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Abstract—Network processes are often represented as signals
defined on the vertices of a graph. To untangle the latent structure
of such signals, one can view them as outputs of linear graph filters
modeling underlying network dynamics. This paper deals with the
problem of joint identification of a graph filter and its input sig-
nal, thus broadening the scope of classical blind deconvolution of
temporal and spatial signals to the less-structured graph domain.
Given a graph signal y modeled as the output of a graph filter,
the goal is to recover the vector of filter coefficients h, and the
input signal x which is assumed to be sparse. While y is a bilinear
function of x and h, the filtered graph signal is also a linear combi-
nation of the entries of the lifted rank-one, row-sparse matrix xh”.
The blind graph-filter identification problem can thus be tackled
via rank and sparsity minimization subject to linear constraints,
an inverse problem amenable to convex relaxations offering prov-
able recovery guarantees under simplifying assumptions. Numer-
ical tests using both synthetic and real-world networks illustrate
the merits of the proposed algorithms, as well as the benefits of
leveraging multiple signals to aid the blind identification task.

Index Terms—Graph signal processing, blind
identification, graph filter, network diffusion process.

system

I. INTRODUCTION

OPING with the challenges found at the intersection of

Network Science and Big Data necessitates broadening
the scope beyond classical temporal signal analysis and pro-
cessing, to also accommodate signals defined on graphs [3]-[5].
Under the assumption that the signal properties are related to
the topology of the graph where they are supported, the goal
of graph signal processing (GSP) is to develop algorithms that
fruitfully leverage this relational structure, and can make in-
ferences about these relationships when they are only partially
observed [5]. A suitable way to accomplish these objectives is
to rely on the so-called graph-shift operator, which is a matrix
that reflects the local connectivity of the graph [4].
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We consider here that each node has a certain value, and these
values are collected across nodes to form a graph signal. With
this definition, graph filters — which are a generalization of clas-
sical time-invariant systems — are a specific class of operators
whose input and output are graph signals (cf. Section II). Math-
ematically, graph filters are linear transformations that can be
expressed as polynomials of the graph-shift operator [6]. The
polynomial coefficients determine completely the transforma-
tion and are referred to as filter coefficients. Such linear trans-
formations can be implemented via local interactions among
nodes, and may be used to model e.g., diffusion or percolation
dynamics in the network [7]-[9].

Contributions: This paper investigates the problem of blind
identification of graph filters. Specifically, we are given a graph
signal y which is assumed to be the output of a graph filter,
and seek to jointly identify the filter coefficients h and the input
signal x that gave rise to y. This is the extension to graphs of
the classical problem of blind system identification or blind de-
convolution of signals in the time or spatial domains [10]. Since
the inverse problem is ill-posed, we assume that the length of
h is small and that x is sparse. This is the case when, e.g., a
few seeding nodes inject a signal that is diffused throughout a
network [11], [12]. While y is a bilinear function of x and h,
we show that the filtered graph signal is also a linear combi-
nation of the entries of the lifted rank-one, row-sparse matrix
xh” [10], [13]. The blind graph-filter identification problem
can thus be tackled via joint rank and sparsity minimization
subject to linear constraints, an approach amenable to convex
relaxation [14], [15]. Several alternatives are proposed to ap-
proach such a relaxation, including generalizations facilitating
blind graph-filter identification when multiple outputs (each cor-
responding to a different input) are available; see also [16] for
identifiability claims in a setting unrelated to graphs. Under
simplifying assumptions, probabilistic recovery conditions are
also derived. Together with the proof, effort is devoted towards
building intuition on the obtained performance guarantees by
identifying graph-related parameters that have a major impact
on blind identification, as well as by distilling the fundamental
differences relative to the time domain [13]. Numerical tests not
only showcase the effectiveness of the proposed algorithm on
synthetic and real graphs, but also illustrate that recovery is in
practice possible under conditions far less restrictive than those
stemming from the analysis in Section I'V.

Envisioned applications: The dynamics of opinion formation
in social networks can be modeled using distributed linear op-
erations implemented by multi-agent systems; see e.g., [17],
[18]. Interestingly, graph filters have been used to implement
distributedly related linear transformations such as fast consen-
sus [19], and projections onto the low-rank space of graph-
bandlimited signals [20]. This motivates adopting the algo-
rithms proposed here to identify those influential actors (i.e.,
the non-zero entries in x) that instilled the observed status-quo.
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Another example of interest is given by structural and func-
tional brain networks, which are becoming increasingly central
to the analysis of brain signals. Nodes correspond to regions
of interest (ROIs) and their associated information (e.g., their
level of neural activity) can be represented as a graph signal.
Suppose that an observed brain signal corresponds to the lin-
ear combination of a diffused pattern of an originally sparse
brain signal (i.e., generated by a few active ROIs). Blind identi-
fication amounts then to jointly estimating the desired original
brain signal and the combination coefficients. In the analysis of
epileptic seizure data for instance, estimating the (sparse) in-
put state can help to identify the ROIs from where the seizure
emanated, which may serve to guide surgical intervention [21].
While linear models of processes in the brain are admittedly
simplistic, they can still offer informative insights [22]. In the
same vein, we envision applications in marketing where e.g.,
social media advertisers want to identify a small set of initiators
so that an online campaign can go viral; in healthcare policy
implementing network analytics to infer hidden needle-sharing
networks of injecting drug users [5]; or, in environmental moni-
toring using wireless sensor networks to localize heat or seismic
sources [23].

