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Network Science analytics

Online social media Internet Clean energy and grid analytics
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> Network as undirected graph G = (V, £): encode pairwise relationships

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

= Study graph signals, data associated with N nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic



Graph signal processing fundamentals

» Graph signals mappings x : V — R, represented as vectors x € RV
= As.: Signal properties related to topology of G

RNXN
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To process graph signals = Graph-shift operator S €
= Local Sjj =0for i#jand (i,j)¢ € = Exx AorL=D—-A
= Spectrum of symmetric S = VAV'

v

Graph Fourier Transform (GFT) for signals: ¥ = V'x

v

Graph filters H : RN — RN are maps between graph signals
= Polynomial in S with coefficients h € Rt = H := ,L;01 h,S!
= Orthogonal frequency operator: H = Vdiag(h)V7
= Freq. response (GFT for filters): h = Wh and [W],, = ./}



Diffusion processes as graph filter outputs

» Q: Upon observing a graph signal y, how was this signal generated?
» Postulate y is the response of linear diffusion to a sparse input x
(oo} (oo}
y = aoJJ0-asS)x = > 58
I=1 1=0
= Common generative model, e.g., heat diffusion, consensus
> Cayley-Hamilton asserts we can write diffusion as (L < N)
L—1
y= (Zh,S') x := Hx
1=0
» Model: Observed network process as output of a graph filter

= View few elements in supp(x) =: {i : x; # 0} as sources



Motivation and problem statement

» Ex: Global opinion/belief profile formed by spreading a rumor
= What was the rumor? Who started it?
= How do people weigh in peers’ opinions to form their own?
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Unobserved Observed

» Problem: Blind identification of graph filters with sparse inputs

> Q: Given S, can we find sparse x and the filter coeffs. h from y = Hx?
= Extends classical blind deconvolution to graphs

= Localization of sources that diffuse on the network



Work in context

v

Super-resolution of point sources via convex programming

» Signals on structured domains (e.g.,time series) [Fernandez-Granda’'15]
> Known diffusion model (low-pass point-spread function)

v

Source localization on graphs

» Maximum-likelihood estimator optimal for trees [Pinto et al'12]
> Scalable under restrictive dependency assumptions [Feizi el al'16]
» Non-convex estimators of sparse sources [Pena et al’'16], [Hu et al'16]

> [Segarra et al'17]
> Matrix lifting can hinder applicability to large graphs

» Our contribution: mild requirement of graph filter invertibility
= Convex formulation amenable to efficient solvers

= Multi-signal case with arbitrary supports



Blind graph filter identification

» Suppose we observe P output signals Y = [yq,...,yp] € RVXP

v

Leverage frequency response of graph filters

Y =HX = Y = Vdiag(Wh)V'X

=Yisa function of the unknowns h and X
» lll-posed problem = [ 4+ NP unknowns and NP observations

= As.: X has S-sparse columns i.e., || X||o := |supp(X)| < PS
» Blind graph filter identification =- Non-convex feasibility problem

find {h,X}, s.to Y =Vdiag(Wh)V'X, |X|o < PS

= |dentifiability for Bernoulli-Gaussian model on X [Li et al'17]



Permutation ambiguities
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» Let {Xo, ho} be a solution, i.e., Y = Vdiag(ho)V ' Xg
. H i . 1 1
= Define unit-norm ul¥) € RV, with uf J) = 7u} 4 — %

> If vi = ul), then 3 {X,h;} such that Y = Vdiag(h,)V' X,

X, :=PXo, h, :=diag(p)ho
P :=1—2ul) (W) = Vdiag(p)V"

= Compare with cyclic-shift ambiguity for discrete-time signals



Inverse filter and convex relaxation

» Inverse filter G = H™! is also a graph filter on G [Sandryhaila-Moura'13]
= Requires i; = Y/ AL #£0, forall i=1,...,N
= Inverse-filter coefficients g € RV, frequency response § = Wg

> Recast as linear inverse problem [Wang-Chi'16]

min [Xlo, s to X = Vdiag(&@)VTY, X #0

)

> Still . Relax! and minimize convex ||X||;

g=argmin|[(Y'VOV)g|;, s to 17Tg=1
g

= Constraint fixes the scale and avoids all-zero solution
= {1-synthesis problem, efficient solvers available



: ol
Recovery guarantee for ¢; relaxation 78

» Let {Xo,80} be the solution, i.e., Xo = Vdiag(go)V'Y
= T indexes the support of vec(Xy), complement is Z¢

» Define Z:= YTV V e RVPXN
= Zs is the submatrix of Z with rows indexed by S C {1, ..., NP}.

~

Proposition: g = g if the two following conditions are satisfied
1) rank(Zzc) = N —1; and
2) There exists f € RMP such that ZTf = 1, for some 7 # 0 and

fr = sign(Zz8o) and ||fre]|oo < 1

» Cond. 1) ensures uniqueness of solution g
» Cond. 2) guarantees existence of a dual certificate f for /5 optimality



Simulation setup

» Consider undirected graphs with S = D :AD:
= Erdés-Rényi (ER) graphs with N = 50 and edge prob. p = 0.3
= Structural brain network with N = 66 [Hagmann et al'08]

v

Xo adheres to a Bernoulli-Gaussian model. Vary P and S

v

Filter hy = (e; + ab)/|le1 + ab||; as in [Wang-Chi'16]
= e; =[1,0,...,0]" € Rt and b ~ N(0,1)
= Recovery performance increases while a > 0 decreases

v

Observation matrix — Y = Vdiag(Who)V' X,

> Relative recovery error ex = ||X — Xol| /|| Xol|
= Successful recovery ex < 0.01. Show rates over 20 realizations



Recovery performance
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> Successful recovery over most of the (S, P) plane
= Using multiple signals aids recovery

= Performance improves with smaller «
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» Brain graph (o = 0.5). Proposed (left) and [Segarra et al'17] (right)
= Performance of matrix lifting approach degrades faster with L



Concluding summary

» Blind identification of graph filters with multiple sparse inputs
= Extends blind deconvolution of space/time signals to graphs

= Key: model diffusion process as output of graph filter

= From a bilinear to a linear inverse problem
= Devoid of matrix lifting — Scales better to large graphs

= Encouraging performance for random and real-world graphs

» Ongoing work
= Exact recovery under the Bernoulli-Gaussian model

= Stable recovery from noisy and sampled observations

nvisioned application domains

a) Localize sources of epileptic seizure

b) Event-driven information cascades and “fake-news” detection
c) Trace “patient zero” for an epidemic outbreak
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