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BDoG-Net: Algorithm Unrolling for Blind
Deconvolution on Graphs

Chang Ye , Member, IEEE, and Gonzalo Mateos , Senior Member, IEEE

Abstract—Starting from first graph signal processing (GSP)
principles, we present a novel model-based deep learning approach
to blind deconvolution of sparse graph signals. Despite the bilinear
nature of the observations, by requiring invertibility of the un-
known (diffusion graph filter) forward operator we can formulate
a convex optimization problem and solve it using the alternating-
direction method of multipliers (ADMM). We then unroll and trun-
cate the novel ADMM iterations to arrive at a parameterized neural
network architecture for blind deconvolution on graphs (BDoG-
Net), which we train in an end-to-end fashion using labeled data.
This supervised learning approach offers several advantages, such
as interpretability, parameter efficiency, and controllable com-
plexity during inference. Our reproducible numerical experiments
corroborate that BDoG-Net exhibits performance on par with the
iterative ADMM baseline, but with markedly faster inference times
and without the need to manually adjust the step-size or penalty
parameters. The application of BDoG-Net to a simplified instance
of source localization over networks is also discussed. Overall, our
approach combines the best of both worlds by incorporating the in-
ductive biases of a GSP model-based solution within a data-driven,
trainable deep learning architecture for blind deconvolution on
graphs.

Index Terms—Graph signal processing, network diffusion, deep
learning, blind deconvolution, algorithm unrolling.

I. INTRODUCTION

W E CONSIDER a blind deconvolution task involving
graph signals [37], [47], [48]. In this bilinear inverse

problem, we observe P i.i.d. graph signals {yi}Pi=1 that we
model as outputs of some unknown diffusion graph filter, i.e.,
a polynomial in the graph-shift operator of a given graph [9],
[19], [29], [35]. The goal is to jointly identify the forward filter
coefficients h and the input signals {xi}Pi=1 that generated the
observations. We assume that the inputs are sparse, implying
that only a few source nodes inject a signal that spreads through
the network; see Fig. 1. This problem can be viewed as an
admittedly simplified mathematical abstraction of source local-
ization over networks, with envisioned applications including
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Fig. 1. (Top) Model-based blind deconvolution task [37], [48]. Given P graph
signals in Y modeled as the output of a diffusion graph filter, the goal is to
recover the filter coefficients h, and the input signals X that are assumed to be
sparse. Blue panels indicate what is given and red panels represent unobserved
quantities. (Bottom) When formulated as a supervised learning problem (an

innovation of this work), we rely on a training setT := {Xi,Yi}|T |
i=1 to learn the

parameters Θ of the model X̂ = Φ(Y;Θ) by minimizing (5). During training,
what is observed and what is not differs from the model-based setting – and the
latter is what we encounter during testing or inference.

sensor-based environmental monitoring, opinion formation in
social networks, neural signal processing, epidemiology, or dis-
information campaigns. We discuss state-of-the-art graph source
localization models and learning algorithms in Section V-E, but
those can be quite specialized and different than ours. For inspir-
ing prior related model-based blind deconvolution approaches
of (non-graph) signals, see e.g., [1], [22], [42].

A. Proposed Approach in Context

To solve this inverse problem in a supervised setting, we
propose a novel data-driven machine learning model that blends
graph signal processing (GSP) principles with deep learning
(DL). Our algorithm unrolling [27] approach leverages the inter-
pretability and parameter efficiency of model-based GSP meth-
ods, and also utilizes the power of DL to achieve satisfactory
recovery performance and controllable inference complexity for
small- to moderate-sized graphs; see [6], [28] for related ideas
applied to graph signal denoising and [32], [39], [43], [44] for
network topology inference.

Different from most early attempts to localizing sources on
networks (e.g., [31], [36], [52]), here we leverage the GSP
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toolbox [29] inspired by [30], [37], [50]. The idea in [37] is
to cast the (bilinear) blind graph filter identification task as
a linear inverse problem in the “lifted” rank-one, row-sparse
matrix xh�; see also [1], [25] for seminal blind deconvolution
work via convex programming. While the rank and sparsity
minimization algorithms in [33], [37] can successfully recover
sparse inputs along with low-order graph filters (even from a
single observation, i.e., with P = 1), reliance on matrix lifting
can hinder applicability beyond small graphs. Beyond this com-
putational consideration, the overarching assumption of [37] is
that the inputs {xi}Pi=1 share a common support when P > 1.
Moreover, iterative solvers in [33], [37], [50] require carefully
tuning step-sizes, as well as carrying out costly grid searches to
select regularization parameters in the inverse problems. Instead,
the algorithm unrolling-based DL model of this paper learns
these parameters (and others) in a end-to-end fashion. Relative
to [18], [30], [31], the proposed framework relies on a convex
estimator of the sparse sources of diffusion, which here we
favorably exploit to design a DL architecture as well as to
generate training examples.

B. Contributions and Paper Outline

In this context, our starting point is the blind deconvolution
formulation in [48]. After reviewing the necessary GSP back-
ground, in Section II we reexamine and state the problem in the
novel supervised learning setting dealt with here. The model-
based approach in [48] imposes a mild requirement on invertibil-
ity of the graph filter, which facilitates a convex reformulation
for the multi-signal case with arbitrary supports (Section III);
see also [42] for a time-domain precursor that inspired our line
of work in graph settings. While [48] focused on fundamental
exact recovery and noise stability guarantees (see also [40], [47]
for robustness to graph perturbations), here we shift gears to
algorithmic issues and first develop a novel solver based on the
alternating-directions method of multipliers (ADMM) [4, Ch.
3.4.4]. The ADMM algorithm in Section III-B is of independent
interest as an effective model-based solution to the problem of
blind deconvolution on graphs (we reiterate that algorithms were
only tangentially treated in e.g., [37], [48], [50]). However, the
ADMM’s main upshot here is in leveraging its primal and dual
variable updates as the blueprint for (sub-)layers of a trainable
parametric DL model with prescribed depth. This way we seek
to overcome the burden of manually tuning step-size and penalty
parameters, plus the time as well as computational overhead that
comes with running hundreds or thousands of iterations to attain
convergence each time a new problem instance is presented.

To this end, in Section IV we unroll and truncate the ADMM
iterations [27], [28], [46], to arrive at a parameterized nonlinear
DL architecture for Blind Deconvolution on Graphs (BDoG-
Net), that we train in an end-to-end fashion using labeled data.
This way we leverage inductive biases of a GSP model-based
solution in a data-driven trainable deep network, which is inter-
pretable, parameter efficient, and offers controllable complexity
during inference [27]. To increase the model’s expressive power
we explore several customizations to the vanilla BDoG-Net
architecture, such as different parameters across layers and

learned linear constraints on the inverse filter response. Ex-
periments with both simulated and real network data in Sec-
tion V demonstrate that BDoG-Net achieves performance on
par with the iterative ADMM baseline, while achieving sig-
nificant post-training speedups. We also show that the model
refinements are indeed effective and that BDoG-Net is robust
to noise corrupting the observations. All in all, our findings
show promise for blind deconvolution on graphs, while they also
support the broader prospect of adopting algorithm unrolling as
a versatile data-driven tool to tackle network inverse problems;
see also [6], [28], [32], [39], [44]. Conclusions are laid out in
Section VI, with a discussion of limitations of our approach
and potential follow-up work in this space. Some non-essential
algorithm construction steps, mathematical arguments, and DL
model implementation details are deferred to the appendices. In
support of current reproducible research practices, we share the
code used to generate the results reported in this paper.

Relationship to the conference precursor [49]: Here we of-
fer full-blown technical details along with extended discus-
sions, schematic diagrams, and appendices. Noteworthy addi-
tions over [49] include: (i) BDoG-Net architectural refinements
such as learnable constraints and decoupled parameters across
layers; (ii) efficient matrix inversion schemes for the model-
based ADMM algorithm and the BDoG-Net filter sub-layer; (iii)
computational complexity analyses; and (iv) a comprehensive
and reproducible performance evaluation protocol. The latter
offers comparisons with the iterative ADMM as well as graph
neural network (GNN) baselines [9], [41]; a study of inverse filter
recovery and source localization performance as a function of
the type of random graph ensemble and the number of nodes N ;
robustness to observation noise and the number of observations
P ; as well as real data source localization experiments using a
version of the Digg 2009 dataset [14].