Relation to prior work: Some of the ideas here were inspired
by the work in [10], where matrix lifting is used for blind decon-
volution of temporal and spatial signals. In the current paper,
the linear operator mapping xh” to the output signal y de-
pends on the spectral properties of the graph-shift operator [1],
a departure from the random (Gaussian or partial Fourier) op-
erators arising with the biconvex compressed sensing approach
in [13]. Despite its practical interest, the setup where multiple
output signals are observed (each one corresponding to a differ-
ent sparse input) has received little attention in recent convex
relaxation approaches to blind deconvolution [16].

Paper outline: Section II introduces notation and explains
how graph signals and filters can be used to model linear dif-
fusion processes. Section III formulates the problem of blind
graph-filter identification and proposes several efficient convex
relaxations. In particular, Section III-C discusses algorithms for
the setup where multiple observed outputs are available. Sec-
tion IV provides analytical results on the recovery performance,
along with graph-specific parameters that affect the recovery
guarantees. Numerical experiments illustrating the merits of our
approach are presented in Section V and concluding remarks are
given in Section VI.

Notation: Entries of a matrix X and a (column) vector x are
denoted as X;; and z;. Operators ()7, (-}, E[], o, ® and ®
stand for matrix transpose, conjugate transpose (Hermitian), ex-
pectation, Hadamard (entry-wise), Kronecker, and Khatri-Rao
(column-wise Kronecker) products, respectively. The complex
conjugate of x is denoted by z; diag(x) is a diagonal matrix
whose entry (i, ) isequal to z;;; and | - | is used for the cardinality
of a set, and the magnitude of a scalar. The n x n identity matrix
is represented by I,,, while 0,, stands for the n x 1 vector of all
zeros, and 0,,,,, = 0,0] . The notation ||X||,, and ||X]| stand
for the entrywise largest absolute value and the largest singular
value of X, respectively. For a linear operator X, || X := ||X]|,
where X is the matrix representation of X'. Otherwise, standard
vector and matrix norm notation is used.
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II. GRAPH SIGNALS AND GRAPH FILTERS

Often, networks have intrinsic value and are themselves the
object of study. In other occasions, the network defines an
underlying notion of proximity, but the object of interest is a sig-
nal defined over the graph, i.e., data associated with the nodes
of the network. This is the matter addressed by GSP, where
the notions of, e.g., frequency and filtering (reviewed next) are
extended to signals supported on graphs [3], [24].

Graph signals and graph-shift operator: Let G denote a
directed graph with a set of nodes N (with cardinality V)
and a set of links &, if 7 is connected to j then (7,j) € €.
Since G is directed, local connectivity is captured by the set
N; :={j |(j,4) € £} which stands for the (incoming) neigh-
borhood of . For any given G we define the adjacency matrix
A € RY*N ag a sparse matrix with non-zero elements A;; if
and only if (4, j) € £. The value of Aj; captures the strength of
the connection from i to j.

The focus of the paper is on analyzing and modeling (graph)
signals defined on V. These signals can be represented as vec-
tors X = [z1, ..., zx]7 € RV, where z; represents the value of
the signal at node 7. Since the vectorial representation does not
account explicitly for the structure of the graph, G can be en-
dowed with the so-called graph-shift operator S [4], [6]. The
shift S € RV >V is a matrix whose entry S;; can be non-zero
only if i = j orif (4,j) € £. The sparsity pattern of the matrix
S captures the local structure of G, but we make no specific
assumptions on the values of its non-zero entries. The intuition
behind S is to represent a linear transformation that can be com-
puted locally at the nodes of the graph. More rigorously, if y is
defined as y = Sx, then node ¢ can compute y; as linear com-
bination of the signal values x; at node i’s neighbors j € ;.
For example, one can think of an individual’s opinion forma-
tion process as one of weighing in the views of close friends
regarding the subject matter. Typical choices for S are the adja-
cency matrix A [4], [6], and the graph Laplacian [3]. We assume
henceforth that S is diagonalizable, so that S = VAV ™! with
A € CNV*N being diagonal. In particular, S is diagonalizable
when it is normal, i.e., it satisfies SS” = S S. In that case we
have that V is unitary, which implies V~! = V¥ and leads to
the decomposition S = VAV,

Graph filters as models of network diffusion processes: The
shift S can be used to define linear graph-signal operators of
the form

L—-1

H .= Zh,Sl )

=0

which are called graph filters [4]. For a given input x, the output
of the filter is simply y = Hx. The coefficients of the filter
are collected into h := [hy, .. |7, with L — 1 denoting
the filter degree. Graph filters are of particular interest because
they represent linear transformations that can be implemented
in a distributed fashion [7], [12], e.g., with L — 1 successive
exchanges of information among neighbors.

