
Learning to Identify Sources of Network Diffusion
Chang Ye and Gonzalo Mateos

Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

Abstract—We propose a deep learning solution to the inverse
problem of localizing sources of network diffusion. Invoking
graph signal processing (GSP) fundamentals, the problem boils
down to blind estimation of a diffusion filter and its sparse
input signal encoding the source locations. While the observations
are bilinear functions of the unknowns, a mild requirement on
invertibility of the graph filter enables a convex reformulation
that we solve via the alternating-direction method of multipliers
(ADMM). We unroll and truncate the novel ADMM iterations,
to arrive at a parameterized neural network architecture for
Source Localization on Graphs (SLoG-Net), that we train in an
end-to-end fashion using labeled data. This way we leverage
inductive biases of a GSP model-based solution in a data-
driven trainable parametric architecture, which is interpretable,
parameter efficient, and offers controllable complexity during
inference. Experiments with simulated data corroborate that
SLoG-Net exhibits performance in par with the iterative ADMM
baseline, while attaining significant (post-training) speedups.

Index Terms—Graph signal processing, network diffusion,
deep learning, blind deconvolution, algorithm unrolling.

I. INTRODUCTION

We study the problem of localizing sources of network
diffusion, which can be cast as one of blind graph filter
identification [23], [26]. To fix ideas, suppose we observe
P graph signals {yi}Pi=1 that we model as outputs of some
diffusion graph filter, i.e., a polynomial in the graph-shift
operator of a known graph G [7], [15], [20]. The goal is to
jointly identify the filter coefficients h and the input signals
{xi}Pi=1 that generated the network observations. This inverse
problem broadens blind deconvolution of temporal or spatial
signals to graph domains [1], [12], [24]. Since the resulting
bilinear inverse problem is ill-posed, we assume that the inputs
are sparse – a natural setting when few source nodes inject
a signal that spreads through the network [23]. Applications
of source localization on graphs include sensor-based environ-
mental monitoring (where is the epicenter?), opinion formation
in social networks (who started the rumor?), neural signal
processing (which brain regions were activated post stimuli?),
epidemiology (who is patient zero for the disease outbreak?),
or disinformation campaigns (which accounts instilled fake
news?). In this paper, we propose a novel data-driven deep
learning (DL) solution to this source localization problem.
Prior art, proposed approach and contributions. Unlike
most existing works dealing with source localization on
graphs, e.g., [17], [21], [28], similar to [16], [23], [26] the
advocated approach brings to bear the graph signal processing
(GSP) toolbox [15]. A noteworthy GSP method was put forth

This work was supported in part by the NSF Awards under
Grants CCF-1750428, CCF-1934962, and ECCS-1809356. Author emails:
{cye7,gmateosb}@ur.rochester.edu.

in [23], which casts the (bilinear) blind graph filter identifi-
cation task as a linear inverse problem in the “lifted” rank-
one, row-sparse matrix xh⊤; see also [1], [13] for seminal
blind deconvolution work via convex programming. While the
rank and sparsity minimization algorithms in [19], [23] can
successfully recover sparse inputs along with low-order graph
filters, reliance on matrix lifting can hinder applicability to
large graphs. Beyond this computational consideration, the
overarching assumption of [23] is that the inputs {xi}Pi=1 share
a common support. Other works adopt probabilistic models of
network diffusion, and resulting maximum-likelihood source
estimators can only be optimal for particular (e.g., tree)
graphs [17], or rendered scalable under restrictive dependency
assumptions [6]. Relative to [10], [16], the proposed frame-
work can accommodate signals defined on general undirected
graphs and relies on a convex estimator of the sparse sources
of diffusion, which here we favorably exploit to design a DL
architecture as well as to generate training examples.