II. PRELIMINARIES AND PROBLEM STATEMENT

We start by introducing the basic graph theoretical back-
ground required to formally state the inverse problem dealt with
here. Let G(V,A) denote a weighted and undirected network
graph, where V = {1, . . . , N} is the set of vertices and A ∈
RN×N

+ is the symmetric adjacency matrix. EntryAij = Aji ≥ 0
denotes the weight of the edge (i, j).

Graph signals and shift operators: A graph signal x : V �→
RN is an N -dimensional vector, where entry xi represents the
signal value at node i ∈ V; see [29] for examples in sensor
networks, social media, transportation systems, or network neu-
roscience. As a general algebraic descriptor of network structure
relating the entries of x, one can define a graph-shift operator
S ∈ RN×N which is a matrix with the same sparsity pattern
as G [35]. Accordingly, S can be viewed as a local, meaning
one-hop, diffusion (or aggregation) operator acting on graph
signals. See [11], [29] for typical choices including normalized
variations of adjacency and Laplacian matrices. Next, we in-
troduce more general operators – graph filters – that linearly
combine multi-hop aggregations of graph signals obtained via
self compositions of S. Our particular focus will be on simple
generative mechanisms behind network diffusion.
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A. Graph Filter Models of Linear Network Diffusion

Consider a graph signal y that is supported on a graph G with
shift operator S, and is generated from an input state x through
linear network diffusion. Formally, we can write

y = a0

∞∏
l=1

(IN − alS)x =
∞∑
l=0

ālS
lx, (1)

whereS captures one-hop localized interactions among network
nodes, and each successive application of the shift in (1) diffuses
x over G. The signal mapping in (1) encompasses several ex-
isting models, including heat diffusion, consensus, the DeGroot
model of opinion dynamics [8], and mean-field approximations
to some workhorse epidemic models [37]. This is a tractable
simplification of network phenomena, where input-output rela-
tionships can be dynamic and nonlinear.

Despite the infinite degree of the polynomial expres-
sions in (1), the Cayley-Hamilton theorem ensures that they
are equivalent to polynomials of degree upper bounded by
N [15, pp. 109-110]. Defining the vector of coefficients h :=
[h0, . . . , hL−1]

� and the (convolutional) graph filter

H := h0IN + h1S+ . . .+ hL−1S
L−1 =

L−1∑
l=0

hlS
l, (2)

the signal model in (1) can be rewritten as y = Hx for some
specific h and L ≤ N . As formalized in the ensuing section,
in this paper we adopt y = Hx as a forward model for the
measurements y. We want to recover xwhenh is also unknown.
For an up to date and comprehensive survey of graph filters; the
interested reader is referred to [19].

Frequency domain representation: Since S is symmetric, it
is diagonalizable as S = VΛV�, with Λ = diag(λ1, . . . , λN )
collecting the eigenvalues. This spectral decomposition of S is
used in GSP to represent graph filters and signals in the graph
frequency domain. Specifically, let us use the eigenvalues of S
to define the Vandermonde matrix ΨL ∈ RN×L, where Ψij :=

λ
j−1
i . The frequency representations of a signalx and filterh are

defined as x̃ := V�x and h̃ := ΨLh, respectively. The former is
by definition of the graph Fourier transform (GFT) [29], [34] and
the latter follows since the filter output y=Hx in the frequency
domain can be written as

ỹ = diag (ΨLh)V
�x = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (3)

This identity is analogous to the convolution theorem for tempo-
ral signals, where we find ỹ is given by the elementwise product
(◦) of x̃ and the filter’s frequency response h̃.

B. Problem Statement

For given graph G with shift operator S, consider a diffusion
filter H =

∑L−1
l=0 hlS

l whose coefficients h are unknown. Like
the graph topology, the filter order L ≤ N is assumed to be
given. Suppose we observe P diffused signals that we arrange
in a matrix Y = [y1, . . . ,yP ] ∈ RN×P , where Y = HX and
the latent inputs are X = [x1, . . . ,xP ] ∈ RN×P . We make the
following assumption on the input signals.

Assumption 1 (Input sparsity): Signals X ∈ RN×P are
sparse with at most S 
 N non-zero entries per column.

In this context, blind deconvolution amounts to jointly esti-
mating sparse X and the filter coefficients h up to scaling and
(possibly) permutation ambiguities [50]; see also Fig. 1 (top) for
a depiction of this task first studied in [37]. Assumption 1 is well
justified when the signals in Y represent diffused versions of a
few localized sources inG, here indexed by supp(X) := {(i, j) |
Xij �= 0} (columns of X may have different supports). Also,
without such structural constraints the problem is ill-posed,
because the number of unknowns NP + L in {X,h} exceeds
the NP observations in Y.

All in all, using (3) we formulate the feasibility problem

find {X,h} s. to Y = Vdiag (ΨLh)V
�X, ‖X‖0 ≤ PS,

(4)
where the �0-(pseudo) norm‖X‖0 := |supp(X)| counts the non-
zero entries in X. In words, we are after the solution to a system
of bilinear equations subject to a sparsity constraint in X; a hard
problem due to the non-convex �0-norm as well as the bilinear
constraints. To deal with the latter, similar to [42], [50] we will
henceforth assume that the filter H is invertible.

Blind deconvolution as a supervised learning problem: Sup-
pose that X is drawn from some distribution of sparse matrices,
say the Bernoulli-Gaussian model for which one can establish
(4) is identifiable [50, Remark 1]. Likewise, suppose the filter
tapsh are drawn from a distribution such thatH is invertible with
high probability. Then given independent training samples T :=

{Xi,Yi}|T |
i=1 adhering to (1), our goal in this paper is to learn

a judicious parametric mapping that predicts X̂ = Φ(Y;Θ) by
minimizing a loss function

L(Θ) :=
1

|T |
∑
i∈T

�(Xi,Φ(Yi;Θ)), (5)

where Θ are learnable parameters; see Fig. 1 (bottom) for a
schematic depiction of the training setting. Depending on the
application, a training set may be available from historical data,
or for instance it may be generated using a simulator of the
diffusion process. Alternatively, given observations Yi one can
obtain source labels Xi by solving a convex optimization prob-
lem as discussed in the ensuing section; see also [37], [50]. This
way, the perspective is to learn to approximate the minimizers
of a relaxation to (4). While admittedly the data-generation and
training phases can be time consuming, they are offline and need
to be performed once. In turn, the upshot is a faster method
during testing or inference.

We will design the deep network Φ(·;Θ) in Section IV, using
iterations of a model-based solution we develop in Section III
as a layer by layer blueprint. The particular choice of the loss
� will be discussed in Section V. While not made explicit in
our notation, Φ(·;Θ) makes internal predictions of the diffusion
filter from which X̂ is obtained at the output.

III. MODEL-BASED BLIND DECONVOLUTION ON GRAPHS

Here we review the model-based solution to the blind decon-
volution problem proposed in [48], [50], which relies on a convex
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relaxation of (4) when the diffusion filter is invertible. Then we
develop novel ADMM iterations to solve said relaxation, which
we unroll in Section IV to obtain the BDoG-Net model that we
train using data by minimizing (5).

A. Convex Relaxation for Invertible Graph Filters

Conditions for the invertibility of a graph filter can be read-
ily obtained in the graph spectral domain. Indeed, the filter’s
frequency response h̃i should not vanish at any of the discrete
frequencies λi, i = 1, . . . , N, otherwise the input information
in the nulled frequency modes is lost; see (3).

Assumption 2 (Filter invertibility): The graph filter H =
Vdiag(h̃)V� is invertible, meaning h̃i =

∑L−1
l=0 hlλ

l
i �= 0, for

all i = 1, . . . , N .
Under Assumption 2, one can show that the inverse operator

G := H−1 is also a polynomial graph filter on G, of degree at
most N − 1 [35, Theorem 4]. To be more specific, let g ∈ RN

be the vector of inverse-filter coefficients, i.e., H−1 := G =∑N−1
l=0 glS

l. Then one can equivalently rewrite the forward
model Y = HX for the observations as

X = GY = Vdiag(g̃)V�Y, (6)

where g̃ := ΨNg ∈ RN is the inverse filter’s frequency re-
sponse and ΨN ∈ RN×N is Vandermonde. Naturally, G =
H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency re-
sponses. Leveraging (6), one can recast (4) as a linear inverse
problem

min
{X,g̃}

‖X‖0, s. to X = Vdiag(g̃)V�Y, X �= 0. (7)

The �0 norm in (7) makes the problem NP-hard to optimize.
Over the last two decades or so, convex-relaxation approaches
to tackle sparsity-minimization problems have enjoyed remark-
able success, since they often entail no loss of optimality; see
Remark 1. Accordingly, we instead: (i) seek to minimize the
�1-norm convex surrogate of the cardinality function, that is
‖X‖1,1 =

∑
i,j |Xij |; and (ii) express the filter in the graph

spectral domain as in (6) to obtain the cost function

‖X‖1,1 = ‖GY‖1,1
= ‖Vdiag(g̃)V�Y‖1,1
= ‖(Y�V 
V)g̃‖1.