Graph filters can be used to model linear diffusion dynamics
that depend on the network topology. Formally, the signal at
node 4 during the step (I 4 1) of a linear diffusion process in

) hL—l
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G can be written as
I+1 l !
) = il 3 agal?
JeN;

2

where «;; are the diffusion coefficients. Leveraging the GSP
framework, (2) is equivalent to writing that the graph sig-
nal at iteration [ 4 1 is the shifted version of the signal at
the previous iteration x(/*) = Sx(!), where the entries of the
shift operator S are S;; = ; if either i =j or (j,7) € £,
and S;; = 0 otherwise. Notice that if, for example, we set
S = Iy — GL and say that the signal of interest is y := x(>),
then y solves the heat diffusion equation. However, more com-
plex diffusion dynamics, such as y = IT° [ (Iy — 3;S)x(") and
y =2 mx) =37 7S %), could also be of interest.

According to the previous discussion, it is apparent that the
steady-state signal y generated by a diffusion process can be
viewed as the output of a graph filter H = Zfi 51 hyS' with
input x(?). Note also that the Cayley-Hamilton theorem guaran-
tees that the aforementioned infinite-horizon processes can be
equivalently described by a filter of degree N — 1.

Frequency domain representation: Leveraging the spectral
decomposition of S, graph filters and signals can be represented
in the frequency domain. To be precise, let us use the eigen-
vectors of S to define the N x N matrix U := V!, and the
eigenvalues of S to define the N x L Vandermonde matrix ¥,
where U;; := (A;;)/~'. Using these conventions, the frequency
representations of a signal x and of a filter h are defined as
% := Ux and h := Wh, respectively [6]. Exploiting such rep-
resentations, the output y = Hx of a graph filter in the frequency
domain is given by

3

Identity (3) is the counterpart of the celebrated convolu-
tion theorem for temporal signals, and follows from H =
V() AU [ef. (D] and 317 iy A' = diag(®h); see
e.g., [1] for a detailed derivation. To establish further connec-
tions with the time domain, let us consider the directed cycle
graph whose adjacency matrix A, is zero, except for entries
A;; = 1 whenever i = mody (j) + 1, where mod y (x) denotes
the modulus (remainder) obtained after dividing = by N. If
S = A, one can verify that: i) y = Hx can be found as the
circular convolution of h and x, and ii) both U and W correspond
to the Discrete Fourier Transform (DFT) matrix. Interestingly,
while in the time domain U = W, this is not true for general
graphs.

y = diag(¥h)Ux = diag(ﬂ)i —hox.

III. BLIND IDENTIFICATION OF GRAPH FILTERS

The concepts introduced in the previous section can be
used to formally state the problem. For given shift operator
S and filter degree L — 1, suppose that we observe the out-
put signal y = Hx [cf. (1)], where x is sparse having at most
S < N non-zero entries. For future reference introduce the £,
(pseudo) norm ||x||o := |supp(x)|, where the support of x is
supp(x) := {i|x; # 0} and hence ||x|o < S. The present pa-
per deals with blind identification of the graph filter (and its
input signal), which amounts to estimating the sparse x and
the filter coefficients h from the observed output signal y; see
Fig. 1. This problem is a natural extension to graphs of classical
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Fig. 1. Setup for the blind graph-filter identification problem. Given a graph
signal y modeled as the output of a graph filter, the goal is to recover the vector
of filter coefficients h, and the input signal x that is assumed to be sparse.

blind system identification, or blind deconvolution of signals in
the temporal or spatial domains.

Remark 1 (Sparse input): Sparsity in x is well-motivated
due to its practical relevance and modeling value — network
signals such as y are oftentimes the diffused version of few
localized sources, hereby indexed by supp(x). In addition,
the non-sparse formulation with S = NV is ill-posed, since the
number of unknowns N + L in {x, h} exceeds the number of
observations [V in y. Alternatively, a low-dimensional subspace
model for x could be also adopted to effectively reduce the
degrees of freedom in the problem [1].

Given the observed filtered output y, one can obtain
its frequency-domain representation y = Uy = diag(\Ilh) Ux
[cf. (3)] and state the blind graph-filter identification problem
as the following feasibility problem

find {h,x}

s.to y =diag(¥h)Ux, [x[o < S. )

In other words, the goal is to find the solution to a set of bilinear
equations subject to a sparsity constraint in x.

A. Lifting the Bilinear Constraints

While very natural, (4) is in fact a difficult problem due to the
non-convex £y-norm as well as the bilinear constraints. To deal
with the latter, it iS convenient to rewrite the first constraint in
(4) as

y= (\IIT ® UT)Tvec(th) 5)

where © denotes the Khatri-Rao (i.e., columnwise Kronecker)
product, and vec(-) is the matrix vectorization operator. To
establish (5), let u,T and z,b,L-T denote the i-th rows of U and
W, respectively. It follows from (3) that 7; = (! h)(u! x) =
(wiT @ u! )vec(xh”), where @ denotes the Kronecker prod-
uct. Upon stacking the entries 7; to form y, the result follows
by identifying ¢! ® u! with the i-th row of (¥7 © UT)".
While (5) confirms that the filtered graph signal y is a bilinear
function of x and h, it also shows that y is a linear combination
of the entries of the lifted rank-one, outer-product matrix Z :=
xh” € RV*L In other words, there exists a linear mapping
M : RN*L s CV such that y = M(Z). Note that M can be
expressed in terms of a matrix multiplication with M := (¥7 ©
U € CN*LN 'since y = Mvec(Z) as per (5). In addition
to being of rank one, note that the sparsity in x renders Z row-
wise sparse, i.e., rows z! indexed by {1,..., N} \ supp(x)
are identically zero. Building on the ideas in [10], [13], one can
thus pose the blind graph-filter identification problem as a linear
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inverse problem, where the goal is to recover a row-sparse, rank-
one N x L matrix Z from observations y = M (Z). To this end,
a natural formulation to tackle such inverse problem is

