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Network Science analytics

Online social media Internet Clean energy and grid analytics
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» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
> Network as graph G = (1, £): encode pairwise relationships

> Interest here not in G itself, but in data associated with nodes in V
= The object of study is a graph signal
» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Motivating examples — Graph signals

Social Networks ol

nergy Networks

Irregular Data Domains

» Graph SP: broaden classical SP to graph signals [Shuman etal'13]

= Our view: GSP well suited to study network processes

» As.: Signal properties related to topology of G (e.g., smoothness)
= Algorithms that fruitfully leverage this relational structure
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Graph signals

» Consider a graph G(V,&). Graph signals are mappings x : V — R
= Defined on the vertices of the graph (data tied to nodes)

» May be represented as a vector x € RV
= X, denotes the signal value at the n-th vertex in V

= Implicit ordering of vertices
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Graph-shift operator

» To understand and analyze x, useful to account for G's structure

» Graph G is endowed with a graph-shift operator S € RV*N
= Sjj =0for i #jand (i,j) ¢ € (captures local structure in G)

» S can take nonzero values in the edges of G or in its diagonal
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» Ex: Adjacency A, degree D, and Laplacian L = D — A matrices
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Locality of the graph-shift operator

» S is a linear operator that can be computed locally at the nodes in V

» Consider the graph signal y = Sx and node i's neighborhood N;
= Node i can compute y; if it has access to x; at j € N

yi = Z SUXJ, iey
JEN;

> Recall S;j #0onlyifi=jor (j,i)e&
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» If y =S2x = y; found using values x; within 2 hops
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Graph Fourier transform (GFT)

> As.: S related to generation (description) of the signals of interest
= Spectrum of S = VAV~ will be especially useful to analyze x

v

The Graph Fourier Transform (GFT) of x is defined as

%=V 1x

v

While the inverse GFT (iGFT) of X is defined as
x = Vx

= Eigenvectors V = [vy, ..., vy] are the frequency basis (atoms)

v

Ex: For the directed cycle (temporal signal) = GFT = DFT

Santiago Segarra Blind Identification of Graph Filters with Multiple Sparse Inputs



Linear (shift-invariant) graph filter

» A graph filter H: RY — RV is a map between graph signals

Focus on linear filters
= map represented by an
N x N matrix

» Polynomial in S of degree L, with coefficients h = [ho, ..., h]T

Graph filter [Sandryhaila-Moura'13]

H:=hpSO + mS! + ...+ h St =31, hS

> shift-invariance and distributed implementation
= H(Sx) = S(Hx), no other can be linear and shift-invariant
= Each application of S only local info = only L-hop info for y = Hx
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Frequency response of a graph filter

v

Using § = VAV, filter is H = 3o S’ = V () hin') v

Since N\ are diagonal, use GFT-iGFT to write y = Hx as

v

§ = diag(h)x
= Qutput at frequency k depends only on input at frequency k
Frequency response of the filter H is h = Wh, with Vandermonde W

1 A ... A

GFT for signals (X = V~'x) and filters (h = Wh) is different

v
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Diffusion processes as graph filter outputs

» Q: Upon observing a graph signal y, how was this signal generated?

» Postulate the following generative model
= An originally sparse signal x = x(©)
= Diffused via linear graph dynamics § = x() = Sx(/=1)

= Observed y is a linear combination of the diffused signals x(")

L
1=0 I

L
hS'x = Hx
0

» Model: Observed network process as output of a graph filter

= View few elements in supp(x) =: {i : x; # 0} as seeds
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Motivation and problem statement

» Ex: Global opinion/belief profile formed by spreading a rumor
= What was the rumor? Who started it?

= How do people weigh in peers’ opinions to form their own?

o © J} ? y J)
O o = Graph Filter t=> J)
f 0 o} T J)

Unobserved Observed

» Problem: Blind identification of graph filters with sparse inputs
» Q: Given S, can we find x and the combination weights h from y = Hx?
= Extends classical blind deconvolution to graphs
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Blind graph filter identification

» Leverage frequency response of graph filters (U := V1)
y = Hx = y = Vdiag(Wh)Ux
=y is a bilinear function of the unknowns h and x

» Problem is ill-posed = (L + 1)+ N unknowns and N observations
= As.: x is S-sparse i.e., ||x|lo := |supp(x)| < S

» Blind graph filter identification = Non-convex feasibility problem

find {h,x}, s. to y=Vdiag(Wh)Ux, |x[[o <S5
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“Lifting” the bilinear inverse problem