In arriving at the last equality we used that ‖X‖1,1 = ‖vec[X]‖1
and invoked properties of the vectorization operator, where 

denotes the Khatri-Rao (i.e., columnwise Kronecker) product.
This suggests solving the convex �1-synthesis problem (a linear
program), e.g., [51], namelŷ̃g = argmin

g̃∈RN

‖(Y�V 
V)g̃‖1, s. to 1�
N g̃ = 1. (8)

While the linear constraint in (8) avoids the trivial solution ̂̃g =
0, it also serves to fix the (arbitrary) scale of the estimated filter.
Once the frequency response ̂̃g of the inverse filter is recovered,
the input signals can be reconstructed via vec[X̂] = (Y�V 

V)̂̃g. Because S and L are known, one can also recover the filter
H as in system identification, if so desired.

Remark 1 (Recovery and stability guarantees): Sufficient
conditions were derived in [48], under which (8) succeeds in
exactly recovering the true inverse filter response with high
probability. This result holds for Bernoulli-Gaussian distributed
X [23], [42]. Stability to additive noise corrupting the obser-
vations Y [48], or, perturbations in the graph-shift operator
eigenbasis V [47], has also been established.

All in all, under Assumption 2 one can readily use e.g., an off-
the-shelf interior-point method to solve (8) efficiently [48], [50].
Next, we propose a specialized sparsity-minimization algorithm
that exploits the problem’s unique structure.

B. ADMM Algorithm

Problem (8) can be solved using the ADMM. Let x =
vec[X] ∈ RNP and denote Z := Y�V 
V ∈ RNP×N . Using
variable splitting, problem (8) can be equivalently written as

min
{x,g̃}

‖x‖1, s. to Zg̃ − x = 0NP , 1�
N g̃ = c, (9)

where c = 1, but we will henceforth treat it as a generic nonzero
constant in case we want to adjust the scale of g̃. Associating
dual variables λ ∈ RNP and μ ∈ R to the equality constraints
in (9), the augmented Lagrangian function becomes

Lρ(x, g̃,λ, μ) = ‖x‖1 +
ρλ

2
‖Zg̃ − x+ λ/ρλ‖22

+
ρμ
2
(1�

N g̃ − c+ μ/ρμ)
2, (10)

after completing the squares, where ρλ and ρμ are non-negative
penalty coefficients. Letting Γ := ρλZ

�Z+ ρμ1N1�
N for nota-

tional convenience, then the ADMM [4], [5] updates are given
by (k = 0, 1, 2, . . . will henceforth denote iterations)

g̃[k + 1] = Γ−1
[
Z�(ρλx[k]− λ[k]) + (ρμc− μ[k])1N

]
,

(11)

x[k + 1] = Sρ−1
λ
(Zg̃[k + 1] + λ[k]/ρλ), (12)

λ[k + 1] = λ[k] + ρλ(Zg̃[k + 1]− x[k + 1]), (13)

μ[k + 1] = μ[k] + ρμ(1
�
N g̃[k + 1]− c). (14)

For completeness, (11)–(14) are derived in Appendix A. The
soft-thresholding operatorSρ−1

λ
(·) = sign(·)max(| · | − ρ−1

λ , 0)
in (12) acts component-wise on the entries of its vector argument.
The initialization {x[0],λ[0], μ[0]} can be arbitrary, and we
typically let the initial conditions be equal to zero.

Different from the solvers in [33], [37], the provably con-
vergent ADMM updates are free of expensive singular-value
decompositions per iteration. The inversion of theN ×N matrix
Γ is done once, offline, and Γ−1Z�, Γ−11N are cached to run
the iterations. Even more, we show in Appendix B that the
matrix ZZ� is diagonal. Thus, Γ is a rank-one correction of
a diagonal matrix, which can be computed efficiently using the
matrix inversion lemma; see Appendix C for the details and
associated computational complexity analysis.

In the next section, we unroll the ADMM iterations (11)–(14)
to arrive at the trainable parametric model Φ(Y;Θ).
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Fig. 2. The layerwise structure of BDoG-Net, a DL model X̂ = Φ(Y;Θ) consisting of K layers. Layer k is a composition of three sub-layers: (i) a filter
sub-layer Gk; followed by (ii) a sources sub-layer Xk; followed by (iii) a multipliers sub-layer Mk . Each of these sub-layers is a direct mapping of a primal or

dual variable update in the ADMM algorithm of Section III-B, tabulated as Algorithm 1 for convenience. Learnable parameters in Θ are Θ
(k)
G = {ρ(k)1 , ρ

(k)
2 },

Θ
(k)
X = {α(k)

1 , α
(k)
2 , α

(k)
3 , τ (k)}, Θ(k)

M = {β(k)
1 , β

(k)
2 , β

(k)
3 , γ(k)},M(k),m(k), k = 1, . . . ,K.

IV. BLIND DECONVOLUTION VIA UNROLLING

The algorithm unrolling (or deep unfolding) principle was
pioneered in [13] for the problem of sparse coding natural images
using overparameterized dictionaries. The technical approach
in [13] was to truncate and map iterations of the iterative
shrinkage-thresholding algorithm (ISTA) [2] to layers in a deep
network that can be trained from data. Learnable weights are
often optimization step-sizes, regularization and penalty param-
eters, or other matrices when additional expressive power is
needed. One of the greatest DL challenges has been architectural
search, and unrolling offers a principled approach to model
design by using tested algorithms as architectural templates. The
perspective is to learn to approximate solutions with substantial
computational savings during inference, relative to the optimiza-
tion algorithm. While the former process entails a forward pass
through a feedforward neural network (NN) with few layers, the
latter could entail running hundreds (pr thousands) of iterations
until convergence.

Beyond parsimonious signal modeling, there has been a surge
in popularity of unrolled deep networks for a wide variety of
applications in signal and image processing; see e.g., [27] for a
recent review. Most relevant to our approach is the unrolling of
ADMM iterations for undersampled image reconstruction [46],
and recent advances to learn from graph data [6], [28], [32],
[39], [43], [44]. However, none of these works has dealt with
the blind deconvolution task over networks via the formulation
in Section III (which has broader applicability; see the opening
paragraph in Section I).

A. BDoG-Net: ADMM as Architectural Blueprint

We construct the BDoG-Net architecture by unrolling the
ADMM iterations (11)–(14) into a DL model. To this end, we
map individual primal and dual variable updates as sub-layers
within a layer; see Fig. 2 for a schematic depiction of this
process. We then compose a prescribed number K of layers to
constitute the parametric mapping Φ(Y;Θ). ADMM penalty
coefficients {ρλ, ρμ} will be treated as learnable parameters
in Θ. Observations Y are inputs to the NN. Just like in the
model-based approach in Section III, the architecture lever-
ages graph structure information through the eigenvectors V.
The K-th layer output is used to form the source predictions
X̂.

Architectural refinements: In designing BDoG-Net’s sub-
layers, we will deviate slightly from a strict ADMM unrolling
of (11)–(14) in order to enhance overall predictive performance.
For instance, in each sub-layer we introduce several additional
parameters to increase the model’s expressive power.

In the original formulation (8), we included the linear con-
straint1�g̃ = 1 as a simple mechanism to prevent an undesirable
all-zero solution and fix the (otherwise arbitrary) scale of the
solution. However, this rigid constraint might limit the method’s
recovery potential in some cases. In addition, the scale fixing
parameter c = 1 is no longer needed in the supervised learning
setting dealt with here. Scale information will be implicitly
conveyed through examples T := {Xi,Yi}|T |

i=1, and can thus
be learned during training. These considerations motivate re-
placing the constraint 1�g̃ = c in (9) with M�g̃ = m, where
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M ∈ RN×d and m ∈ Rd are learnable parameters. The asso-
ciated modifications to the ADMM algorithm in Section III-B
are straightforward, and we will not spell them out here in the
interest of brevity.