mzin rank(Z)

s. to ?z(\I’TGUT)TveC(Z), 1Z|l2.0 < S (6)

where [|Z||2 o is equal to the number of non-zero rows of Z.

A basic question is whether (6) is equivalent to the original
blind identification problem. To give a rigorous answer, some
definitions are introduced next. For a given matrix U, spark(U)
is the smallest number n such that there exists a subgroup of n
columns from U that are linearly dependent [25]. Given a set
of row indices Z, define the complement set of indices Z¢ :=
{1,..., N}\Z and the matrix Uz formed by the rows of U
indexed by Z. Moreover, for a given graph-shift operator S —
fixed V, ¥, and U — define the set Oy of matrix minimizers of
(6) as a function of y. Then, the following result on the validity
of the matrix problem formulation in (6) holds.

Proposition 1: Let Tg be a set of row indices such
that spark(Uz, ) < S. Then, the set of minimizers of (6),
satisfies

Oy = {th

L-1

y=U> ms'x, |x[o < s} (7)

=0

for any y if and only if

HIIiIl H)\L}ngS ‘ >L—1. (8)
S

Proof: 1If we show that (8) is violated if and only if there exists

a rank-one matrix Z = xh” such that (lIlT ® UT)Tvec(Z) =
Oy and ||Z|2,0 < S, then Corollary 1 in [26] completes the
proof. The above system of homogeneous equations can be writ-
ten as (v h)(u/x) =0 fori=1,..., N, where ] denotes
the i-th row of ¥ and similarly for U. Since spark(Uz, ) < S,
there exists x # Oy with ||x||o < Ssuchthat (¢} h)(u!x) =0
holds for ¢ € Zg. Exploiting the Vandermonde structure of W,
it follows that h # 0, satisfying the equality for ¢ € Z§ can be
found if and only if (8) is violated. |

Ideally, when solving (6) for some output y one should re-
cover the set of outer products of all possible combinations of
sparse inputs x and filter coefficients h that can give rise to such
output [cf. (7)]. This is not true in general [26, Theorem 1], how-
ever, Proposition 1 states conditions on the graph-shift operator
[cf. (8)] for the desired equivalence to hold. For the particular
case of the directed cycle graph, we may select the support of
x so that every choice of S rows of U forms a full-rank ma-
trix. Consequently, the cardinality in (8) is equal to N — S + 1
entailing the following corollary.

Corollary 1: If S = A,4. and the support of x consists of
either S adjacent or S equally spaced nodes, then (7) holds if
andonlyif N > L+ 5 —2.

Notice that condition (8) does not guarantee that the solution
of (6) is unique, but rather that the outer product of the de-
sired sparse signal and filter coefficients is contained in Oy . For
instance, uniqueness necessarily requires rank(W¥) = L, other-
wise there is no hope to recover the actual h from observations
y [ef. ()]
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B. Algorithmic Approach via Convex Relaxation

Albeit natural, problem (6) is challenging since both the
rank and the ¢y-norm are in general NP-hard to optimize; see
e.g., [27]. Over the last decade or so, convex relaxation ap-
proaches to tackle rank and/or sparsity minimization problems
have enjoyed remarkable success, since they oftentimes entail
no loss in optimality. The nuclear norm ||Z|, =Y, ox(Z),
where oy (Z) denotes the k-th singular value of Z, is typically
adopted as a convex surrogate to rank(Z) [14], [27]. Likewise,
the 5 1 mixed norm ||Z||2,; := le ||z || is the closest con-
vex approximation of ||Z||2,0 [28]. With 7 denoting a tuning
parameter to control the rank versus row-sparsity tradeoff, a
convex heuristic is to solve

min||Z[}. +7(|Z[2,1

s.to y= (¥ 0 UT)Tvec(Z) )

hoping that the optimal solution is of rank one and has S non-
zero rows, so that we can recover x and h up to scaling.

Recovery of simultaneously low-rank and row-sparse matri-
ces from noisy compressive measurements was also considered
in [29] for hyperspectral image reconstruction. Recent theo-
retical results on recovery of simultaneously structured matrix
models suggest that minimizing only ||Z||; could as well suf-
fice [15]; see also [13], the discussion at the end of this section
and the performance guarantees in Section IV. Being convex,
(9) is computationally appealing, in fact off-the-shelf interior
point solvers are available. Customized scalable algorithms for
large-scale graphs can be developed to minimize the composite,
non-differentiable cost in (9). For instance the solver imple-
mented to run the numerical tests in Section V leverages the
alternating-direction method of multipliers (ADMM) [30]; see
also [29] for a related proximal-splitting algorithm.

