

Blind Identification of Graph Filters with Multiple Sparse Inputs

Santiago Segarra, Antonio G. Marques, Gonzalo Mateos & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering University of Pennsylvania ssegarra@seas.upenn.edu http://www.seas.upenn.edu/~ssegarra/

ICASSP, March 24, 2016

Network Science analytics

- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ► Interest here not in G itself, but in data associated with nodes in V
 ⇒ The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Motivating examples - Graph signals

- ► Graph SP: broaden classical SP to graph signals [Shuman etal'13] ⇒ Our view: GSP well suited to study network processes
- ► As.: Signal properties related to topology of G (e.g., smoothness) ⇒ Algorithms that fruitfully leverage this relational structure

- Consider a graph G(V, E). Graph signals are mappings x : V → R
 ⇒ Defined on the vertices of the graph (data tied to nodes)
- May be represented as a vector $\mathbf{x} \in \mathbb{R}^N$
 - $\Rightarrow x_n$ denotes the signal value at the *n*-th vertex in \mathcal{V}
 - \Rightarrow Implicit ordering of vertices

Graph-shift operator

- To understand and analyze \mathbf{x} , useful to account for G's structure
- ► Graph *G* is endowed with a graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (captures local structure in *G*)
- **S** can take nonzero values in the edges of G or in its diagonal

$$\begin{array}{c} 3 & 4 \\ \hline 2 & 5 \\ 1 \end{array} \begin{array}{c} 6 \\ \hline \\ 8 \end{array} = \left(\begin{array}{c} S_{11} & S_{12} & 0 & 0 & S_{15} & 0 \\ S_{21} & S_{22} & S_{23} & 0 & S_{25} & 0 \\ 0 & S_{23} & S_{33} & S_{34} & 0 & 0 \\ 0 & 0 & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & 0 & S_{54} & S_{55} & 0 \\ 0 & 0 & 0 & S_{64} & 0 & S_{66} \end{array} \right)$$

 \blacktriangleright Ex: Adjacency A, degree D, and Laplacian L=D-A matrices

- \blacktriangleright S is a linear operator that can be computed locally at the nodes in ${\cal V}$
- ► Consider the graph signal y = Sx and node *i*'s neighborhood N_i ⇒ Node *i* can compute y_i if it has access to x_i at j ∈ N_i

$$y_i = \sum_{j \in \mathcal{N}_i} S_{ij} x_j, \quad i \in \mathcal{V}$$

• Recall $S_{ij} \neq 0$ only if i = j or $(j, i) \in \mathcal{E}$

(3)-(4) (6)	($\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$		$\left(\begin{array}{c} S_{11} \\ S_{21} \end{array} \right)$	$S_{12} \\ S_{22}$	$0 \\ S_{23}$	0 0	$S_{15} \\ S_{25}$	0		$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
	\Rightarrow	y_3 y_4	_[0	S ₃₂	$S_{33} = S_{43}$	$S_{34} = S_{44}$	$0 \\ S_{45}$	$\frac{0}{S_{46}}$	þ	$\begin{array}{c} x_{3} \\ x_{4} \end{array}$
		y_5 y_6		$\begin{pmatrix} S_{51} \\ 0 \end{pmatrix}$	${S_{52} \atop 0}$	0 0	$S_{54} \\ S_{64}$		$\begin{array}{c} 0 \\ S_{66} \end{array}$		$\left(\begin{array}{c} x_5 \\ x_6 \end{array}\right)$

• If $\mathbf{y} = \mathbf{S}^2 \mathbf{x} \Rightarrow y_i$ found using values x_j within 2 hops

- ► As.: S related to generation (description) of the signals of interest ⇒ Spectrum of S = VAV⁻¹ will be especially useful to analyze x
- ► The Graph Fourier Transform (GFT) of x is defined as

 $\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$

• While the inverse GFT (iGFT) of $\tilde{\mathbf{x}}$ is defined as

 $\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$

 \Rightarrow Eigenvectors $\mathbf{V} = [\mathbf{v}_1, ..., \mathbf{v}_N]$ are the frequency basis (atoms)