We will also forgo the parameter sharing constraint imposed
by the unrolled ADMM iterations. This is standard practice [27],
and we have experimentally found that a model with different
parameters per layer performs better and leads to more stable
training. We would be remiss by not mentioning there is a trade-
off, since a NN with coupled parameters offers the flexibility to
train with Ktrain layers and then perform inference over a deeper
architecture withKtest > Ktrain layers. We leave this exploration
as future work. Next, we describe the design of each sub-layer
in detail.

Filter sub-layer: This sub-layer Gk refines the inverse filter
coefficient estimate g̃[k + 1] at layer k, based on the source
estimates x[k] and the dual variables {λ[k],μ[k]} from the
previous layer. We mimic the g̃ update in (11), and introduce
some minor tweaks. To avoid problems with the inversion of
Γ in the eventuality ρλ = ρμ = 0 during training, we opt for
the reparameterization ρ1 := 1/ρλ, ρ2 := ρμ/ρλ and impose
non-negativity constraints on both parameters. Moreover, we
consider decoupled parametersΘ(k)

G := {ρ(k)1 , ρ
(k)
2 } across lay-

ers k = 1, . . . ,K, to increase the network capacity. Finally, the
constraint’s constant vector1N and the scale-normalization con-
stant c are replaced by learnable parameters {M(k),m(k)}Kk=1,
thus obtaining [cf. (11)]

g̃[k + 1] =
(
Z�Z+ ρ

(k)
2 M(k)M(k)�

)−1 [
Z�

(
x[k]

−ρ
(k)
1 λ[k]

)
+M(k)

(
ρ
(k)
2 m(k) − ρ

(k)
1 μ[k]

)]
:= Gk

(
x[k],λ[k],μ[k];Θ

(k)
G ,M(k),m(k)

)
, (15)

where ρ
(k)
1 , ρ

(k)
2 ≥ 0, for k = 1, . . . ,K.

Recall that Z := Y�V 
V, so every time a new data mini-
batch Y is to be processed one needs to (re)invert matrices
Γ(k); see Appendices C and D for a computationally-efficient
implementation, especially when d = 1.

Sources sub-layer: Here we update the source estimates x[k]
based on g̃[k + 1] in (15) and the multiplier λ[k]. The sub-layer
Xk imitates (13), but instead of a single tunable parameter ρλ we
introduce learnable combination weights {α(k)

1 , α
(k)
2 }Kk=1 and

thresholds {τ (k)}Kk=1; all collected in Θ
(k)
X , for each sub-layer

k = 1, . . . ,K. We propose [cf. (12)]

x[k + 1] = Sτ (k)

(
α
(k)
1 Zg̃[k + 1] + α

(k)
2 λ[k]

)
:= Xk

(
g̃[k + 1],λ[k];Θ

(k)
X

)
, (16)

where the sparsifying thresholds are naturally constrained as
τ (k) ≥ 0, for k = 1, . . . ,K. Notice how (16) implements a
simple linear filter on the sub-layer inputs {g̃[k + 1],λ[k1]},
followed by a point-wise nonlinear activation, which is reminis-
cent of vanilla NN layers.

Multipliers sub-layer. In this simple linear sub-layer Mk,
we perform parallel updates of the Lagrange multipliers {λ[k +

1],μ[k + 1]} by combining {λ[k],μ[k]} from layer k − 1 and
the primal variables {g̃[k + 1],x[k + 1]}. Layer-k combination
weights Θ

(k)
M are learnable parameters {β(k)

1 , β
(k)
2 , β

(k)
3 }Kk=1

and {γ(k)}Kk=1, leading to [cf. (13)–(14)]

λ[k] = β
(k)
1 λ[k − 1] + β

(k)
2 Zg̃[k] + β

(k)
3 x[k], (17)

μ[k] = γ(k)μ[k − 1] +M(k)�g̃[k] +m(k). (18)

Each BDoG-Net layer is thus a sequential composition of
these three sub-layers, in the order we have introduced them:
first the filter sub-layer Gk, then the sources Xk, and finally the
multipliers sub-layer Mk. Notice how the data embedded in Z
is not only fed to the first layer K = 1, but to all subsequent
layers in a way akin to residual neural networks (ResNets).

In closing, we note that the intial states {x[0],λ[0], μ[0]}
can be: (i) used as a means to incorporate prior information
(especially on the source locations x); (ii) randomly initialized
as we do in the ensuing experiments; or (iii) learned from data
along with Θ as it is customary with recurrent neural networks
(RNNs). Going all the way to layer K, source predictions
are generated as X̂ = Φ(Y;Θ) = unvec[(Y�V 
V)g̃[K]].

Given a training set T := {Xi,Yi}|T |
i=1 of e.g., syntethic data,

or, real signals Yi and input estimates obtained using ADMM,
learning is accomplished by using mini-batch stochastic gradient
descent to minimize the loss L(Θ) in (5). Parameter efficiency
is a well-documented feature of unrolled architectures [27]. Fur-
ther training details, including the specification of the loss and
hyperparameter choices, are outlined in the numerical evaluation
Section V and in Appendix E.

V. NUMERICAL EVALUATION

We perform a comprehensive numerical evaluation to assess
the recovery performance and computational efficiency of the
proposed BDoG-Net architecture. We test the model in var-
ious instances of the blind deconvolution task described in
Section II-B. First we run simulated tests (see Section V-A
for a general description of the experimental setting) and
compare BDoG-Net against the iterative ADMM algorithm in
Section V-B, across different types of graphs (Section V-C),
and against a selection GNN [10] in Section V-D. Finally, in
Section V-E we examine a real data scenario by leveraging
the Digg 2009 data set [14]. For this challenging task, we
compare BDoG-Net against the Invertible Validity-aware Graph
Diffusion (IVGD) NN approach for source localization in [41]
and the Source Localization Variational AutoEncoder (SL-VAE)
in [24]. The Python notebook with the code used to obtain the
experimental results reported here is publicly available at https:
//hajim.rochester.edu/ece/sites/gmateos/code/BDoG-Net.zip.

A. General Experimental Settings

Synthetic data generation: The graph shift operator is selected
as the degree-normalized adjacency matrixS = diag− 1

2 (A1N ) ·
A · diag− 1

2 (A1N ). With T denoting the training set, the sparse
inputs X ∈ RN×|T | are drawn from the Bernoulli-Gaussian
model; e.g., [48]. Specifically, X = Ω ◦R, where Ω ∈ RN×|T |
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has i.i.d. entries Ωij ∼ Bernoulli(θ), with sparsity level θ =
0.15; and R ∈ RN×|T | is a random matrix (independent of Ω)
with i.i.d. entries Rij ∼ Normal(0, 1). Unless otherwise stated,
realizations of filter coefficients are generated as h = (e1 +
ϕb)/‖e1 + ϕb‖1, where e1 = [1, 0, . . . , 0]� ∈ RL is the first
canonical basis vector and b ∼ Normal(0L, IL). The analysis
in [48] suggests that recovery is harder for “less-impulsive”
filters, so we henceforth stick to a challenging instance where
ϕ = 1. The filter order is chosen to be L = 5.

For each training epoch, the training samples in T are
randomly split into Q mini-batches of P = |T |/Q signals,
namely {Xq}Qq=1 ∈ RN×P . We sample Q graph filter coef-

ficients {hq}Qq=1 (L = 5, ϕ = 1) and randomly assign them
to the input signal mini-batches to generate the observations
Yq = Vdiag(ΨLhq)V

�Xq , q = 1, . . . , Q. We use a validation
set Xval (Bernoulli-Gaussian with θ = 0.15) of size Pval = P ,
with observations Yval = Vdiag(ΨLhval)V

�Xval, where hval

is drawn from the same distribution as {hq}Qq=1.
Graphs: In the following experiments, we implement BDoG-

Net and compare it with other approaches using various undi-
rected and unweighted random graphs, as well as real-world net-
works. In Section V-B, we use Erdős-Rényi (ER) random graphs
with N = 20 nodes and edge formation probability p = 0.3. In
Section V-C, we examine BDoG-Net’s recovery performance
across various graph ensembles, including: (i) ER (N = 20,
p = 0.3); (ii) stochastic block model (SBM) withN = 20 nodes
andNC = 3 communities (with edge probabilities pwithin = 0.8,
pbetween = 0.2); (iii) Barabási–Albert (BA) with N = 20 nodes;
(iv) random geometric (RG) with N = 20 nodes and critical
distance rcri = 0.2; and (v) real-world social networks such as
dolphins (N = 62) and Zachary’s karate club (N = 34). In Sec-
tion V-D, we evaluate BDoG-Net on the same SBM graph used
in Section V-C. In Section V-E, we use sub-graphs with N = 20
nodes randomly sampled from the Digg friendship network [14].
These sub-graphs and their construction are discussed in further
detail in Section V-E.