Refinement via iteratively-reweighted optimization: Instead
of substituting || Z||2 ¢ in (6) by its closest convex approximation,
namely ||Z||2.1, letting the surrogate function to be non-convex
can yield tighter approximations, and potentially improve the
statistical properties of the estimator. In the context of sparse
signal recovery for instance, the ¢, norm of a vector was sur-
rogated in [31] by the logarithm of the geometric mean of its
elements.

Building on this last idea, consider replacing ||Z||21 in (9)

with SV log(||z7 || + &), where & is a small positive con-
stant. Since the new surrogate term is concave, the overall min-
imization problem is non-convex and admittedly more complex
to solve than (9). With k£ denoting iterations, local methods
based on iterative linearization of log(||z! |2 + &) around the
current iterate z. (k), can be adopted to minimize the resulting
non-convex cost. Skipping details that can be found in [31],
application of the majorization-minimization technique leads
to an iteratively-reweighted version of (9), namely solve for
k=0,1,...

N
min (| Z[l. + ) wi(k)l|z] ||
i=1

s.to y= (¥ 0 UT)Tvec(Z) (10)

with weights w; (k) := 7/ (||z] (k —1)||> + §). If the value
of ||zl (k—1)|2 is small, then in the next iteration the
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regularization term w; (k)||z! || has a large weight, promoting

shrinkage of that entire row vector to zero. Numerical tests in
Section V suggest that few iterations of the iteratively-
reweighted procedure suffice to yield improved recovery of
{x,h}, when compared to (9).

Blind identification via linear programming: Since schemes
aimed at finding sparse matrices can also lead to low-rank so-
lutions [13], [15], the last proposed relaxation adopts a single-
structure enforcing criterion under which, as in SparseLift [13],
only the ¢;-norm of Z is minimized

min ||Z];
Z

sito y= (27 0 UT) vec(Z). (1)

The above optimization is a linear program that, if needed, can
be modified to accommodate an iteratively-reweighted counter-
part. While we know Z is low-rank and row-wise sparse, we
admittedly relaxed the structural constraints and only encour-
aged Z to be entry-wise sparse, with no specific pattern preferred
a priori. The reason for considering the simpler formulation in
(11) is threefold. First, the absence of ||Z||. circumvents the
need to perform a singular value decomposition (SVD) per iter-
ation, as is customary with nuclear-norm minimization. Second,
(11) eliminates the burden of selecting an adequate tuning pa-
rameter 7 in (9). Third, as we establish in Section IV, under
some conditions the simplification in (11) is enough to uniquely
recover Z = xh” with high probability.
Before closing this section, a couple remarks are in order.

Remark 2 (Noisy and partial observations): The proposed
relaxations can be easily modified to account for noisy or par-
tial observations of the graph signal y. Following the standard
approach for sparse recovery problems, when the observations
y are noisy, it suffices to rewrite the filter output constraint
as |[Vy — V(8T © UT) vec(Z)||3 < ¢, where the specific
norm and value of ¢ will depend on the observation noise
model. Moreover, it is not uncommon to encounter graph-
based settings where one measures y in a subset of nodes
only. This could happen because it is impossible to access
parts of the network, or due to intentional sampling with the
goal of reducing overall processing complexity. Accordingly,
suppose that C' < N and define the partially observed signal
y. € R¢ asy, := Cy = CVy, with C being a sampling ma-
trix formed by a subset of rows of the N x N identity matrix.
The graph filter output constraint should be now written as
ye = CV(®T © UT)vec(Z), so that the matrix CV is in-
corporated into the linear mapping M (Z). Because the input
signal x is assumed to be sparse, it may still be feasible to re-
cover {h, x} from partial observations y.; see also the numerical
tests in Section V.

Remark 3 (A priori filter knowledge): In general, if the spe-
cific graph filter form is known a priori, this additional infor-
mation can be incorporated in the problem formulation and
thus aid the recovery. For instance, if the frequency response of
the unknown filter follows a specific linear parametric model
we may write h = Ba, for parameters o € RY', I/ < L and
some basis matrix B. The signal model (5) can be rewritten
asy = (BT © UT)Tvec (xaT) and the corresponding prob-
lem formulations in (6), (9), (10), and (11) can be modified
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accordingly. This parametric description of h effectively re-
duces the size of the problem, which in general entails a better
recovery performance; see Sections IV and V. Other models
of prior knowledge on h or h could be relevant as well. For
example, one might know that the observed output is a linear
combination of ' of the first L shifted versions of the input.
In this case, a sparse prior can be incorporated on the vector of
filter coefficients h by augmenting the objective function in (9)
with 75| ZT ||2.1. In this way, we are simultaneously enforcing
row and column sparsity on Z to account for the sparse priors
on x and h, respectively.

C. Multiple Output Signals

Jointly processing multiple output signals (when available)
can aid the blind identification task, and this is the subject of the
present section. Suppose now that we have access to a collection
of P (possibly time-indexed) output signals {y, }5:1’ each one
corresponding to a different sparse input x,, fed to the common
graph filter H we wish to identify. Although each of the P
identification problems could be solved separately (and naively)
as per Section III, the recovery performance can be improved
by tackling them jointly.