In this context, our starting point is the model-based blind
graph filter identification formulation in [26]. A mild re-
quirement on invertibility of the graph filter facilitates an
efficient convex formulation for the multi-signal case with
arbitrary supports (Section III); see also [24] for a time-domain
precursor. While [26] focused on fundamental identifiability
conditions and exact recovery guarantees, here we shift gears
to algorithmic issues and develop a solver based on the
alternating-directions method of multipliers (ADMM) [2, Ch.
3.4.4]. In Section IV we unroll and truntate the novel ADMM
iterations [14], [25], to arrive at a parameterized neural net-
work architecture for Source Localization on Graphs (SLoG-
Net), that we train in an end-to-end fashion using labeled data.
This way we leverage inductive biases of a GSP model-based
solution in a data-driven trainable parametric architecture,
which is interpretable, parameter efficient, and offers control-
lable complexity during inference. Experiments with simulated
data corroborate that SLoG-Net exhibits performance in par
with the iterative ADMM baseline, while attaining significant
(post-training) speedups (Section V). These preliminary tests
show promise and support the prospect of algorithm unrolling
for learning from network data; see also [4], [18]. Concluding
remarks are given in Section VI, which includes a discussion
about future research direction in this space.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a weighted and undirected network graph
G(V,A), where V is the set of vertices of cardinality |V| = N ,
and A ∈ RN×N

+ is the symmetric adjacency matrix. Entries
Aij = Aij ≥ 0 denote the edge weight between nodes i
and j. As a more general algebraic descriptor of network

727ISBN: 978-1-6654-6798-8 EUSIPCO 2022

structure, one can define a graph-shift operator S ∈ RN×N as
a matrix with the same sparsity pattern as G [20]. Accordingly,
S can be viewed as a local, meaning one-hop, diffusion (or
averaging) operator. See [8], [15] for typical choices including
normalized variations of adjacency and Laplacian matrices.
Since S is symmetric, it is diagonalizable as S = VΛV⊤, with
Λ = diag(λ1, . . . , λN). Lastly, a graph signal x : V 7→ RN is
an N -dimensional vector, where entry xi represents the signal
value at node i ∈ V; see [15] for examples.

A. Graph filter models of network diffusion

Let y be a graph signal supported on G, which is generated
from an input state x via linear network diffusion, namely

y = α0

∏∞
l=1(IN − αlS)x =

∑∞
l=0 βlS

lx. (1)

While S encodes only one-hop interactions, each successive
application of the shift in (1) diffuses x over G. This model is
quite general and subsumes heat diffusion, consensus and the
classic DeGroot model of opinion dynamics [5].

The diffusion expressions in (1) are polynomials on S
of possibly infinite degree, yet the Cayley-Hamilton theo-
rem asserts they are equivalent to polynomials of degree
smaller than N . Upon defining the vector of coefficients
h := [h0, . . . , hL−1]

⊤ and the (convolutional) graph filter

H :=

L−1∑
l=0

hlS
l, (2)

the signal model in (1) becomes y =
(∑L−1

l=0 hlS
l
)
x := Hx,

for some particular h and L ≤ N . Due to the local structure
of S, graph filters represent linear transformations that can
be implemented in a distributed fashion [22], e.g., via L − 1
successive exchanges of information among neighbors in G.

Leveraging the spectral decomposition of S, graph filters
and signals can be represented in the frequency domain.
Specifically, let us use the eigenvalues of S to define the
N × L Vandermonde matrix ΨL, where Ψij := λj−1

i . The
frequency representations of a signal x and filter h are defined
as x̃ := V⊤x and h̃ := ΨLh, respectively. The latter follows
since the output y=Hx in the frequency domain is given by

ỹ = diag
(
ΨLh

)
V⊤x = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (3)

This identity can be seen as a counterpart of the convolution
theorem for temporal signals, where ỹ is the elementwise
product (◦) of x̃ and the filter’s frequency response h̃.