Training method: We train BDoG-Net with K = 5 layers and
use the relative root mean square error (RE) ofX as loss function.
Notice that if {X̂, ĥ} is a solution to the bilinear problem, then
so is {−X̂,−ĥ} and accordingly we minimize

L(Θ)=

Q∑
q=1

min

(
‖Φ(Yq;Θ)−Xq‖F

‖Xq‖F
,
‖Φ(Yq;Θ)+Xq‖F

‖Xq‖F

)

using the Adam optimizer [21] implemented in PyTorch.
We initialize {ρ(k)1 , ρ

(k)
2 , τ (k)}Kk=1 as i.i.d. samples from the

uniform distribution in [0,1], since these parameters are con-
strained to be non-negative. All other parameters in Θ are
randomly drawn from a standard Gaussian distribution. We
consider 30 epochs for training. In each epoch, we estimate
the sparse sources {Φ(Yq; Θ̂q)}Qq=1 using the training batches

{Yq;Xq}Qq=1. We choose one batch out of every 20 batches to
compute the loss on the validation set {Yval;Xval} and record
both the value of the loss and the network parameters. In the
end, we select the model Θ̂ that has minimum validation loss
across the entire training process.

Fig. 3. Recovery performance vs. training set size |T |. (top) Mean test relative
error (MRE) of the recovered source signal X̂ (blue) and estimated inverse
filter frequency response ˆ̃g (red), respectively. The shaded region represents the
estimated standard error, after averaging over 10 realizations. (bottom) Mean
accuracy (ACC) of source support estimation and estimated standard deviation.
The best performance is attained for |T | ≥ 160k, but gains are marginal beyond
80k signals.

Testing protocol and figures of merit: For testing, we sample
an independent test set {Xtest,htest}, where Xtest ∈ RN×Ptest ,
Ptest = P . We generate diffused signals Ytest = Vdiag(ΨL

htest)V
�Xtest + ηN, where N ∼ Uniform(−1, 1)N×Ptest and η

is the noise level. We do a forward inference pass through
the trained BDoG-Net model to generate predictions X̂ =
Φ(Ytest; Θ̂), and use the ground-truth sources Xtest to assess
recovery performance. Naturally, the quality of the estimated
inverse filter frequency response ˆ̃gtest can be evaluated as well.

For performance assessment, we consider two figures of
merit. Firstly, we evaluate the test error RE = ‖Φ(Ytest; Θ̂)−
Xtest‖F /‖Xtest‖F . We also compute the accuracy (ACC) in
recovering the support of Xtest, i.e., the source locations.
To identify the support, we introduce a thresholding ap-
proach with threshold κ = 10−1. If a predicted entry satisfies
|[Φ(Ytest; Θ̂)]ij | ≥ κ, the index pair (i, j) will be considered a
member of the estimated support suppκ(·). Accordingly, the re-
covered sources are Îtest := suppκ(Φ(Ytest; Θ̂)). We also apply
the threshold to the ground-truth sources, so the sought support
set is Itest := suppκ(Xtest).

Determining the training set size: To explore the relation
between recovery performance and and the size of training set
|T |, we train BDoG-Net on a ER graph (N = 20, p = 0.3) with
different |T |, and compute RE and ACC on the test set. We try
|T | ∈ {40 k, . . . , 200 k}, with fixed minibatch size P = 400.
For each |T |, the experiment is repeated 10 times. As illustrated
in Fig. 3 (top), we find that the mean RE initially decreases when
|T | increases, and then it becomes stable when |T | ≥ 160k. This
is consisent with Fig. 3 (bottom), which shows ACC reaches a
maximum value when |T | ≈ 160k. At least in this setting, the
gains are marginal beyond |T | ≈ 80k. In order to make sure that
the BDoG-Net is trained well, we henceforth use |T | = 200k as
default for the rest experiments.

The minibatch size P also affects the training process. As
discussed in [48], P naturally drives the successful recovery
rate of the convex relaxation (8). Generally, a larger network
(N) and/or denser sources (θ) require larger P . But when the
total number of training samples |T | is fixed, a larger P might
challenge the training process as the number Q of minibatches
drops (increasing variability). Our results show that P = 400 is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 23,2025 at 02:18:23 UTC from IEEE Xplore.  Restrictions apply. 



YE AND MATEOS: BDOG-NET: ALGORITHM UNROLLING FOR BLIND DECONVOLUTION ON GRAPHS 1207

Fig. 4. Recovery performance of BDoG-Net vs. ADMM for different noise
levels. (top) Test MRE of the recovered source signal X̂ estimated via iterative
ADMM (red) and BDoG-Net (blue), as a function of η. (bottom)) Mean ACC of
support estimation for both methods. The shaded region represents the estimated
standard error, after averaging over 10 realizations. Performance degrades
gracefully for both approaches, but BDoG-Net exhibits better robustness.

sufficient for BDoG-Net to train stably on graphs with N = 20
nodes, yielding satisfactory test performance; see Fig. 3.

Hyperparameter selection: The BDoG-Net architecture has
two hyperparameters: the number of layers K and the number
of columns in M, i.e., d. To balance network complexity and
recovery performance, we found thatK = 5 is the optimal num-
ber of layers after experimenting with different values through
a grid search. For d, a larger value implies g̃ is constrained to a
smaller subspace with more parameters to learn. Our numerical
tests have shown that performance improves markedly when
going from d = 1 to 2, with diminishing returns for d ≥ 2 given
the increase in complexity. As a result, we use d = 2 for all
subsequent experiments.

B. Comparisons With the ADMM Algorithm

We compare BDoG-Net with the iterative ADMM algorithm
in Section III-B. We examine their recovery performance and
inference times during testing, studying the effect of different
noise levels η, number of signals P , and number of nodes N .

Noise level η: To explore the robustness of BDoG-Net in the
presence of additive noise corruptin Y, we first train the model
with noise-free data (η = 0) as outlined in Section V-A. Then
we generate test sets with different noise level η and evaluate the
recovery performance. We also run ADMM (Algorithm 1) on
the same test sets and we compare the mean RE and ACC of both
approaches (averaged over 10 independent realizations). Fig. 4
shows BDoG-Net achieves lower RE than ADMM as the noise
level increases. We also find BDoG-Net still attains a high ACC
even when η > 0.06 . While the performance of both approaches
degrades gracefully (see [48] for noise stability results of the
convex relaxation we solve via ADMM), BDoG-Net exhibits
higher tolerance to noise in this setting. In addition, the mean
wall-clock inference time for BDoG-Net, averaged over 10
realizations, is around 0.009 s, uniformly across different noise
levels. On the other hand, the mean elapsed time for ADMM,
averaged over 10 realizations, is 1.990 s at η = 0 and 7.420 s
at η = 0.1. We find ADMM requires more iterations to attain
convergence when the noise added to the observations increases.

Fig. 5. A visual comparison of BDoG-Net and ADMM for a representative test
realization in the blind deconvolution task. (a) ObservationsY; (b) ground-truth
sources Xtest; (c) BDoG-Net source estimates; (d) ADMM source estimates. (e)
Recovered inverse filter ˆ̃g: ground truth (blue), BDoG-Net (orange), ADMM
(green). For (a)-(d), only P1 = 41 columns are shown out of a total P = 400.
BDoG-Net’s ability to generate accurate predictions (approximating ADMM’s
model-based solution) is apparent.

For a qualitative assessment, estimation results for a rep-
resentative test realization when η = 0 are shown in Fig. 5.
In the interest of space, we depict the first P1 = 41 (out of
P = 400) columns of the observation matrix Y, ground-truth
sources Xtest, as well as BDoG-Net and ADMM source esti-
mates X̂ in Fig. 5(a)–(d), respectively. In Fig. 5(e), the true
inverse filter frequency response (blue), and the corresponding
estimates obtained via BDoG-Net (orange) and ADMM (green)
are presented. We find BDoG-Net recovers the input signals and
inverse filter fairly accurately in the absence of noise, offering
reasonably good approximations to the ADMM solutions.