While extending the feasibility problem in (4) to this new
setup is straightforward [each output gives rise to a couple con-
straints as in (4)], generalizing the formulation in (9) requires
more work. To this end, consider the NP x 1 supervector of
stacked output signals y := [y7 ,...,y5]7, and likewise for the
unobserved inputs X := [x7 ,...,x5]7. Next, introduce the un-
known rank-one matrices Z, := xphT, p=1,..., P, and stack
them: (i) vertically in Z, := [Z7, ..., ZL]" = xh” € RNP*L,
and (ii) horizontally in Z;, := [Z1, ..., Zp] € RV *PL_Note that
Zl, is a rank-one matrix. Further, when all x, share a com-
mon support, then so will all the row-sparse matrices Z, (and
hence Z;,). These observations motivate the following convex
formulation [cf. (9)]

min HZU”* JrT”ZhHQ.J

{Zyty s

s.to y= (Ip ® ((\IIT @UT)T)) Vec(Zh)

where all P lifted bilinear constraints have been compactly
expressed in terms of y and vec (Z ;L) using a Kronecker product.

12)

When the sparse support is not the same for all x,,, matrix Z
is not row-sparse. In that case, || Zj ||2.1 in (12) must be replaced
with 25:1 I|Z, 2,1, possibly adjusting individual tuning pa-
rameters 7, per signal. Either way, an efficient ADMM solver
can be implemented for the multiple signal setting as well, and
extensive numerical tests indicated that iteratively-reweighing
as in Section III-B can yield markedly improved recovery per-
formance (cf. Section V).

IV. EXACT RECOVERY VIA CONVEX OPTIMIZATION

Here we show that under some technical conditions, both the
filter coefficients h as well as the sparse input signal x in (5)
can be exactly recovered by solving the convex problem (11).
Assumptions delineating the analysis’ scope are first outlined in
Section I'V-A, after which the main result is formally stated in
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Section IV-B followed by a discussion of the recovery conditions
and their dependence on the graph. The proof follows closely
the ideas in [13] and the key steps are given in Appendix A,
with an emphasis on the novel aspects introduced by the GSP
context dealt with here.

A. Assumptions and Scope of the Analysis
Two main assumptions are made to facilitate the analysis.

(as1): The graph-shift operator S is normal, i.e., it satisfies
SSH” =SS and its eigenvalues are all distinct.

(as2): The frequency representation of the observed graph sig-
nal y adheres to the model y = diag(¥h)Ux, where
U is a random N xN matrix obtained by concatenating
N rows sampled independently and uniformly with replacement
from U.

Under (asl) V is unitary, which implies U := V! = V#
and leads to the decomposition S = VAV . Normality is for
instance satisfied when G is undirected and the graph-shift oper-
ator is chosen to be the adjacency matrix or the graph Laplacian.
Furthermore, all the eigenvalues of S being distinct ensures that
matrix W is full rank independently of L, which is required for
uniqueness as discussed in the end of Section I1I-A. Under (as1),
we can assume that ¥ & = I, without loss of generality. To
see this, consider, e.g., the SVD of ¥ = PXRH and rewrite
the frequency response of the filter as Wh = PXR"”h := Ph’,
where P satisfies P/ P = I, by definition and h can be recov-
ered from h’ due to the full-rank condition of ¥. Consequently,
in the statement of Theorem 1 and its proof we assume that
TIw=1;.

Regarding the probabilistic model for the observations in
(as2), this type of models are customary towards establishing
recovery guarantees in the context of, e.g., compressed sensing
and low-rank matrix completion [32], or even blind deconvolu-
tion of temporal signals [10], [13]. For instance, instrumental
to the proof arguments in [13], is that rows of the matrix rep-
resentation of operator M are independent. This way, one can
bring to bear matrix Bernstein inequalities to bound the norm of
relevant operators constructed from sums of these rows [33]. A
direct consequence is that the recovery results obtained here are
probabilistic in nature, namely Theorem 1 asserts that {x, h}
can be recovered with high probability over the measure induced
by the aforementioned matrix randomization procedure. All in
all, tractability is the main reason behind (as2), which resembles
the random Fourier model in [13] but is more general since rows
are sampled from a unitary matrix U — not necessarily the DFT
matrix.

In any case, we would like to stress that the focus here is only
on establishing that a convex relaxation can succeed for blind
identification of graph filters, and that the graph structure plays
a key role on the recovery performance. We are not after the
tightest guarantees, and the success probability bounds obtained
are admittedly loose. In fact, Theorem 1 deals with recovery of
{x,h} using the simplified convex formulation (11), despite
the fact that (9) exhibits slightly better performance than (11) in
practice; see also the numerical tests in Section V. Nevertheless,
in theory both schemes are equivalent (at least order-wise) [15],
while the optimality conditions and corresponding construction
of dual certificates for (11) are markedly simpler.