B. Problem statement

For given shift operator S and filter order L, suppose
we observe P output signals collected in a matrix Y =
[y1, . . . ,yP] ∈ RN×P such that Y = HX, where X =
[x1, . . . ,xP] ∈ RN×P is sparse having at most S ≪ N
non-zero entries per column. The goal is to perform blind
identification of the graph filter (and its input signals), which
amounts to estimating sparse X and the filter coefficients h
up to scaling and (possibly) permutation ambiguities [26].
Sparsity is well motivated when the signals in Y represent
diffused versions of a few localized sources in G, here indexed

by supp(X) := {(i, j) | Xij ̸= 0}. Moreover, the non-
sparse formulation is ill-posed, since the number of unknowns
NP + L in {X,h} exceeds the NP observations in Y.

All in all, using (3) the diffused source localization task can
be stated as a feasibility problem of the form

find {X,h} s. to Y = Vdiag
(
ΨLh

)
V⊤X, ∥X∥0 ≤ PS,

(4)
where the ℓ0-(pseudo) norm ∥X∥0 := |supp(X)| counts the
non-zero entries in X. In words, we are after the solution to a
system of bilinear equations subject to a sparsity constraint in
X; a hard problem due to the non-convex ℓ0-norm as well as
the bilinear constraints. To deal with the latter, similar to [24],
[26] we will henceforth assume that the filter H is invertible.

Suppose that X is a realization drawn from some distri-
bution of sparse matrices, say the Bernoulli-Gaussian model
for which one can establish (4) is identifiable [26, Remark 1].
Likewise, suppose the filter taps h are drawn from a distribu-
tion such that H is invertible with high probability. Then given
independent training samples T := {Xi,Yi}|T |

i=1 adhering to
(1), our goal in this paper is to learn a judicious parametric
mapping that predicts X̂ = Φ(Y;Θ) by minimizing a loss
function

L(Θ) :=
1

|T |
∑
i∈T

ℓ(Xi,Φ(Yi;Θ)), (5)

where Θ are learnable parameters. The particular choice of ℓ
will be discussed in Section V.

III. MODEL-BASED SOURCE LOCALIZATION ON GRAPHS

Here we review the model-based solution to the blind graph
filter identification problem proposed in [26], which relies
on a convex relaxation of (4) when the diffusion filter is
invertible. Then we develop novel ADMM iterations to solve
said relaxation, which we unroll in Section IV to obtain the
SLoG-Net model that we train using data by minimizing (5).

A. Convex relaxation for invertible graph filters

Note from (3) that graph filter H is invertible if and only
if h̃i =

∑L−1
l=0 hlλ

l
i ̸= 0, for all i = 1, . . . , N . In words,

the frequency response of the filter should not vanish at the
graph frequencies {λi}. In such case one can show that the
inverse operator G := H−1 is also a graph filter on G, which
can be uniquely represented as a polynomial in the shift S of
degree at most N−1 [20, Theorem 4]. To be more specific, let
g ∈ RN be the vector of inverse-filter coefficients, i.e., G =∑N−1

l=0 glS
l. Then one can equivalently rewrite the generative

model Y = HX for the observations as

X = GY = Vdiag(g̃)V⊤Y, (6)

where g̃ := ΨNg ∈ RN is the inverse filter’s frequency
response and ΨN ∈ RN×N is Vandermonde. Naturally,
G = H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency
responses, where 1N denotes the N × 1 vector of all ones.
Leveraging (6), one can recast (4) as a linear inverse problem

min
{X,g̃}

∥X∥0, s. to X = Vdiag(g̃)V⊤Y, X ̸= 0. (7)

728

The ℓ0 norm in (7) makes the problem NP-hard to optimize.
Over the last decade or so, convex-relaxation approaches to
tackle sparsity minimization problems have enjoyed remark-
able success, since they often entail no loss of optimality.
Accordingly, we instead: (i) seek to minimize the ℓ1-norm
convex surrogate of the cardinality function, that is ∥X∥1 =∑

i,j |Xij |; and (ii) express the filter in the graph spectral
domain as in (6) to obtain the cost