Number of nodes N : We conducted some timing experiments
for ER graphs with increasing number of nodes N . To this end,
we trained BDoG-Net models for N ∈ {20, 40, . . . , 100}, with
fixed source sparsity level θ = 0.15 and training set size |T | =
200 k. For testing, we let Ptest = P = 400 in all cases. While the
recovery error attained by BDoG-Net naturally increases with
graph size N (the problem becomes more challenging and we
do not add more training data or increasing the test batch size
Ptest), the timing results in Table I – especially when compared
to ADMM – are telling. Indeed, notice how BDoG-Net’s mean
inference time remains fairly invariant and around 10−2s. On
the other hand, ADMM scales worse with N and is typically
a couple of orders of mangnitude slower when it comes to
obtaining a solution. Granted, BDoG-Net’s extra training time is
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TABLE I
MEAN INFERENCE TIME (SEC.). COMPARISON BETWEEN BDOG-NET AND THE

ADMM SOLVER FOR DIFFERENT N , WITH P = 400.

Fig. 6. Recovery performance of BDoG-Net vs. ADMM for different number
of signals. (top) Test MRE of the recovered source signal X̂ estimated via
iterative ADMM (red) and BDoG-Net (blue), as a function of P . (bottom)
Mean ACC of support support estimation for both methods. The shaded region
represents the estimated standard error, after averaging over 10 realizations.
BDoG-Net can outperform ADDM, especially when the number of signals is
smaller because it benefits from training, and exhibits reduced variability.

not accounted for here – we wish to highlight the computational
efficiency of an unrolling during inference.

Observation size P : Finally, we compare the recovery perfor-
mance of BDoG-Net and ADMM as a function of the number
of observations P . The training minibatch size remains equal
to P and other experiment parameters are kept fixed, e.g.,
N = 20, S = θN = 3. We tested P ∈ {40, 80, . . . , 400} and
the results are shown in Fig. 6. For both the mean RE and the
ACC, BDoG-Net outperforms ADMM when P < 160. When
P ≥ 160, the iterative ADMM achieves similar (or marginally
better) mean RE and ACC than BDoG-Net, but the latter exhibits
reduced variability across realizations. In terms of timing, the
mean inference time for BDoG-Net is around 0.009s across the
range of P values; while for ADMM it is 8.412s at P = 40, it
decreases to 0.838s at P = 160, and then it increases to 1.851s
at P = 400. When P is too small, it is harder to obtain a good
solution via the relaxation (8), and ADMM may struggle to
converge. However, BDoG-Net has stable recovery performance
for different P because it benefits from an additional training
phase.

C. Recovery Performance on Different Graphs

We also study the efficacy of BDoG-Net in identifying the
sources across various graph ensembles, including random
graphs (N = 20) such as ER, SBM, RG and BA, as well as
the real karate club graph (N = 34), and the dolphins social
network (N = 62). We use the settings and methods described

TABLE II
BDOG-NET RECOVERY PERFORMANCE FOR DIFFERENT GRAPHS

in Section V-A. In Table II we report the mean RE of X̂ and ˆ̃g,
as well as the support recovery ACC. Despite the relatively high
RE (> 0.3) for the source signal X̂ or the inverse filter ˆ̃g for
some of the graphs (especially the more structured and larger
ones), the support estimate ACC remains high (> 0.8). The
result has a twofold interpretation. First, BDoG-Net’s subpar RE
performance on certain graphs may be due to g̃ having a signif-
icant component that is orthogonal to span(1N ). Indeed, results
in [48] show that ‖P⊥

1 g̃‖2 (where P⊥
1 := IN − 1

N 11� is the
projector onto span⊥(1N )) can be viewed as a condition number
of the problem (8)). Hence, the higher variability (the eigenvalue
distribution of different graph types affects the Vandermonde
matrixΨL) of randomly generated filters g̃ for some graphs, may
increase the problem difficulty that manifests through higher
REs. But BDoG-Net is designed to optimize a more flexible
version of (8), with a learnable constraint. Using M instead of
1N affects the problem’s conditioning, (we conjecture) likely
contributing to keep ACC rates at satisfactory levels. A more
in-depth analysis is certainly of interest, but beyond the scope
of this paper.

D. Comparison With a GNN Approach

Here we explore the feasibility of using BDoG-Net for
community detection in an SBM with Nc communities. Our
goal is not to demonstrate state-of-the-art performance in this
well-investigated task, but rather to find an application domain
where comparison with the GNN models in [10] is feasible.
So far, the support of each xi was specified via i.i.d Bernoulli
random variables, in community detection all of the sources (the
S non-zero entries of xi) are drawn randomly within a single
subset of indices from {1, . . . , N}, representing the members of
the community to be identified. So we cast this simple version of
community detection as structured source localization as in [10,
Sec. V-A], where active sources can be located in only one of
the Nc communities.

To illustrate this further, we consider an SBM graph with
N = 20 nodes and Nc = 3 communities. Each of the input
signals xi are generated as follows: (i) select a community by
drawing an integer ci uniformly at random from {1, . . . , Nc};
(ii) randomly select S = θN = 3 nodes among the members of
the selected community ci – the active sources which we encode
in the support vector ωi ∈ {0, 1}N ; (ii) compute xi = ri ◦ ωi,
where ri ∼ Normal(0N , IN ). All in all, xi are samples from
a variation of a Bernoulli-Gaussian model, whose support is
constrained to a randomly-chosen subset of nodes (the members
of the chosen community ci).
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Fig. 7. Recovery performance of BDoG-Net vs. GNN for different noise
levels. Mean ACC of estimated communities estimated via GNN [10] (red) and
BDoG-Net (blue) as a function of η. The shaded region represents the estimated
standard deviation, after averaging over 10 realizations. BDoG-Net is trained on
a harder (higher-resolution) source localization task, without community label
supervision – which the GNN model in [10] struggles to solve. Still, BDoG-Net
attains competitive community detection ACC rates.

Experimental details: For training, we generate |T | = 200k
input signals X ∈ RN×|T | and source community labels K ∈
{0, 1}Nc×|T |, via one-hot encoding of each ci. We train BDoG-
Net as described in V-A. For the baseline selection GNN
model [10], we generate |T | graph filters {hi}|T |

i=1 and as-

sign them one to one to the input signal {xi}|T |
i=1 to generate

the observations {yi}|T |
i=1, mimicking the setting in [10, Sec.

V-A]. The GNN is trained with supervised data {ci,yi}|T |
i=1.

For testing, we generate one test set of Ptest = P = 400 sam-
ples, i.e., Xtest ∈ RN×P , a graph filer htest, and observations
Ytest = Vdiag(ΨLhtest)V

�Xtest + ηN, for different noise lev-
els η ∈ {0, 0.02, . . . , 0.1}. Notice that our goal is to estimate
the source community as in [10, Sec. V-A], not the source
nodes. But since BDoG-Net recovers the input signal X̂, we
apply a strategy that considers the community, where the entry
with highest magnitude of the estimated source x̂i resides, as
BDoG-Net’s community estimate.

Results and discussion: We compare the mean community
detection ACC for both BDoG-Net and the GNN; the results are
reported in Fig. 7. Apparently, the GNN attains very high ACC
rates for the entire noise level spectrum. Remarkably, BDoG-Net
achieves competitive performance that is robust across noise
levels. Notice that BDoG-Net is trained on a harder source
localization task (node identification) and without community
label supervision, which the GNN model in [10] struggles to
solve. To carry out the comparison, we settled on community
detection, a lower resolution source localization variant that
favors the GNN approach.

E. Real-Data Source Localization Experiment

In this last section, we test BDoG-Net on a simplified source
localization problem we set up using the Digg 2009 data
set [14]. For broader context, it is prudent to mention that
highly-performant and scalable DL approaches are available
for network source localization based on more general (e.g.,
dynamic, nonlinear, epidemic) forward models than the one in
Section II-A; see e.g., [7], [16], [17], [24], [41], [45] and [20],
[38] for tutorial treatments. This growing literature is valuable
and relevant, but in this paper we tackle a different blind
deconvolution problem on graphs, which can be linked to an
admittedly simplistic rendition of source localization. Building

on the solid theoretical properties of the convex relaxation
for this inverse problem (Section III-A), our goal has been to
leverage GSP insights for the principled design of BDoG-Net
used in a new supervised learning setting (cf. Fig. 1). We are
not after a state-of-the-art source localization approach, but it is
still worthwhile to illustrate (and project) BDoG-Net’s practical
value.

