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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Network as graph G = (V, E): encode pairwise relationships

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Motivating examples – Graph signals

I Graph SP: broaden classical SP to graph signals [Shuman etal’13]

⇒ Our view: GSP well suited to study network processes

I As.: Signal properties related to topology of G (e.g., smoothness)

⇒ Algorithms that fruitfully leverage this relational structure
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Graph signals

I Consider a graph G (V, E). Graph signals are mappings x : V → R
⇒ Defined on the vertices of the graph (data tied to nodes)

I May be represented as a vector x ∈ RN

⇒ xn denotes the signal value at the n-th vertex in V
⇒ Implicit ordering of vertices
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Graph-shift operator

I To understand and analyze x, useful to account for G ’s structure

I Graph G is endowed with a graph-shift operator S ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

I S can take nonzero values in the edges of G or in its diagonal

I Ex: Adjacency A, degree D, and Laplacian L = D− A matrices
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Locality of the graph-shift operator

I S is a linear operator that can be computed locally at the nodes in V

I Consider the graph signal y = Sx and node i ’s neighborhood Ni

⇒ Node i can compute yi if it has access to xj at j ∈ Ni

yi =
∑
j∈Ni

Sijxj , i ∈ V

I Recall Sij 6= 0 only if i = j or (j , i) ∈ E

I If y = S2x ⇒ yi found using values xj within 2 hops
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Graph Fourier transform (GFT)

I As.: S related to generation (description) of the signals of interest

⇒ Spectrum of S = VΛV−1 will be especially useful to analyze x

I The Graph Fourier Transform (GFT) of x is defined as

x̃ = V−1x

I While the inverse GFT (iGFT) of x̃ is defined as

x = Vx̃

⇒ Eigenvectors V = [v1, ..., vN ] are the frequency basis (atoms)

I Ex: For the directed cycle (temporal signal) ⇒ GFT ≡ DFT

Santiago Segarra Blind Identification of Graph Filters with Multiple Sparse Inputs 7 / 22



Linear (shift-invariant) graph filter

I A graph filter H : RN → RN is a map between graph signals

Focus on linear filters
⇒ map represented by an
N × N matrix

I Polynomial in S of degree L, with coefficients h = [h0, . . . , hL]
T

Graph filter [Sandryhaila-Moura’13]

H := h0S0 + h1S1 + . . .+ hLSL =
∑L

l=0 hlS
l

I Key properties: shift-invariance and distributed implementation

⇒ H(Sx) = S(Hx), no other can be linear and shift-invariant

⇒ Each application of S only local info ⇒ only L-hop info for y = Hx
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Frequency response of a graph filter

I Using S = VΛV−1, filter is H =
∑L

l=0 hlS
l = V

(∑L
l=0 hlΛ

l
)
V−1

I Since Λl are diagonal, use GFT-iGFT to write y = Hx as

ỹ = diag(h̃)x̃

⇒ Output at frequency k depends only on input at frequency k

I Frequency response of the filter H is h̃ = Ψh, with Vandermonde Ψ

Ψ :=

 1 λ1 . . . λL
1

...
...

...
1 λN . . . λL

N


I GFT for signals (x̃ = V−1x) and filters (h̃ = Ψh) is different
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Diffusion processes as graph filter outputs

I Q: Upon observing a graph signal y, how was this signal generated?

I Postulate the following generative model

⇒ An originally sparse signal x = x(0)

⇒ Diffused via linear graph dynamics S ⇒ x(l) = Sx(l−1)

⇒ Observed y is a linear combination of the diffused signals x(l)

y =
L∑

l=0

hlx
(l) =

L∑
l=0

hlS
lx = Hx

I Model: Observed network process as output of a graph filter

⇒ View few elements in supp(x) =: {i : xi 6= 0} as seeds
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Motivation and problem statement

I Ex: Global opinion/belief profile formed by spreading a rumor

⇒ What was the rumor? Who started it?

⇒ How do people weigh in peers’ opinions to form their own?

Observed Unobserved 

Graph Filter 

y x 

I Problem: Blind identification of graph filters with sparse inputs

I Q: Given S, can we find x and the combination weights h from y = Hx?

⇒ Extends classical blind deconvolution to graphs
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Blind graph filter identification

I Leverage frequency response of graph filters (U := V−1)

y = Hx ⇒ y = Vdiag(Ψh)Ux

⇒ y is a bilinear function of the unknowns h and x

I Problem is ill-posed ⇒ (L+ 1) + N unknowns and N observations

⇒ As.: x is S-sparse i.e., ‖x‖0 := |supp(x)| ≤ S

I Blind graph filter identification ⇒ Non-convex feasibility problem

find {h, x}, s. to y = Vdiag
(
Ψh

)
Ux, ‖x‖0 ≤ S
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“Lifting” the bilinear inverse problem

I Key observation: Use the Khatri-Rao product � to write y as

y = V(ΨT �UT )T vec(xhT )

I Reveals y is a linear combination
of the entries of Z := xhT

I Z is of rank-1 and row-sparse ⇒ Linear matrix inverse problem

min
Z

rank(Z), s. to y = V
(
ΨT �UT

)T
vec

(
Z
)
, ‖Z‖2,0 ≤ S

⇒ Pseudo-norm ‖Z‖2,0 counts the nonzero rows of Z

⇒ Matrix “lifting” for blind deconvolution [Ahmed etal’14]