∥X∥1 = ∥GY∥1 = ∥Vdiag(g̃)V⊤Y∥1 = ∥(Y⊤V ⊙V)g̃∥1,

where ⊙ denotes the Khatri-Rao (i.e., columnwise Kronecker)
product. This suggests solving the convex ℓ1-synthesis prob-
lem (in this case a linear program), e.g., [27], namelŷ̃g = argmin

g̃∈RN

∥(Y⊤V ⊙V)g̃∥1, s. to 1⊤
N g̃ = 1. (8)

While the linear constraint in (8) avoids the trivial solution ̂̃g =
0, it also serves to fix the scale of the estimated filter. Once the
frequency response ̂̃g of the inverse filter is recovered, one can
readily reconstruct the sources via vec[X̂] = (Y⊤V⊙V)g̃ as
well as the filter H, if desired.

As a result, under the pragmatic assumption that the diffu-
sion filter is invertible, one can readily use e.g., an off-the-shelf
interior-point method or a specialized sparsity-minimization
algorithm to solve (8) efficiently.

B. ADMM algorithm
Problem (8) can be solved using the ADMM. Let x =

vec[X] ∈ RNP and denote Z := Y⊤V ⊙V. Using variable
splitting, problem (8) can be equivalently written as

min
{x,g̃}

∥x∥1, s. to Zg̃ − x = 0NP , 1⊤
N g̃ = c, (9)

where c = 1, but will henceforth treat it as a generic constant
in case we want to adjust the scale of g̃. Associating dual
variables λ and µ to the equality constraints in (9), the
augmented Lagrangian function of the problem becomes

Lρ(x, g̃,λ, µ) = ∥x∥1 +
ρλ
2
∥Zg̃ − x+ λ/ρλ∥22

+
ρµ
2
(1⊤

N g̃ − c+ µ/ρµ)
2, (10)

where ρλ and ρµ are non-negative penalty coefficients. Letting
Γ := ρλZ

⊤Z+ ρµ1N1⊤
N for notational convenience, then the

ADMM [2], [3] update rules are given by (k = 0, 1, 2, . . . will
henceforth denote iterations)

g̃[k + 1] = Γ−1
[
Z⊤(ρλx[k]− λ[k]) + (ρµc− µ[k])1N

]
, (11)

x[k + 1] = S
ρ−1
λ

(Zg̃[k + 1] + λ[k]/ρλ), (12)

λ[k + 1] = λ[k] + ρλ(Zg̃[k + 1]− x[k + 1]), (13)

µ[k + 1] = µ[k] + ηµ(1
⊤
N g̃[k + 1]− c). (14)

The soft-thresholding operator Sρ−1
λ
(·) in (12) acts

component-wise on the entries of its vector argument. Dif-
ferent from the solvers in [19], [23], the provably convergent
ADMM updates are free of expensive singular-value decom-
positions per iteration. The inversion of the N × N matrix
Γ is done once, and Γ−1Z⊤, Γ−11N are cached to run the
iterations.

In the next section, we unroll the ADMM iterations (11)-
(14) to arrive at the trainable parametric model Φ(Y;Θ).

IV. LOCALIZING SOURCES VIA ALGORITHM UNROLLING

The idea of algorithm unrolling was introduced in [9].
In the context of sparse coding, [9] advocated identifying
iterations of proximal-gradient algorithms with layers in a
deep network of fixed depth that can be trained from examples
using backpropagation. One can view this process as effec-
tively truncating the iterations of an asymptotically convergent
procedure, to yield a template architecture that learns to
approximate solutions with substantial computational savings
relative to the optimization algorithm. Beyond parsimonious
signal modeling, there has been a surge in popularity of
unrolled deep networks for a wide variety of applications; see
e.g., [14]. Most relevant to our approach is the unrolling of
ADMM iterations for undersampled image reconstruction [25],
and recent advances to learn from graph data [4], [18].