Data preprocessing: The Digg 2009 data set consists of vote
records and a social network of users. The vote records contain
3 M votes from 139 k users on 3553 popular stories, along with
the voting timestamps. The social network of users includes
1.7 M friendship links between 71 k unique users. To assess
BDoG-Net’s source localization capabilities in a real-world set-
ting, we treat the voting history of each story as a signal diffused
over the social network graph G . However, processing a graph
with 139k or 71k users is infeasible for BDoG-Net as there are
only at most 3553 training and testing samples. To ensure that the
graph is connected and not too large so that it can be processed for
effective learning, we randomly selected N = 20 users with the
following criteria: (i) they must have cast at least 100 votes; (ii)
all of their friendship links are mutual; and (iii) their friendship
subgraph is connected. Following these guidelines, we randomly
sampled 5 subgraphs with N = 20 nodes from Digg, with mean
degree 16.0± 0.85 and Pstory = 3299.0± 35.8 stories voted
by each user. To generate the graph signals, we considered
each story as a sample, using the 10% earliest votes as the
binary sources xp and all votes as the observations yp. Because
the sources X ∈ {0, 1}N×Pstory are a subset of the observations
Y ∈ {0, 1}N×Pstory , we only consider identifying the sources
from the support set of the observations supp(Y).

Experimental details: The challenge of localizing sources
using BDoG-Net on the sampled Digg data is twofold. First,
the sample size is limited, i.e., |T | ≈ 3.5k, challenging effective
training; secondly, both the sources X and observations Y are
binary. However, if we focus on recovering supp(X), BDoG-Net
may still yield useful results given the binary observations Y.
To address these challenges, we adopted several strategies.

First, we found that selecting a proper mini-batch size P ,
along with an appropriate observation size Ptest, was crucial for
both training and testing. After several attempts, we determined
that while a larger training batch size P would improve the
performance of BDoG-Net, it would also result in a smaller
training set size |T |, as we wanted to use Ptest = P for consis-
tency. Therefore, we opted for P = 400, which set Ptest = 400
and |T | = Pstory − Ptest, so |T | ≈ 2.9k on average.

To address the second challenge of binary inputs, we aim
to find some calibration operator Φc : Y �→ Y′ that maps the
binary observations Y to real-valued graph signals Y′, which
can be viewed as the result of diffusing the sparse binary sources
X. Then we can apply BDoG-Net to predict X̂ = Φ(Y′;Θ), as
depicted in Fig. 8 (bottom). We were inspired by [41], where an
invertible graph diffusion network (IVGD) is proposed based
on the invertible residual network (i-ResNet) [3]. We adopt
an i-ResNet structure to construct the invertible mapping Φc,
which can be approximated via fix-point iterations from its
inverse Φ−1

c : Y′ �→ Y; see Algorithm 2. Specifically, we con-
siderΦ−1

c (Y′;Θc) =
1
2 (Y

′ + MLP(Y′)), where MLP(·;Θc) is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 23,2025 at 02:18:23 UTC from IEEE Xplore.  Restrictions apply. 



1210 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

Fig. 8. (top) Pre-training architecture and (bottom) calibrated BDoG-Net.

Algorithm 2: Calibration Mapping Φc via Inversion.

a three-layer, 1000-hidden unit multi-layer perceptron (MLP)
with learnable parameters Θc. We train Φ−1

c along with a net-
work diffusion NN (ND-Net), as shown in Fig. 8 (top). Details
of this pre-training process are presented in Appendix E.

BDoG-Net is trained using T = {X,Φ−1
c (Y)}; see Fig. 8

(bottom). Because the complement Ic
Y of IY := supp(Y) can-

not include the sources, we want to penalize IY more. To this
end, we use the weighted loss function

Lφ(Θ) =

Q∑
q=1

min
(
L+
q,φ(Θ), L−

q,φ(Θ)
)
,

where L±
q,φ(Θ) :=

‖[Φ(Yq ;Θ)±Xq ]IY ‖F+φ‖[Φ(Yq;Θ)±Xq ]Ic
Y
‖F

‖Xq‖F
and φ = 0.01. With these adjustments, training proceeds as
described in Section V-A.

For the IVGD baseline, we run the algorithm provided in [41].
The number of hidden units is chosen to be 50, consistent with
the experimental setting described in [41].

We also implement two source localization baselines that can
be run on the Digg data set, IVGD and SL-VAE with settings
consistent with the works [41] and [24], respectively.

Results and discussion: To evaluate the source localiza-
tion performance, we compute the ROC curve and AUC of
{X̂IY , [Xtest]IY }, where X̂ are the predicted sources,Xtest is the
ground-truth of the test set and IY = supp(Ytest). The experi-
ment is repeated twice for each of the 5 sampled subgraphs, each
time the training and test sets are randomly split from all the sam-
ples {X,Y}. An ROC generated for one representative sampled
subgraph is depicted in Fig. 9. The mean AUC averaged over 10
realizations is 0.57, 0.53, and 0.52 for BDoG-Net, SL-VAE, and
IVGD, respectively. Besides, the execution time per realization,
including training and testing in Google Colab without GPU, is
about 20 minutes, 5 hours, and 1 h for BDoG-Net, SL-VAE, and
IVGD, respectively. We find that although none of the methods
perform admirably in this hard problem, BDoG-Net is more
efficient and marginally better at learning representations that
are predictive of the sources, at least in the test case.

Fig. 9. The ROC curve of for one representative sampled subgraph. The mean
AUC over 10 different training/testing set realizations are 0.57, 0.53 and 0.52
for BDoG-Net, SL-VAE and IVGD, respectively.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We developed BDoG-Net, a novel DL approach for blind de-
convolution of graph signals. The unrolled architecture fruitfully
leverages inductive biases stemming from model-based ADMM
iterations we also developed, is parameter efficient, fairly ro-
bust to noise, and offers controllable complexity after training.
Our experimental results with simulated and real network data
demonstrate that BDoG-Net exhibits performance on par with
the iterative ADMM baseline it is trained to approximate, while
attaining order-of-magnitude speedups to generate source loca-
tion predictions during inference for simple problem instances.
Admittedly, there is still work to be done to arrive at a truly
scalable solution that is compatible with large-scale problems
and also expressive enough to capture the intricacies of e.g., dy-
namic and non-linear diffusion models for state-of-the-art source
localization over networks. Importantly, BDoG-Net opens the
door for further architectural refinements by leveraging advances
in optimization, DL, and machine learning on graphs, which
we intend to pursue as future work. Exciting ideas include
designing a model that fully operates in the vertex domain
as well as expanding our performance evaluation protocol to
study generalization and transfer to larger graphs, possibly es-
tablishing stability and transferability properties of the resulting
unrolled (G)NNs. We also look forward to exploring additional
application domains in network neuroscience, seismology, and
epidemiology.

APPENDIX

A. Derivation of the ADMM Updates

The ADMM algorithm can be viewed as blending block
coordinate-descent (BCD) updates for the primal variables
{g̃[k],x[k]}, with dual gradient-ascent iterations for the
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Lagrange multipliers {λ[k],μ[k]}; see e.g., [4], [5], [12]. Ac-
cordingly, when used to solve problem (9) it entails the following
three steps per iteration k = 0, 1, . . .:

[S1] Filter updates:

g̃[k + 1] = argmin
g̃

Lρ(x[k], g̃,λ[k], μ[k]). (19)

[S2] Sources’ updates:

x[k + 1] = argmin
x

Lρ(x, g̃[k + 1],λ[k], μ[k]). (20)

[S3] Lagrange multiplier updates:

λ[k + 1] = λ[k] + ρλ(Zg̃[k + 1]− x[k + 1]), (21)

μ[k + 1] = μ[k] + ρμ(1
�
N g̃[k + 1]− c). (22)

The Lagrange multiplier updates in [S3] coincide with (13)–(14).
These correspond to gradient-ascent iterations, since the gradi-
ents of the dual function are equal to the respective constraint
violations in (9) [5].

What remains is to show that [S1]-[S2] can be simplified
to (11)–(12). Starting with [S1], note that the augmented La-
grangian is a strictly-convex, smooth quadratic function with
respect to g̃. The gradient of (10) is

∇g̃Lρ(x, g̃,λ, μ) = ρλZ
�(Zg̃ − x+ λ/ρλ)

+ ρμ1N (1�
N g̃ − c+ μ/ρμ).