= <
M LSpu(S)pe (L) log(4yV2LI)log(2SN?) ~
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B. Main Result
Given an arbitrary matrix A € CM >N
k € N, we define the function pa (k) as

pa (k) ==

and a positive integer

max max ||al’gz||§ (13)

le{l,...M} Qeql

where Y represents the set of all k-subsets of {1,..., N}, and
a; o is the orthogonal projection of the [-th row of A onto the
index set €. In words, pa (k) is the largest squared-norm of any
vector formed by selecting k elements from a row of A. This
extends the concept of mutual coherence between the basis of
Kronecker deltas on the graph and A [34]; see also the re-
lated cumulative coherence notion in [35]. The above definition
allows us to formalize the following main result.

Theorem 1: For a given graph-shift operator S, assume that
an S-sparse graph signal x, € R" when passed through a filter
with coefficients hy € R” results in a signal with frequency
representation y € CV adhering to the model in (as2). Also,
denote by U € CV*N and ¥ € CV*! the GFT for signals and
filters associated with S, respectively, where U is normalized
such that UY U = NIy. Define

-1
pu(Dpw (1)LS pu(Dpw (1)L
~ 3log(2) (1202 LS 4 8/ uCle LS )

T e (S)pe (D) log(47V2LS)log(25N?)

(14)

where v := /2N (log(2LN) + 1) + 1. Under (asl1)-(as2), if
a > 1 then the unique solution to (11) is the rank-one matrix
Zy := xoh{, with probability at least

R"ec Z 1- Nﬁa+1~ (15)

Proof: See Appendix A. |

We want to emphasize three differences between the above
theorem and [13, Th. 3.1]. First and foremost, Theorem 1 pro-
vides probabilistic guarantees of recovery for blind identifica-
tion in arbitrary graphs [cf. (as1)], whereas the results in [13]
only apply for the cases where U is random Fourier or Gaussian
distributed. Our generalization is reflected through the function
pa, which as detailed after Lemma 1 also provides intuition
about which graph topologies favor blind recovery. Secondly,
we provide exact expressions for the constants throughout the
proof — some of them embedded in expression (14). Accord-
ingly, bounds for the probability of recovery are derived for
finite values of L, S, and N, instead of order-wise asymptotic
results. Lastly, by using pg to describe properties of ¥, the
bounds obtained in Theorem 1 are tighter than those in [13, Th.
3.1], even for the case where U is random Fourier.

Leveraging the facts that both py and py are non-decreasing
functions by definition [cf. (13)], we can lower bound « in (14)
to obtain an alternative expression which is more restrictive but
simpler to understand, namely

3log(2)/128

(16)

Inspection of (16) clearly shows that the recovery performance
depends on S and L through the functions py and py, respec-
tively. First notice that from UHU = NIy and 7@ =1, it
follows that py (S) < N for all S and py (L) < 1 for all L, re-
spectively. Moreover, the following lemma further characterizes
the behavior of these functions.
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Lemma 1: The functions py and py as defined in (13) satisfy
S < pu(S) < Spu(l), (17)
L/N < pw(L) < Lpw (1) (18)

for all graph shifts S. Moreover, (17) and (18) are satisfied with
equalities when S = A ..

Proof: Since (17) and (18) can be shown using similar argu-
ments, we focus only on proving (17). To show the rightmost
inequality in (17), we leverage the definition of ps in (13) to
write

S) <
pU( ) - le{Ilr,lé.),(N} Qeql i€

} uii]* = Spu (1)

max S max |y |*

19)

=S5 max max

le{l,...N} ie{l,....N

where the first equality follows from the fact that maximizing
over all S-subsets first and then maximizing over a particular
entry ¢ € {2 is equivalent to an initial maximization over i €
{1,..., N}. To show the leftmost inequality in (17), we again
rely on (13) to write

N

N
<Pu (S) = le{rlr}?x — max

2
u
X, 5 mas ol

> max |wl3=N (20)
LN

le{l
where the last equality follows from the fact that U7 U = NTy.
Finally, whenever S = A, notice that U is a DFT matrix with
unit-magnitude elements and W consists of columns from a
normalized DFT matrix (with elements of magnitude 1/ \/N ),
thus equalities in (17) and (18) follow. [ |

In order to increase the probability of recovery, it is desirable
to obtain large values of « [cf. (14) and (15)]. Consequently,
functions py and py indicate how the recovery performance
decreases with increasing S — number of non-zero entries of
the input — and L — number of filter coefficients. In particular,
the closer py and pg are to their lower bounds in (17) and
(18), the better — more specifically, the slower the recovery per-
formance deteriorates with increasing S and L. With reference
to the theoretical bound in (15), Lemma 1 implies that blind
identification in time and, more generally, in circulant graphs
corresponds to the most favorable setting. This follows since
circulant graphs are diagonalized by the DFT matrix and, thus,
the lower bound for py is achieved [cf. (17)]. The behavior of
pu for different graphs is depicted in Fig. 2.

Regarding the behavior of pg, since ¥ depends not only on
the graph but also on the normalization procedure chosen to
achieve U7 ¥ =1 1, [cf. discussion after (as1)], the interpreta-
tion of py and its dependence on the graph structure is more
involved. To be more precise, when the matrix P of left singular
vectors plays the role of ¥, both the Vandermonde structure
of ¥ as well as the one-to-one correspondence between rows
and eigenvalues of the graph are lost. Hence, in the ensuing
section we limit our numerical analysis to the effect of py on
the recovery performance.

