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» Network as undirected graph G = (V,£): encode pairwise relationships

» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

= Study graph signals, data associated with N nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing fundamentals

» Graph signals mappings x : V — R, represented as vectors x € RV
= As.: Signal properties related to topology of G

> To process graph signals = Graph-shift operator § € RV*V
= Local Sj=0fori#jand (i,j)¢E =Ex AorL=D—-A
= Spectrum of symmetric S = VAV "
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Graph signal processing fundamentals

» Graph signals mappings x : V — R, represented as vectors x € RV
= As.: Signal properties related to topology of G

> To process graph signals = Graph-shift operator § € RV*V
= Local Sj=0fori#jand (i,j)¢E =Ex AorL=D—-A
= Spectrum of symmetric S = VAV

> Graph Fourier Transform (GFT) for signals: ¥ = V' x

» Graph filters H : RN — R" are maps between graph signals
= Polynomial in S with coefficients h € R* = H := Y h/S'

= Orthogonal frequency operator: H = Vdiag(h)V "
= Freq. response (GFT for filters): h = Wh and [k, = At
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Diffusion processes as graph filter outputs

» Q: Upon observing a graph signal y, how was this signal generated?

» Postulate y is the response of linear diffusion to a sparse input x
y = ao[JO—aS)x = > BS'x
I=1 1=0

= Common generative model, e.g., heat diffusion, consensus
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Diffusion processes as graph filter outputs

» Q: Upon observing a graph signal y, how was this signal generated?

» Postulate y is the response of linear diffusion to a sparse input x

oo oo
I
y = @ H(I —aS)x = Zﬁ,s X
I=1 1=0
= Common generative model, e.g., heat diffusion, consensus

» Cayley-Hamilton asserts we can write diffusion as (L < )
L-1

y= (Zh,S’) x := Hx

1=0

» Model: Observed network process as output of a graph filter
= View few elements in supp(x) =: {i : x; # 0} as sources
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Motivation and source localization problem

» Ex: Global opinion/belief profile formed by spreading a rumor
= What was the rumor? Who started it?

OX o J) J) $ CP YJ)
O . o > |Graph Filter i=> (L ®
? o 0 T b

Unobserved Observed

» Problem: Blind identification of graph filters with multiple sparse inputs
= Suppose we observe P output signals Y = [y1,...,yp] € RV*”
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Motivation and source localization problem

» Ex: Global opinion/belief profile formed by spreading a rumor
= What was the rumor? Who started it?

OX o J) J) $ CP YJ)
O . o > |Graph Filter i=> (L ®
? o 0 T b

Unobserved Observed

» Problem: Blind identification of graph filters with multiple sparse inputs
= Suppose we observe P output signals Y = [y1,...,yp] € RV*”

» Q: Given S, can we find sparse X and the filter coeffs. h from Y = HX?
= Extends classical blind deconvolution to graphs

= Localization of sources that diffuse on the network
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Blind graph filter identification

» Leverage frequency response of graph filters
Y = HX = Y = Vdiag(Wh)V'X
= Y is a bilinear function of the unknowns h and X

» |ll-posed problem = L 4+ NP unknowns and NP observations

= As.: X has S-sparse columns i.e., || X|lo := [supp(X)| < PS
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Blind graph filter identification

» Leverage frequency response of graph filters
Y = HX = Y = Vdiag(Wh)V'X
= Y is a bilinear function of the unknowns h and X

» |ll-posed problem = L 4+ NP unknowns and NP observations

= As.: X has S-sparse columns i.e., || X|lo := [supp(X)| < PS

» Blind graph filter identification =- Non-convex feasibility problem
find {h,X}, s.to Y= Vdiag(lllh)VTX, [IX]lo < PS

= ldentifiability for Bernoulli-Gaussian model on X [Li et al'17]
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Supervised learning setting

» Given independent training samples T := {X,-,Y,-}!-Ll

= Drawn from joint distribution of filters and sparse sources

I d y|’r|(L

fo e (L OE::> Graph Filter c::>J) n 0

e}
o
il

o

U D
—1 Observed M Unobserved r Observed

» Goal: learn the parametric mapping X = ®(Y; ©) by minimizing a loss

L(©) := ITIZE 1, (Y15 9))

ieT
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Work in context

» Source localization on graphs

» Maximum-likelihood estimator optimal for trees [Pinto et al'12]

» Scalable under restrictive dependency assumptions [Feizi el al'16]