• Ex: For the directed cycle (temporal signal) \Rightarrow GFT \equiv DFT

Linear (shift-invariant) graph filter

• A graph filter $H : \mathbb{R}^N \to \mathbb{R}^N$ is a map between graph signals

Focus on linear filters \Rightarrow map represented by an $N \times N$ matrix

▶ Polynomial in **S** of degree *L*, with coefficients $\mathbf{h} = [h_0, \dots, h_L]^T$

Graph filter [Sandryhaila-Moura'13]

$$\mathbf{H} := h_0 \mathbf{S}^0 + h_1 \mathbf{S}^1 + \ldots + h_L \mathbf{S}^L = \sum_{l=0}^L h_l \mathbf{S}^l$$

Key properties: shift-invariance and distributed implementation
 ⇒ H(Sx) = S(Hx), no other can be linear and shift-invariant
 ⇒ Each application of S only local info ⇒ only *L*-hop info for y = Hx

• Using
$$\mathbf{S} = \mathbf{V} \wedge \mathbf{V}^{-1}$$
, filter is $\mathbf{H} = \sum_{l=0}^{L} h_l \mathbf{S}^l = \mathbf{V} \left(\sum_{l=0}^{L} h_l \wedge^l \right) \mathbf{V}^{-1}$

Since Λ^{l} are diagonal, use GFT-iGFT to write $\mathbf{y} = \mathbf{H}\mathbf{x}$ as

 $\tilde{\mathbf{y}} = \mathsf{diag}(\tilde{\mathbf{h}})\tilde{\mathbf{x}}$

 \Rightarrow Output at frequency k depends only on input at frequency k

• Frequency response of the filter **H** is $\tilde{\mathbf{h}} = \Psi \mathbf{h}$, with Vandermonde Ψ

$$\Psi := \left(\begin{array}{cccc} 1 & \lambda_1 & \dots & \lambda_1^L \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_N & \dots & \lambda_N^L \end{array}\right)$$

• GFT for signals $(\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x})$ and filters $(\tilde{\mathbf{h}} = \Psi \mathbf{h})$ is different

- ▶ Q: Upon observing a graph signal **y**, how was this signal generated?
- Postulate the following generative model
 - \Rightarrow An originally sparse signal $\mathbf{x} = \mathbf{x}^{(0)}$
 - \Rightarrow Diffused via linear graph dynamics **S** \Rightarrow **x**^(*l*) = **Sx**^(*l*-1)
 - \Rightarrow Observed **y** is a linear combination of the diffused signals $\mathbf{x}^{(l)}$

$$\mathbf{y} = \sum_{l=0}^{L} h_l \mathbf{x}^{(l)} = \sum_{l=0}^{L} h_l \mathbf{S}^l \mathbf{x} = \mathbf{H} \mathbf{x}$$

► Model: Observed network process as output of a graph filter ⇒ View few elements in supp(x) =: {i : x_i ≠ 0} as seeds

- Ex: Global opinion/belief profile formed by spreading a rumor
 - \Rightarrow What was the rumor? Who started it?
 - \Rightarrow How do people weigh in peers' opinions to form their own?

- ▶ Problem: Blind identification of graph filters with sparse inputs
- Q: Given **S**, can we find **x** and the combination weights **h** from $\mathbf{y} = \mathbf{H}\mathbf{x}$?
 - \Rightarrow Extends classical blind deconvolution to graphs

• Leverage frequency response of graph filters ($\mathbf{U} := \mathbf{V}^{-1}$)

$$y = Hx \Rightarrow y = V diag(\Psi h)Ux$$

 \Rightarrow y is a bilinear function of the unknowns h and x

- Problem is ill-posed ⇒ (L + 1) + N unknowns and N observations
 ⇒ As.: x is S-sparse i.e., ||x||₀ := |supp(x)| ≤ S
- ► Blind graph filter identification ⇒ Non-convex feasibility problem

find
$$\{\mathbf{h}, \mathbf{x}\}$$
, s. to $\mathbf{y} = \mathbf{V} \operatorname{diag}(\mathbf{\Psi} \mathbf{h}) \mathbf{U} \mathbf{x}$, $\|\mathbf{x}\|_0 \leq S$