We construct the SLoG-Net architecture by unrolling the
iterations (11)-(14) into a deep neural network. This entails
mapping individual update rules as sub-layers within a layer,
and stacking a prescribed number K of layers together to form
Φ(Y;Θ). The ADMM penalty coefficients {ρλ, ρµ} will be
treated as learnable parameters in Θ. In designing SLoG-Net’s
sub-layers, we will introduce additional parameters to broaden
the model’s expressive power. We will also forgo the parameter
sharing constraint imposed by the unrolled ADMM iterations.
Filter sub-layer. This sub-layer refines the inverse filter
coefficient estimate g̃[k] at layer k, based on the source
estimates x[k− 1] and the dual variables {λ[k− 1], µ[k− 1]}
from the previous layer. We mimic the g̃ update in (12),
and introduce some minor tweaks. To circumvent problems
with the inversion of Ψ in the eventuality ρλ = ρµ = 0
during training, we introduce change of variables ρ1 := 1/ρλ
and ρ2 := ρµ/ρλ and impose non-negativity constraints on
both parameters. Besides, we consider different parameters
{ρ(k)1 , ρ

(k)
2 }Kk=1 across layers to increase the network capacity,

thus obtaining [cf. (11)]

g̃[k + 1] = (Z⊤Z+ ρ
(k)
2 1N1⊤

N)−1
[
Z⊤(x[k]− ρ

(k)
1 λ[k])

+(ρ
(k)
2 c− ρ

(k)
1 µ[k])1N

]
, (15)

where ρ
(k)
1 , ρ

(k)
2 ≥ 0, for k = 1, . . . ,K. Once training

concludes, the matrix inverse and its products with Z⊤ and
1N can be precomputed and cached for fast inference.
Sources sub-layer. Here we update the source estimates x[k]
based on g̃[k] in (15) and the multiplier λ[k−1]. The sub-layer
imitates (13), but instead of a single tunable parameter ρλ we
introduce learnable combination weights {α(k)

1 , α
(k)
2 }Kk=1 and

thresholds {τ (k)}Kk=1. We propose [cf. (12)]

x[k + 1] = Sτ(k)

(
α
(k)
1 Zg̃[k + 1] + α

(k)
2 λ[k]

)
, (16)

where the thresholds are naturally constrained as τ (k) ≥ 0 for
k = 1, . . . ,K. Notice how (16) implements a simple linear
filter followed by a point-wise nonlinear activation, which is
reminiscent of vanilla neural network layers.
Multiplier sub-layer. In this simple linear sub-layer, we per-
form parallel updates of the Lagrange multipliers {λ[k], µ[k]}
by combining {λ[k − 1], µ[k − 1]} and the primal variable

729

inputs {g̃[k],x[k]}. The combination weights are learnable
parameters {β(k)

1 , β
(k)
2 , β

(k)
3 }Kk=1 and {γ(k)

1 , γ
(k)
2 , γ

(k)
3 }Kk=1, re-

sulting in [cf. (13)-(14)]

λ[k + 1] = β
(k)
1 λ[k] + β

(k)
2 Zg̃[k + 1] + β

(k)
3 x[k + 1], (17)

µ[k + 1] = γ
(k)
1 µ[k] + γ

(k)
2 1⊤

N g̃[k + 1] + γ
(k)
3 c. (18)

In closing, we note that the intial states {x[0],λ[0], µ[0]}
can be: (i) used as a means to incorporate prior information
(especially on the source locations x); (ii) randomly initialized
as we do in the ensuing experiments; or (iii) learned from data
along with Θ as it is customary with recurrent neural networks
(RNNs). Going all the way to layer K, source location predic-
tions are generated as Φ(Y,Θ) = unvec[(Y⊤V ⊙V)g̃[K]].
Inspection of SLoG-Net’s sub-layers leads to a parameter
count of |Θ| = 11 ×K, independent of the problem dimen-
sions N and P . Parameter efficiency is a well-documented
feature of unrolled architectures [14]. Given a training set
T := {Xi,Yi}|T |

i=1 of e.g., syntethic data, or, real signals
Yi and source estimates obtained using ADMM, learning is
accomplished by using mini-batch stochastic gradient descent
to minimize the loss function L(Θ) in (5). Further training
details, including the specification of the loss, are outlined in
the following numerical evaluation section.