» Key observation: Use the Khatri-Rao product ® to write y as

y=V(WT o U") vec(xh")

x [ )

» Reveals y is a linear combination
of the entries of Z := xh”

» Z is of rank-1 and row-sparse =- Linear matrix inverse problem
min rank(Z), s. toy=V(W oUT) Tvec(Z), 1Z]20 < S

= Pseudo-norm ||Z||2,0 counts the nonzero rows of Z
= Matrix "lifting” for blind deconvolution [Ahmed etal'14]

» Rank minimization s. to row-cardinality constraint is NP-hard. Relax!
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Algorithmic approach via convex relaxation

» Key property: £1-norm minimization promotes sparsity [Tibshirani'94]

> Nuclear norm ||Z||. := >, 0i(Z) a convex proxy of rank [Fazel'01]
> L1 norm ||Z||21 := 3", ||z] ||2 surrogate of ||Z||2,0 [Yuan-Lin'06]

» Convex relaxation
min | Z]l +al|Zllos, s toy = V(W & UT) vec(2)
= Scalable algorithm using method of multipliers

» Refine estimates {h, x} via iteratively-reweighted optimization
= Weights a;(k) = (||zi(k)"||l2 + 8) " per row i, per iteration k

» Exact recovery conditions =- Success of the convex relaxation
= Random model on the graph structure =- Recovery conditions
= Probabilistic guarantees that depend on the graph spectrum

= Blind deconvolution (in time) is a favorable graph setting
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Numerical tests: Recovery rates

» Recovery rates over an (L, S) grid and 20 trials
> Successful recovery when ||x*(h*)” —xh' || < 1073

> ER (left), ER reweighted ¢, ; (center), brain reweighted ;1 (right)
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» Exact recovery over non-trivial (L, S) region
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= Reweighted optimization markedly improves performance

= Encouraging results even for real-world graphs
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Numerical tests: Brain graph

» Human brain graph with N = 66 regions, L=6 and S =6
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Number of Observations

» Proposed method also outperforms alternating-minimization solver

= Unknown supp(x) =~ Need twice as many observations
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Multiple output signals

» Suppose we have access to P output signals {yp},’;l

o O (L J) 9 Y4 (L
O o = Graph Filer E::>J) J’ o

o b
6 @ o > GraphFilter E::>? o J) T
Unobserved Observed

> Goal: Identify common filter H fed by multiple unobserved inputs x,
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Formulation

> As.: {x,},_; are S-sparse with common support
» Concatenate outputs y := [y ,...,yA]" and inputs X := [x{,...,x}]"

> Unknown rank-one matrices Z, := xphT. Stack them
= Vertically in rank one Z, := [Z],...,Z]]T = xhT ¢ RNVPxL

= Horizontally in row sparse Z, 1= [Zy, ..., Zp] € RN*FL

Convex formulation

v

min ||Z, |« +7]|Zpl[21, s toy= (Ip@ (V(WT ® UT)T>) vec(Zp)
y4 P

PSp=1

= Relax (As.): [[Zall2a < [Zvll2a = S5y [ Zp]l2a
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Numerical tests: Multiple signals, recovery rates

> Recovery rates over an (L, S) grid and 20 trials
> Successful recovery when ||xh” — xh" || < 1072

> ER (left), ER reweighted ¢, ; (center), brain reweighted ¢, 1 (right)
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» Leveraging multiple output signals aids the blind identification task
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Summary and extensions

v

Extended blind deconvolution of space/time signals to graphs

= Key: model diffusion process as output of graph filter

v

Rank and sparsity minimization subject to model constraints

= “Lifting” and convex relaxation yield efficient algorithms

v

Exact recovery conditions = Success of the convex relaxation

= Probabilistic guarantees that depend on the graph spectrum

v

Consideration of multiple sparse inputs aids recovery

v

Envisioned application domains

(a) Opinion formation in social networks

(b) Identify sources of epileptic seizure

(c) Trace “patient zero” for an epidemic outbreak

v

Unknown shift S = Network topology inference
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Relevance of the graph-shift operator

» Q: Why is S called shift? A: Resemblance to time shifts

X

X1
2 0 000001 0
Set S = Adc 0 100000 3
“ 5 z | _] 010000 3
Y ':> What is Sx? ':> z3 001000 0
' 0 000100 0
s 0 000010 0

» S will be building block for GSP algorithms
= Same is true in the time domain (filters and delay)
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