 \blacktriangleright Key observation: Use the Khatri-Rao product \odot to write ${\bf y}$ as

$$\mathbf{y} = \mathbf{V}(\mathbf{\Psi}^T \odot \mathbf{U}^T)^T \operatorname{vec}(\mathbf{x}\mathbf{h}^T)$$

 Reveals y is a linear combination of the entries of Z := xh^T

▶ Z is of rank-1 and row-sparse \Rightarrow Linear matrix inverse problem

$$\min_{\mathbf{Z}} \mathsf{rank}(\mathbf{Z}), \quad \mathsf{s. to } \mathbf{y} = \mathbf{V} \big(\mathbf{\Psi}^{\mathsf{T}} \odot \mathbf{U}^{\mathsf{T}} \big)^{\mathsf{T}} \mathsf{vec}(\mathbf{Z}), \quad \|\mathbf{Z}\|_{2,0} \leq S$$

 \Rightarrow Pseudo-norm $\|\mathbf{Z}\|_{2,0}$ counts the nonzero rows of \mathbf{Z}

- \Rightarrow Matrix "lifting" for blind deconvolution [Ahmed etal'14]
- Rank minimization s. to row-cardinality constraint is NP-hard. Relax!

Algorithmic approach via convex relaxation

- ▶ Key property: ℓ₁-norm minimization promotes sparsity [Tibshirani'94]
 - Nuclear norm $\|\mathbf{Z}\|_* := \sum_i \sigma_i(\mathbf{Z})$ a convex proxy of rank [Fazel'01]
 - $\ell_{2,1}$ norm $\|\mathbf{Z}\|_{2,1} := \sum_i \|\mathbf{z}_i^T\|_2$ surrogate of $\|\mathbf{Z}\|_{2,0}$ [Yuan-Lin'06]
- Convex relaxation

$$\min_{\mathbf{Z}} \|\mathbf{Z}\|_* + \alpha \|\mathbf{Z}\|_{2,1}, \quad \text{s. to } \mathbf{y} = \mathbf{V} \left(\mathbf{\Psi}^T \odot \mathbf{U}^T \right)^T \operatorname{vec}(\mathbf{Z})$$

 \Rightarrow Scalable algorithm using method of multipliers

- Refine estimates {h, x} via iteratively-reweighted optimization
 ⇒ Weights α_i(k) = (||z_i(k)^T||₂ + δ)⁻¹ per row i, per iteration k
- Exact recovery conditions \Rightarrow Success of the convex relaxation
 - \Rightarrow Random model on the graph structure $\ \Rightarrow$ Recovery conditions
 - \Rightarrow Probabilistic guarantees that depend on the graph spectrum
 - \Rightarrow Blind deconvolution (in time) is a favorable graph setting

Numerical tests: Recovery rates

- Recovery rates over an (L, S) grid and 20 trials
 - ▶ Successful recovery when $\|\mathbf{x}^*(\mathbf{h}^*)^T \mathbf{x}\mathbf{h}^T\|_F < 10^{-3}$
- ▶ ER (left), ER reweighted $\ell_{2,1}$ (center), brain reweighted $\ell_{2,1}$ (right)

- Exact recovery over non-trivial (L, S) region
 - \Rightarrow Reweighted optimization markedly improves performance
 - \Rightarrow Encouraging results even for real-world graphs

• Human brain graph with N = 66 regions, L = 6 and S = 6

▶ Proposed method also outperforms alternating-minimization solver
 ⇒ Unknown supp(x) ≈ Need twice as many observations