V. PRELIMINARY NUMERICAL EXPERIMENTS

We present preliminary numerical results on a source local-
ization task, using simulated data and a random graph.
Synthetic data generation. The graph shift operator is se-
lected as the normalized adjacency matrix S = D− 1

2AD− 1
2 ,

where D := diag(A1N) is the diagonal matrix of node
degrees and A is a realization of an Erdos-Renyi random
graph with N = 20 and p = 0.3. For |T | = 64000, we
generate sparse X ∈ RN×|T | adhering to the Bernoulli-
Gaussian model. Specifically, X = Ω◦R, where Ω ∈ RN×|T |

is an i.i.d. Bernoulli matrix with parameter θ = 0.2 (i.e.,
P (Ωij = 1) = θ), and R ∈ RN×|T | is an independent
random matrix with i.i.d. symmetric random variables drawn
from a standard Gaussian distribution. Realizations of filter
coefficients h are generated as h = (e1 + αb)/∥e1 + αb∥1,
where e1 = [1, 0, . . . , 0]⊤ ∈ RL is the first canonical basis
vector and entries of b ∈ RL are drawn independently from
a standard Gaussian distribution. We have shown in [26] that
recovery is harder for “less-impulsive” filters, so we focus on
a challenging instance where α = 1.

For each training epoch, the training samples in T are
randomly split into Q = 1600 mini-batches of Pb = 40
signals, namely {Xq}Qq=1 ∈ RN×Pb . We sample Q graph
filter coefficients {hq}Qq=1 (with L = 3, α = 1) and randomly
assign them to the input signal mini-batches to generate the
observations Yq = Vdiag(ΦLhq)V

⊤Xq , q = 1, . . . , Q. We
use a validation set Xval of size Pval = 0.01 × |T | = 640,
with observations Yval = Vdiag(ΨLhval)V

⊤Xval, where hval

is also generated from the same distribution as {hq}Qq=1.
Training details. We train SLoG-Net with K = 5 layers and
use the normalized root mean square error (NRMSE) of X as

0 20 40 60 80
Ptest

1

10

20

N

(A) Ytest

0 20 40 60 80
Ptest

1

10

20

N

(B) Xtest

0 20 40 60 80
Ptest

1

10

20

N

(C) X̂test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i

0.5

1.0̃ g i

(D) ̃gtest (blue) and ̂̃gtest (red)

−1
0
1

−1
0
1

−1
0
1

Fig. 1. Recovery performance for SLoG-Net with K = 5 layers and Ptest =
100 observations. (A) Diffused signals Ytest. (B) Ground-truth sparse sources
Xtest. (C) SLoG-Net predictions Φ(Ytest; Θ̂). (D) Frequency response of the
inverse filter g̃test (blue) and recovered inverse filter coefficient ˆ̃gtest (red).
The predictions are quite accurate. The relative error of the recovered Xtest
and g̃test are 0.090 and 0.086, respectively.

loss function. Notice that if {X̂, ĥ} is a solution to the bilinear
problem, then so is {−X̂,−ĥ} and accordingly we minimize

L(Θ) =

Q∑
q=1

min

(
∥Φ(Yq;Θ)−Xq∥F

∥Xq∥F
,
∥Φ(Yq;Θ) +Xq∥F

∥Xq∥F

)
using the Adam optimizer [11] implemented in PyTorch.
We initialize {ρ(k)1 , ρ

(k)
2 , τ (k)}Kk=1 as i.i.d. samples from the

uniform distribution in [0, 1], since these parameters are con-
strained to be non-negative. All other parameters in Θ are
randomly drawn from a standard Gaussian distribution.

