observed Unobserved 

Graph Filter 

y x 

I Problem: Blind identification of graph filters with sparse inputs

I Q: Given S, can we find sparse x and the filter coeffs. h from y = Hx?

⇒ Extends classical blind deconvolution to graphs

⇒ Localization of sources that diffuse on the network
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Work in context

I Super-resolution of point sources via convex programming
I Signals on structured domains (e.g.,time series) [Fernandez-Granda’15]
I Known diffusion model (low-pass point-spread function)

I Source localization on graphs
I Maximum-likelihood estimator optimal for trees [Pinto et al’12]
I Scalable under restrictive dependency assumptions [Feizi el al’16]
I Non-convex estimators of sparse sources [Pena et al’16], [Hu et al’16]

I Blind identification of graph filters [Segarra et al’17]
I Matrix lifting can hinder applicability to large graphs

I Our contribution: mild requirement of graph filter invertibility

⇒ Convex formulation amenable to efficient solvers

⇒ Multi-signal case with arbitrary supports
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Blind graph filter identification

I Suppose we observe P output signals Y = [y1, ..., yP ] ∈ RN×P

I Leverage frequency response of graph filters

Y = HX ⇒ Y = Vdiag(Ψh)VTX

⇒ Y is a bilinear function of the unknowns h and X

I Ill-posed problem ⇒ L+ NP unknowns and NP observations

⇒ As.: X has S-sparse columns i.e., ‖X‖0 := |supp(X)| ≤ PS

I Blind graph filter identification ⇒ Non-convex feasibility problem

find {h,X}, s. to Y = Vdiag
(
Ψh

)
VTX, ‖X‖0 ≤ PS

⇒ Identifiability for Bernoulli-Gaussian model on X [Li et al’17]
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Permutation ambiguities

I Beyond scaling, permutation ambiguities can arise with unweighted G
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I Let {X0, h̃0} be a solution, i.e., Y = Vdiag(h̃0)VTX0

⇒ Define unit-norm u(i,j) ∈ RN , with u
(i,j)
i = −u

(i,j)
j = 1√

2

I If vk = u(i,j), then ∃ {X1, h̃1} such that Y = Vdiag(h̃1)VTX1

X1 := PX0, h̃1 := diag(p)h̃0

P := I− 2u(i,j)(u(i,j))T = Vdiag(p)VT

⇒ Compare with cyclic-shift ambiguity for discrete-time signals
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Inverse filter and convex relaxation

I Inverse filter G = H−1 is also a graph filter on G [Sandryhaila-Moura’13]

⇒ Requires h̃i =
∑L−1

l=0 hlλ
l
i 6= 0, for all i = 1, ...,N

⇒ Inverse-filter coefficients g ∈ RN , frequency response g̃ = Ψg

I Recast as linear inverse problem [Wang-Chi’16]

min
{g̃,X}

‖X‖0, s. to X = Vdiag(g̃)VTY, X 6= 0

I Still NP hard. Relax! and minimize convex ‖X‖1

ˆ̃g = argmin
g̃

‖(YTV � V)g̃‖1, s. to 1T g̃ = 1

⇒ Constraint fixes the scale and avoids all-zero solution

⇒ `1-synthesis problem, efficient solvers available
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Recovery guarantee for `1 relaxation

I Let {X0, g̃0} be the solution, i.e., X0 = Vdiag(g̃0)VTY

⇒ I indexes the support of vec(X0), complement is Ic

I Define Z := YTV � V ∈ RNP×N

⇒ ZS is the submatrix of Z with rows indexed by S ⊂ {1, ...,NP}.

Proposition: ˆ̃g = g̃0 if the two following conditions are satisfied
1) rank(ZIc ) = N − 1; and
2) There exists f ∈ RNP such that ZT f = γ1, for some γ 6= 0 and

fI = sign(ZI g̃0) and ‖fIc‖∞ < 1

I Cond. 1) ensures uniqueness of solution ˆ̃g

I Cond. 2) guarantees existence of a dual certificate f for `0 optimality
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Simulation setup

I Consider undirected graphs with S = D− 1
2AD− 1

2

⇒ Erdős-Rényi (ER) graphs with N = 50 and edge prob. p = 0.3

⇒ Structural brain network with N = 66 [Hagmann et al’08]

I X0 adheres to a Bernoulli-Gaussian model. Vary P and S

I Filter h0 = (e1 + αb)/‖e1 + αb‖1 as in [Wang-Chi’16]

⇒ e1 = [1, 0, ..., 0]T ∈ RL and b ∼ N (0, I)

⇒ Recovery performance increases while α ≥ 0 decreases

I Observation matrix → Y = Vdiag(Ψh0)VTX0

I Figure of merit: Relative recovery error eX = ‖X̂− X0‖/‖X0‖
⇒ Successful recovery eX < 0.01. Show rates over 20 realizations
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Recovery performance

I Successful recovery over most of the (S ,P) plane

⇒ Using multiple signals aids recovery

⇒ Performance improves with smaller α

I Brain graph (α = 0.5). Proposed (left) and [Segarra et al’17] (right)

⇒ Performance of matrix lifting approach degrades faster with L
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Concluding summary

I Blind identification of graph filters with multiple sparse inputs

⇒ Extends blind deconvolution of space/time signals to graphs

⇒ Key: model diffusion process as output of graph filter

I Invertible graph filter assumption

⇒ From a bilinear to a linear inverse problem

⇒ Devoid of matrix lifting → Scales better to large graphs

⇒ Encouraging performance for random and real-world graphs

I Ongoing work

⇒ Exact recovery under the Bernoulli-Gaussian model

⇒ Stable recovery from noisy and sampled observations

I Envisioned application domains

(a) Localize sources of epileptic seizure
(b) Event-driven information cascades and “fake-news” detection
(c) Trace “patient zero” for an epidemic outbreak
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