I Rank minimization s. to row-cardinality constraint is NP-hard. Relax!
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Algorithmic approach via convex relaxation

I Key property: `1-norm minimization promotes sparsity [Tibshirani’94]

I Nuclear norm ‖Z‖∗ :=
∑

i σi (Z) a convex proxy of rank [Fazel’01]
I `2,1 norm ‖Z‖2,1 :=

∑
i ‖z

T
i ‖2 surrogate of ‖Z‖2,0 [Yuan-Lin’06]

I Convex relaxation

min
Z

‖Z‖∗ + α‖Z‖2,1, s. to y = V
(
ΨT �UT

)T
vec

(
Z
)

⇒ Scalable algorithm using method of multipliers

I Refine estimates {h, x} via iteratively-reweighted optimization

⇒ Weights αi (k) = (‖zi (k)T‖2 + δ)−1 per row i , per iteration k

I Exact recovery conditions ⇒ Success of the convex relaxation

⇒ Random model on the graph structure ⇒ Recovery conditions

⇒ Probabilistic guarantees that depend on the graph spectrum

⇒ Blind deconvolution (in time) is a favorable graph setting
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Numerical tests: Recovery rates

I Recovery rates over an (L,S) grid and 20 trials
I Successful recovery when ‖x∗(h∗)T − xhT‖F < 10−3

I ER (left), ER reweighted `2,1 (center), brain reweighted `2,1 (right)

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5 0

0.2

0.4

0.6

0.8

1

S
2 4 6 8 10

L

1

2

3

4

5

S
2 4 6 8 10

L

1

2

3

4

5

S
2 4 6 8 10

L
1

2

3

4

5

I Exact recovery over non-trivial (L,S) region

⇒ Reweighted optimization markedly improves performance

⇒ Encouraging results even for real-world graphs
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Numerical tests: Brain graph

I Human brain graph with N = 66 regions, L = 6 and S = 6
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I Proposed method also outperforms alternating-minimization solver

⇒ Unknown supp(x) ≈ Need twice as many observations
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Multiple output signals

I Suppose we have access to P output signals {yp}Pp=1

Observed Unobserved 

Graph Filter 

y1 
x1 

Graph Filter 

yP 
xP 

…
 

…
 

I Goal: Identify common filter H fed by multiple unobserved inputs xp
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Formulation

I As.: {xp}Pp=1 are S-sparse with common support

I Concatenate outputs ȳ := [yT1 , . . . , y
T
P ]

T and inputs x̄ := [xT1 , . . . , x
T
P ]

T

I Unknown rank-one matrices Zp := xphT . Stack them

⇒ Vertically in rank one Z̄v := [ZT
1 , ...,Z

T
P ]

T = x̄hT ∈ RNP×L

⇒ Horizontally in row sparse Z̄h := [Z1, ...,ZP ] ∈ RN×PL

I Convex formulation

min
{Zp}P

p=1

‖Z̄v‖∗+τ‖Z̄h‖2,1, s. to ȳ =
(
IP ⊗

(
V
(
ΨT �UT

)T))
vec

(
Z̄h

)
⇒ Relax (As.): ‖Z̄h‖2,1 ↔ ‖Z̄v‖2,1 =

∑P
p=1 ‖Zp‖2,1
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Numerical tests: Multiple signals, recovery rates

I Recovery rates over an (L,S) grid and 20 trials
I Successful recovery when ‖ˆ̄xĥT − x̄hT‖F < 10−3

I ER (left), ER reweighted `2,1 (center), brain reweighted `2,1 (right)
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I Leveraging multiple output signals aids the blind identification task
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Summary and extensions

I Extended blind deconvolution of space/time signals to graphs

⇒ Key: model diffusion process as output of graph filter

I Rank and sparsity minimization subject to model constraints

⇒ “Lifting” and convex relaxation yield efficient algorithms

I Exact recovery conditions ⇒ Success of the convex relaxation

⇒ Probabilistic guarantees that depend on the graph spectrum

I Consideration of multiple sparse inputs aids recovery

I Envisioned application domains

(a) Opinion formation in social networks
(b) Identify sources of epileptic seizure
(c) Trace “patient zero” for an epidemic outbreak

I Unknown shift S ⇒ Network topology inference
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GlobalSIP’16 Symposium on Networks

Symposium on Signal and Information Processing over Networks

Topics of interest

· Graph-signal transforms and filters

· Non-linear graph SP

· Statistical graph SP

· Prediction and learning in graphs

· Network topology inference

· Network tomography

· Control of network processes

· Signals in high-order graphs

· Graph algorithms for network analytics

· Graph-based distributed SP algorithms

· Graph-based image and video processing

· Communications, sensor and power networks

· Neuroscience and other medical fields

· Web, economic and social networks

Paper submission due: June 5, 2016

http://2016.ieeeglobalsip.org 

Organizers:

Michael Rabbat (McGill Univ.)

Antonio Marques (King Juan Carlos Univ.)

Gonzalo Mateos (Univ. of Rochester)
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Relevance of the graph-shift operator

I Q: Why is S called shift? A: Resemblance to time shifts

I S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)
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