We consider 30 epochs for training. In each epoch, we
estimate the sparse sources {Φ(Yq; Φ̂q)}Qq=1 using the training
batches {Yq;Xq}Qq=1. We choose one batch out of every 200
batches to compute the loss on the validation set {Yval;Xval}
and record both the value of loss and the network parameters.
In the end, we select the model Θ̂ that has minimum validation
loss across the entire training process.
Comparisons with the ADMM algorithm. For test-
ing, we generate a test set {Xtest,htest} where N =
20, Ptest = 100. Fig. 1 depicts the diffused signals Ytest =
Vdiag(ΦLhtest)V

⊤Xtest that were fed as inputs to the trained
SLoG-Net model, the ground-truth sources Xtest and the
predictions Φ(Ytest; Θ̂), as well as the recovered frequency
response of the inverse filter ˆ̃gtest. Visual inspection confirms
the predictions are quite accurate.

SLoG-Net is also compared with the model-based convex
optimization approach in [26] using the ADMM solver de-
veloped in this paper. We consider two figures of merit to
carry out the comparisons. Firstly, we consider the relative
error (RE) given by ∥Φ(Ytest; Θ̂)−Xtest∥F /∥Xtest∥F . We also

730

Fig. 2. Recovery performance of SLoG-Net (K = 5) and the model-based
ADMM, or θ = 0.2 and different values of Ptest. (top) Mean relative error of
recovered X̂ via SLoG-Net (blue) and ADMM (red). (Bottom) Mean accuracy
in identifying the support of X̂ for a threshold κ = 0.1 via SLoG-Net (blue)
and ADMM (red). The shaded region indicates the corresponding standard
deviation. The mean elapsed time to form a prediction of the input signals
(20 nodes × 100 observations) via a single forward of SLoG-Net and ADMM
iterations are 0.005s and 0.067s, respectively.

compute the accuracy in recovering the support of Xtest, i.e.,
the source locations. To identify the support, we introduce a
thresholding approach suppκ(·) with threshold κ that if the
entry of the recovered signal satisfies |[Φ(Ytest; Θ̂)]ij | ≥ κ,
the index pair (i, j) will be considered a member of the
estimated support. Accordingly, the recovered signal support
is Îtest := suppκ(Φ(Ytest; Θ̂)). We also apply the threshold
to the ground-truth sources so the sought support set is
Itest := suppκ(Xtest). Fig. 2 depicts the mean relative error
(MRE) and mean accuracy of SLoG-Net and ADMM across
50 realizations, for θ = 0.2, κ = 0.1 and different values of
Ptest. Apparently, the MRE and mean accuracy performance of
SLoG-Net is on par with that ADMM. Notice that recovering
the sources of network diffusion and the filter coefficients only
requires a single forward pass through the neural network,
while ADMM requires hundreds of iterations to converge. To
reconstruct the test signal of size N = 20, P = 100, the
mean elapsed time (over 50 realizations) is about 0.005s and
0.067s for SLoG-Net and ADMM, respectively. This (post-
training) order-of-magnitude speed-up is likely to become
more pronounced as the problem size grows.

VI. CONCLUSIONS AND FUTURE WORK

We developed SLoG-Net, a novel deep learning approach
to tackle the challenging problem of localizing sources of
network diffusion. The unrolled architecture fruitfully lever-
ages inductive biases stemming from model-based ADMM
iterations, is parameter efficient, and can offer controllable
complexity after training. Our promising preliminary results
with simulated data demonstrate that SLoG-Net exhibits per-
formance on par with an iterative ADMM baseline, while
attaining order-of-magnitude speedups to generate predictions
for source localization. We also observe SLoG-Net transfers
well to problems with different number of observations from
what was used during training. Ongoing work includes ex-
panding our performance evaluation protocol to study robust-
ness to noise, generalization and transfer to larger graphs, as
well as tests with real brain, seismic, and epidemiological data.