> Non-convex estimators of sparse sources [Pena et al’16], [Hu et al'16]
» Blind identification of graph filters [Segarra et al'17]

» Matrix lifting can hinder applicability to large graphs

» Blind identification of invertible graph filters [Ye et al'18]
» Convex formulation amenable to e.g., ADMM solvers

» Multi-signal case with arbitrary supports
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Work in context

» Source localization on graphs
» Maximum-likelihood estimator optimal for trees [Pinto et al'12]
» Scalable under restrictive dependency assumptions [Feizi el al'16]
> Non-convex estimators of sparse sources [Pena et al’16], [Hu et al'16]

> [Segarra et al'17]
» Matrix lifting can hinder applicability to large graphs

» Blind identification of invertible graph filters [Ye et al'18]
» Convex formulation amenable to e.g., ADMM solvers

» Multi-signal case with arbitrary supports
» Qur contribution: data-driven deep learning solution rooted in GSP
= Unroll and truncate the model-based ADMM iterations
= Trainable parametric architecture is interpretable

= Parameter efficient and offers controllable complexity
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Model-based source localization on graphs

> Inverse filter G = H™! is also a graph filter on G [Sandryhaila-Moura'13]
= Requires b = >/ AL £ 0, forall i =1,..., N

= Inverse-filter coefficients g € R", frequency response § = Wg

> Recast as linear inverse problem [Wang-Chi'16], [Ye et al'18]

{rpi)?} [X[lo, s. to X =Vdiag(g)V'Y, X#0
g,

» Still NP hard.
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Model-based source localization on graphs

> Inverse filter G = H™! is also a graph filter on G [Sandryhaila-Moura'13]
= Requires b = >/ AL £ 0, forall i =1,..., N

= Inverse-filter coefficients g € R", frequency response § = Wg

> Recast as linear inverse problem [Wang-Chi'16], [Ye et al'18]

{rpi)?} [X[lo, s. to X =Vdiag(g)V'Y, X#0
g,

> Still . Relax! and minimize convex [|X||1

g=argmin||(Y'VOV)E[:, s.to 1Tg§=c
g

= Constraint fixes the scale and avoids all-zero solution

= {1-synthesis problem, can be solved via ADMM
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ADMM algorithm

ROCHEST]

> Let Z=Y'V OV and x = vec(X), rewrite problem as

min [|x]1, s.to 1'§=c, Zg—x=0
{&:x}

» ADMM solver
gk + 1] =T [Z7 (pax[K] = ALK]) + (puc — ulk)1n] ,
X[k +1] = 5,2 (Zg[k + 1] + AlK]/p2),
ALk + 1] = MK + p(ZE[k + 1] — x[k + 1]),
ulk +1] = lk] + pu (L3 Elk + 1] - ©)

» Limitations

> Step-sizes py, pu need to be tuned
» Hundreds or thousands of iterations until convergence
» Matrix inversion may hinder scalability to large graphs

» Idea: unroll the iterations and learn the parameters from dataset 7
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Algorithm unrolling

» Map ADMM updates as sub-layers within a layer of the deep net
= Stack K of the resulting layers to form ®(Y; ©®)
= End-to-end learning of @ using mini-batch SGD

Filter sub-layer G,

glk + 1] = (M)~ ZT (x[k] — pLIN[K]) + (08¢ — p{ ulk])1n]
r=2z7z 4 p01515

= Learn {P(lk),ng)}kK:l, where pgk),pgk) >0, fork=1,...,K
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Algorithm unrolling

» Map ADMM updates as sub-layers within a layer of the deep net
= Stack K of the resulting layers to form ®(Y; ©®)
= End-to-end learning of @ using mini-batch SGD

Sources sub-layer X

x[k + 1] = S, (0 Zg[k + 1] + oI A[K])
= Learn {{?,a{? 70} where 70 >0, for k =1,..., K
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Algorithm unrolling

» Map ADMM updates as sub-layers within a layer of the deep net
= Stack K of the resulting layers to form ®(Y; ©®)
= End-to-end learning of @ using mini-batch SGD

Multiplier sub-layer M

Ak + 1] = BPOX[K] + B Zg[k + 1] + B x[k + 1]
plk +1] = v ulk] w”l gk + 1] ++47c
= Learn {,B(k)} 1 {fy 3 fork=1,...,K

» Design considerations

» Additional parameters to broaden the model's expressive power
> Forgo the parameter sharing constraint imposed by the unrolling