The unique minimizer of (19) satisfies the first-order optimal-
ity condition ∇g̃Lρ(x[k], g̃,λ[k], μ[k]) = 0N . Solving the lin-
ear system of equations immediately yields (11), where Γ :=
ρλZ

�Z+ ρμ1N1�
N .

Shifting our focus to [S2], one recognizes (20) as the proximal
operator of the function ρ−1

λ ‖x‖1 evaluated at Zg̃[k + 1] +
λ[k]/ρλ. Said proximal operator is a soft-thresholding operator;
e.g. [26], and the update rule (12) follows.

To derive the iterations in Fig. 2, which tabulates the ADMM
algorithm for the modified formulation with the general con-
straint M�g̃ = m, one simply mimics [S1]-[S3] to instead
minimize the updated augmented Lagrangian

Lρ(x, g̃,λ,μ) = ‖x‖1 +
ρλ

2
‖Zg̃ − x+ λ/ρλ‖22

+
ρμ
2
‖M�g̃ −m+ μ/ρμ‖22.

B. Diagonal Structure of Z�Z

Recall Z := Y�V 
V ∈ RNP×N , where Y ∈ RN×P and
V = [v1, . . . ,vN ] ∈ RN×N . Letting Ỹ = V�Y ∈ RN×P , we
have

Z = Ỹ� 
V =

⎡
⎢⎢⎢⎢⎣
[Ỹ�]11v1 [Ỹ�]12v2 . . . [Ỹ�]1NvN

[Ỹ�]21v1 [Ỹ�]22v2 . . . [Ỹ�]2NvN

...

[Ỹ�]P1v1 [Ỹ�]P2v2 . . . [Ỹ�]PNvN

⎤
⎥⎥⎥⎥⎦

from where it follows that

[Z�Z]ij =

⎡
⎢⎢⎢⎢⎣
[Ỹ�]1ivi

[Ỹ�]2ivi

...

[Ỹ�]Pivi

⎤
⎥⎥⎥⎥⎦

�

·

⎡
⎢⎢⎢⎢⎣
[Ỹ�]1jvj

[Ỹ�]2jvj

...

[Ỹ�]Pjvj

⎤
⎥⎥⎥⎥⎦

=
P∑

p=1

[Ỹ�]pi[Ỹ
�]pjv

�
i vj = [ỸỸ�]ijδij , (23)

where δij = I{i = j} is the Kronecker delta. Notice that (23)
follows since the graph-shift operator eigenvectors are orthogo-
nal. All in all, we have shown that Z�Z is an N ×N diagonal
matrix with diagonal elements {‖v�

i Y‖22}Ni=1. We can thus write
Z�Z = diag(‖v�

1Y‖22, . . . , ‖v�
NY‖22).

C. Inverting Z�Z+ ρ1N1�
N Via the Matrix Inversion Lemma

The Sherman–Morrison–Woodbury formula states

(U+BCD)−1 = U−1 −U−1B(C−1 +DU−1B)−1DU−1.
(24)

To apply this identity to invertΓ ∝ ZZ� + ρ1N1�
N , define z :=

[‖v�
1Y‖22, . . . , ‖v�

NY‖22]� ∈ RN , and then let U := Z�Z =
diag(z). Comparing Z�Z+ ρ1N1�

N and (24), we let B := 1N ,
D = 1�

N , andC = ρ. The matrix sum that is to be inverted in the
right-hand-side of (24) is a scalar, namely C−1 +DU−1B =
ρ−1 + 1�

N (z−1 ◦ 1N ) := ζ, where with an abuse of notation we
let z−1 := [‖v�

1 Y‖−2
2 , . . . , 1/‖v�

NY‖−2
2 ]� ∈ RN be the (entry-

wise) vector reciprocal of z. Applying (24), we obtain

(
Z�Z+ ρ1N1�

N

)−1
=(Z�Z)−1− (Z�Z)−11N1�

N (Z�Z)−1

ζ

=diag(z−1)− diag(z−1)1N1�
Ndiag(z−1)

ζ

=diag(z−1)− z−1(z−1)�

ζ
. (25)

While (25) is simple when the correction to Z�Z is a scaled
version of 1N1�

N , a general rank-one correction of the form
ρmm� is almost identical. Indeed, one just needs to re-evaluate
ζ = ρ−1 +m�(z−1 ◦m) and the right-most summand in the
third line of (25) becomes ζ−1(m ◦ z−1)(m ◦ z−1)�.

The computational complexity of (25) includes: i) comput-
ing z−1, the entrywise reciprocal of z, O(N) assuming z
is given; ii) computing ζ = ρ−1 +m�(z−1 ◦m), or the sum
m�(z−1 ◦m) =

∑
i m

2
i /zi, O(N); iii) computing the outer

product (m ◦ z−1)(m ◦ z−1)�, O(N2); iv) normalizing by ζ,
O(1); and updating the diagonal entries by adding diag(z−1),
an extraO(N). As a result, the overall computational complexity
of inverting Z�Z+ ρmm� is O(N2).

There are no order-wise savings whenm = 1N , which is what
we require to invert Γ := ρλZ

�Z+ ρμ1N1�
N in the ADMM

update (11), or, Γ(k) = Z�Z+ ρ
(k)
2 1N1�

N in BDoG-Net’s filter
sub-layer when the constraint parametersM(k) andm(k) are not
learnt [49]. When d = 1, the formula (25) can also be applied to
the refined filter sub-layer (11); see Appendix D for the general
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case. To appreciate the overall savings, recall that the com-
putational complexity of inverting a general N ×N matrix is
O(Nω), where ω ∈ {2.376, 2.807, 3} for three different kind of
algorithms; namely, the Coppersmith–Winograd algorithm, the
Strassen algorithm, and Gauss–Jordan elimination, respectively.

D. Inverting Z�Z+ ρMM�

Let U = Z�Z = diag(z), C = ρId, and B = D� = M ∈
RN×d. From the matrix inversion lemma (24) we have,

(Z�Z+ ρMM�)−1 = diag(z−1)

− diag(z−1)MM̄−1M�diag(z−1),

where M̄ = ρ−1Id +M�diag(z−1)M ∈ Rd×d.

E. Pre-Training Process

To learn the inverse calibration mapping Φ−1
c : Y′ �→ Y di-

rectly, we we would need a training set {Y,Y′}. We model
the latent Y′ as the output of network diffusion process
driven by sources X, with some unknown graph filter H′ =
Vdiag(h̃′)V�; i.e., Y′ = H′X. To predict and generate Y′,
we design a learnable parametric function Ŷ′ = Υ(X;ΘΥ) via
unrolling, similar to BDoG-Net. Estimating bothY′ and h̃′ from
the input signal X is an ill-posed problem, hence we assume the
diffused signal Y′ is close to X. Then we consider the following
constrained optimization problem to predict (and thus generate)
network diffusion outputs,

min
h̃,Y′

‖Y′ −Vdiag(h̃)V�X‖2F + ρ1‖Y′ −X‖2F

s. to M̄�h̃ = m̄, (26)

where M̄ ∈ RN×d, m̄ ∈ Rd will be learned.
Similar to BDoG-Net, we derive ADMM iterations to solve

(26) and use the unrolling principle to construct the sub-layers
of the network diffusion NN (ND-Net) Ŷ′ = Υ(X;Θd); de-
tails are omitted to avoid repetition. We also consider K = 5
layers and generate predictions as Ŷ′ = (X�V 
V)h̃[K] =
Υ(X;Θd). Given this architecture, we compose ND-Net Υ and
the inverse calibration mapping Φ−1

c to obtain the pre-training
model Y = Φ−1

c (Υ(X;ΘΥ);Θc); see Fig. 8 (top). During the
pre-training process, the learnable parameters {Θc,ΘΥ} are
learned from binary data T = {Yq,Xq}Qq .
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[29] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[30] R. Pena, X. Bresson, and P. Vandergheynst, “Source localization on graphs
via �1 recovery and spectral graph theory,” in Proc. IEEE Image, Video,
Multidimensional Signal Process. Workshop, 2016, pp. 1–5.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 23,2025 at 02:18:23 UTC from IEEE Xplore.  Restrictions apply. 



YE AND MATEOS: BDOG-NET: ALGORITHM UNROLLING FOR BLIND DECONVOLUTION ON GRAPHS 1213

[31] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion
in large-scale networks,” Phys. Rev. Lett., vol. 109, no. 068702, pp. 1–5,
2012.

[32] X. Pu, T. Cao, X. Zhang, X. Dong, and S. Chen, “Learning to learn graph
topologies,” in Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 1–14.
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