REFERENCES

[1] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using
convex programming,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1711–
1732, 2014.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, 2nd ed. Athena-Scientific, 1999.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[4] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Inter-
pretable neural networks for graph signal denoising,” IEEE Trans. Signal
Process., vol. 69, pp. 3699–3713, 2021.

[5] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, pp. 118–121, 1974.

[6] S. Feizi, M. Médard, G. Quon, M. Kellis, and K. Duffy, “Network
infusion to infer information sources in networks,” arXiv preprint
arXiv:1606.07383 [cs.SI], 2016.

[7] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Process. Mag., vol. 37, no. 6, pp. 128–138, 2020.

[8] A. Gavili and X.-P. Zhang, “On the shift operator, graph frequency,
and optimal filtering in graph signal processing,” IEEE Trans. Signal
Process., vol. 65, no. 23, pp. 6303–6318, 2017.

[9] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” 2010, p. 399–406.

[10] C. Hu, X. Hua, J. Ying, P. M. Thompson, G. E. Fakhri, and Q. Li,
“Localizing sources of brain disease progression with network diffusion
model,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 7, pp. 1214–
1225, 2016.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[12] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind
deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 12, pp. 2354–2367, 2011.

[13] S. Ling and T. Strohmer, “Self-calibration and biconvex compressive
sensing,” Inverse Problems, vol. 31, no. 11, p. 115002, 2015.

[14] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18–44, 2021.

[15] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” vol. 106, no. 5, pp. 808–828, 2018.

[16] R. Pena, X. Bresson, and P. Vandergheynst, “Source localization on
graphs via ℓ1 recovery and spectral graph theory,” in Proc. IEEE Image,
Video, and Multidimensional Signal Process. Workshop, 2016, pp. 1–5.

[17] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion
in large-scale networks,” Physical Review Letters, vol. 109, no. 6, p.
068702, 2012.

[18] X. Pu, T. Cao, X. Zhang, X. Dong, and S. Chen, “Learning to learn graph
topologies,” in Advances in Neural Information Processing Systems,
2021.

[19] D. Ramı́rez, A. G. Marques, and S. Segarra, “Graph-signal reconstruc-
tion and blind deconvolution for diffused sparse inputs,” in Proc. Int.
Conf. Acoustics, Speech, Signal Process., Mar. 2017, pp. 4104–4108.

[20] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[21] E. Sefer and C. Kingsford, “Diffusion archeology for diffusion pro-
gression history reconstruction,” Knowledge and information systems,
vol. 49, no. 2, pp. 403–427, 2016.

[22] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug 2017.

[23] S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identifi-
cation of graph filters,” IEEE Trans. Signal Process., vol. 65, no. 5, pp.
1146–1159, Mar. 2017.

[24] L. Wang and Y. Chi, “Blind deconvolution from multiple sparse inputs,”
IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1384–1388, 2016.

[25] Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A deep learning
approach for image compressive sensing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 42, no. 3, pp. 521–538, 2020.

[26] C. Ye, R. Shafipour, and G. Mateos, “Blind identification of invertible
graph filters with multiple sparse inputs,” in Proc. of European Signal
Process. Conf., 2018, pp. 121–125.

[27] H. Zhang, M. Yan, and W. Yin, “One condition for solution uniqueness
and robustness of both l1-synthesis and l1-analysis minimizations,” Adv.
Comput. Math., vol. 42, no. 6, pp. 1381–1399, 2016.

[28] P. Zhang, J. He, G. Long, G. Huang, and C. Zhang, “Towards anomalous
diffusion sources detection in a large network,” ACM T. Internet Techn.,
vol. 16, no. 1, p. 2, 2016.

731