> Source location predictions: ®(Yiest, ®) = unvec[(YeeV © V)E[X]]
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Source Localization on Graphs Network (SLoG-Net)

2 1

Algorithm 1 ADMM for Source Localization on Graphs k] Filter sub-layer ' -
Require : p, py, ¢ N ]2t = Ok + (e T e S
Initialize : {x[0], A[0], x[0]} at random / Gr
for k=0,1,2,... do Z

g[k + 1] “ F71 [ZT(p)\X[k] - A[k]) + (pﬂ,c - tu[k])lN] gk + 1] Source sub-layer
X[k + 1] < Sp;l (Zg[k +~1] + )\[k]/px) > g)\[k]_-’ aMZglk + 1] + oI AR Srm () e
Alk + 1] < A[K] + pa(Zg[k + 1] — x[k +1]) —_— X

ik + 1] = k] + p, (Liglk + 1] — <) — Z_l
b-layer

end for Multiplier su
return {g[k + 1], x[k + 1]} xl 11208 ’ Ak +1]

BN + 6 Zglk + 1) + B x [k + 1] frmeeeeee

—_—
glk+1]
ulk+1
_

ulk] A lk] + 72 (k) 1R &l + 1] +1Ye

My,
— T -
Z=Y"VoVv l l ] x[k +1]
j A
x[k] = x[k + 1] ulk + 1
lt] AR ﬂlﬂ' i@l + 1 MK oy ) MR+ 18+ 1 (Y b
w f £ R L= i

Layer k
k-th layer of the SLoG-Net architecture
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Simulation setup

> Consider undirected random graphs with S = D"2AD":
= Erd6s-Rényi with N = 20 and edge prob. p =0.3

> Sources Xiain € RV*IT! from a Bernoulli-Gaussian model
= |T| = 64000 with Bernoulli parameter § = 0.2

» Filter h.in = (e1 + ab)/|le1 + abl|; as in [Wang-Chi'16]
= e =[1,0,...,0]" €R" and b ~ N(0,1)

= Recovery performance increases while av > 0 decreases
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Simulation setup

> Consider undirected random graphs with S = D"2AD":
= Erd6s-Rényi with N = 20 and edge prob. p =0.3
> Sources Xiain € RV*IT! from a Bernoulli-Gaussian model
= |T| = 64000 with Bernoulli parameter § = 0.2
» Filter h.in = (e1 + ab)/|le1 + abl|; as in [Wang-Chi'16]
= e =[1,0,...,0]" €R" and b ~ N(0,1)
= Recovery performance increases while av > 0 decreases
> Relative recovery error of X and g
= RMSEx = [|X — Xeest || /|| Xsest || r, RMSEg = [|& — Erest |2/ [|Eest]|2
> Source localization accuracy

= ACC = |Z N Trest| /| Trest|
= Support estimate Z = supp,.(X): if |X;,| > &, then (i,p) € Z
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Model training

ROCHEST]

» Each epoch: randomly split Xiin into @ = 1600 mini-batches {Xq}f;:1

> Then sample Q graph filter coefficients {h,}%_,, L =3,a =1

q=1
= Generate the observations Y, = Vdiag(W h,)V ' X,

> accounting for sign ambiguity
Q .O) _ .
1(0) = 3 min (L0010 el [0(¥e: @) Xole
p XqllF XqllF

» Parameter initialization
> (o) ) 701K are iid. uniformly distributed in [0, 1]
» All other parameters are drawn from a standard Gaussian
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Recovery performance

» Visualization of recovery performance for SLoG-Net with K = 5 layers
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»> Recovery errors are RMSEx = 0.090 and RMSEz = 0.086
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Comparison with ADMM

» Comparisons with ADMM (N = 20, Prest = 100, over 50 trials)
» Top: RMSEx for ADMM and SLoG-Net
= The shaded region indicates the standard deviation
» Bottom: ACC of support recovery, k = 0.1

= Support estimate Z := supp,,(®(Yiest; ©)),
= Ground truth, Ziest := supp,, (Xtest)-
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» Mean elapsed time: 0.005s for SLoG-Net, 0.067s for ADMM
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Concluding summary

» Learning to identify sources of network diffusion
= Data-driven trainable neural network architecture

= Key: leverage inductive biases of the GSP model-based solution

» Unrolling the ADMM iterations

= The SLoG-Net architecture is interpretable

= Parameter and time efficient compared with iterative ADMM
» Ongoing work

= Recovery of noise-corrupted signals

= Effective recovery of more general graph filters

= Evaluate performance on real data sets
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