Multiple output signals

• Suppose we have access to P output signals $\{\mathbf{y}_p\}_{p=1}^{P}$

• Goal: Identify common filter H fed by multiple unobserved inputs x_p

• As.:
$$\{\mathbf{x}_p\}_{p=1}^P$$
 are S-sparse with common support

- Concatenate outputs $\bar{\mathbf{y}} := [\mathbf{y}_1^T, \dots, \mathbf{y}_P^T]^T$ and inputs $\bar{\mathbf{x}} := [\mathbf{x}_1^T, \dots, \mathbf{x}_P^T]^T$
- ► Unknown rank-one matrices $\mathbf{Z}_p := \mathbf{x}_p \mathbf{h}^T$. Stack them \Rightarrow Vertically in rank one $\mathbf{\bar{Z}}_v := [\mathbf{Z}_1^T, ..., \mathbf{Z}_P^T]^T = \mathbf{\bar{x}}\mathbf{h}^T \in \mathbb{R}^{NP \times L}$
 - $\Rightarrow \text{ Horizontally in row sparse } \bar{\mathsf{Z}}_h := [\mathsf{Z}_1, ..., \mathsf{Z}_P] \in \mathbb{R}^{N \times PL}$
- Convex formulation

$$\min_{\{\mathbf{Z}_{P}\}_{P=1}^{P}} \|\bar{\mathbf{Z}}_{V}\|_{*} + \tau \|\bar{\mathbf{Z}}_{h}\|_{2,1}, \quad \text{s. to } \bar{\mathbf{y}} = \left(\mathbf{I}_{P} \otimes \left(\mathbf{V}\left(\mathbf{\Psi}^{T} \odot \mathbf{U}^{T}\right)^{T}\right)\right) \operatorname{vec}(\bar{\mathbf{Z}}_{h})$$

$$\Rightarrow \mathsf{Relax} (\mathsf{As.}): \|\overline{\mathsf{Z}}_h\|_{2,1} \leftrightarrow \|\overline{\mathsf{Z}}_v\|_{2,1} = \sum_{p=1}^{P} \|\mathsf{Z}_p\|_{2,1}$$

Numerical tests: Multiple signals, recovery rates

- Recovery rates over an (L, S) grid and 20 trials
 - Successful recovery when $\|\hat{\mathbf{x}}\hat{\mathbf{h}}^{T} \bar{\mathbf{x}}\mathbf{h}^{T}\|_{F} < 10^{-3}$
- ▶ ER (left), ER reweighted $\ell_{2,1}$ (center), brain reweighted $\ell_{2,1}$ (right)

Leveraging multiple output signals aids the blind identification task

Summary and extensions

- ► Extended blind deconvolution of space/time signals to graphs ⇒ Key: model diffusion process as output of graph filter
- ► Exact recovery conditions ⇒ Success of the convex relaxation
 ⇒ Probabilistic guarantees that depend on the graph spectrum
 ► Consideration of multiple sparse inputs aids recovery
- Envisioned application domains
 - (a) Opinion formation in social networks
 - (b) Identify sources of epileptic seizure
 - (c) Trace "patient zero" for an epidemic outbreak
- ► Unknown shift **S** ⇒ Network topology inference

Symposium on Signal and Information Processing over Networks

Topics of interest

- \cdot Graph-signal transforms and filters
- · Non-linear graph SP
- · Statistical graph SP
- · Prediction and learning in graphs
- · Network topology inference
- · Network tomography
- · Control of network processes

- · Signals in high-order graphs
- \cdot Graph algorithms for network analytics
- \cdot Graph-based distributed SP algorithms
- \cdot Graph-based image and video processing
- \cdot Communications, sensor and power networks
- · Neuroscience and other medical fields
- \cdot Web, economic and social networks

Paper submission due: June 5, 2016

Organizers:

Michael Rabbat (McGill Univ.)

Antonio Marques (King Juan Carlos Univ.)

Gonzalo Mateos (Univ. of Rochester)

Relevance of the graph-shift operator

• Q: Why is S called shift? A: Resemblance to time shifts

S will be building block for GSP algorithms

 \Rightarrow Same is true in the time domain (filters and delay)