V. NUMERICAL RESULTS

Four types of experiments are conducted to illustrate the
performance of our blind graph-filter identification approach.
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Fig. 2. pu (S) for five types of graphs with N = 50 nodes. The graph pa-
rameters were chosen so that the expected number of edges is the same for the
three random topologies considered. The values of py reported are the aver-
age among 100 realizations. We can see py achieving its lower bound for the
directed cycle (cf. Lemma 1).

First, we evaluate the effectiveness of the different relaxations
proposed in Section III in random and real-world graphs.
Second, we compare the performance of our method with alter-
native approaches when solving a blind identification problem
in a brain graph. Third, we assess the sensitivity of recovery
with respect to the graph-dependent parameters identified in
Section IV. Lastly, we illustrate how our method can be used to
identify the sources of contagion in an epidemic model.

In the aforementioned experiments, we solve blind graph-
filter identification problems for different graphs G while vary-
ing the parameters L, S, P, and N. The obtained signal and
filter-coefficient estimates will be denoted by {X,h}. Unless
otherwise stated, we select the graph-shift operator S = A equal
to the adjacency matrix of G. The “true” vectors x, and h are
drawn from standard multivariate Gaussian distributions and are
normalized to unit norm. In this way, the “true” filter models a
generalized network diffusion process as introduced in Section
II. Given x and hy, synthetic observations y are generated with
frequency components given by (5). The root-mean-square er-
ror RMSE := ||xh? — xh! || is adopted as a figure of merit
to assess recovery performance.

Recovery performance: Defining successful recovery when
the RMSE is smaller than 0.01, we empirically estimate the suc-
cessful recovery rate for Erdés-Rényi graphs (N = 50 nodes,
edge formation probability p = 0.1) [36] as a function of L and
S by averaging the success counts over 20 realizations for each
parameter combination; see Fig. 3(a)—(d)(top). In each experi-
ment we assume the true filter length L — but not the sparsity
level S — to be known. We assess the recovery performance for
different convex relaxations of increasing effectiveness: (a) ¢,
minimization [cf. (11)]; (b) ¢ 1 plus nuclear norm [cf. (9)]; (c)
reweighted /5 ; plus nuclear norm [cf. (10)]; and (d) reweighted
{51 plus nuclear norm with P = 5 output observations [cf. (12)].
As expected, the difficulty of the problem increases when either
L or S increase, depicted in the figures by the darker area around
the bottom-right corners. Moreover, when going from one
figure to the next, the growing white regions portray the benefits
of leveraging additional signal structure in the algorithms. In
particular, when moving from (a) to (b), we observe the benefit
of incorporating the row-sparse and low-rank features of Z into
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(a)—(d) Rate of recovery of x hOT as a function of S (sparsity in x¢ ) and L (filter length) in 50-node Erd&s-Rényi graphs (top) and a brain graph (bottom)

for different recovery algorithms: (a) ¢1 minimization [cf. (11)]; (b) £2 1 plus nuclear norm minimization [cf. (9)]; (c) reweighted {2 1 plus nuclear norm [cf. (10)];
and (d) reweighted ¢ 1 plus nuclear norm with P = 5 output observations [cf. (12)]. (e) Recovery errors for several methods as a function of the number of
observations in the brain network for L = S = 3. Dashed lines represent recovery with noisy observations.

the model as opposed to merely considering a sparse model of Z.
Notice, however, that the performance of these two approaches
is comparable [15]. When going from (b) to (c), we see the
conspicuous performance improvement entailed by considering
the iteratively-reweighted scheme to promote row-sparsity in
Z. Lastly, when comparing (c) to (d), we gauge the benefits of
observing multiple (P = 5) output signals, especially for large
values of S and L. In particular, when S = 8 and L = 5 we go
from a success rate of 0.25 in (c) to a success rate of 0.90 in (d).
For this latter setting, exact recovery is achieved consistently
for most combinations of L and S.

We now consider a weighted undirected graph of the human
brain, consisting of N = 66 nodes or regions of interest (ROIs)
and whose edge weights are given by the density of anatomical
connections between regions [37]. The level of activity of each
ROI can be represented by a graph signal x, thus successive
applications of S model a linear evolution of the brain activity
pattern. Supposing we observe a linear combination (filter) of
the evolving states of an originally sparse brain signal, then
blind identification amounts to jointly estimating which regions
were originally active, the activity in these regions, and the
coefficients of the linear combination. We mimic the recovery
rate analysis performed for Erd6s-Rényi graphs; see Fig. 3(a)—
(d)(bottom). As expected, the success rates increase gradually
when going from (a) to (d), as we consider more sophisticated
algorithms. Furthermore, when comparing the bottom plots in
Figs. 3(a)—(d) with their top counterparts, it is immediate that, for
fixed L and S, recovery in the brain network is more challenging
than in Erd6s-Rényi graphs. This can be explained by the marked
structure of the brain network where nodes are divided into two
weakly connected hemispheres. Hence, the output signals in one
hemisphere are not very informative about the input signals in
the opposite hemisphere, rendering recovery more difficult.

In order to assess the recovery related to different graph-shift
operators associated with the same underlying graph, we repeat
the experiment depicted in Fig. 3(d) for Erd6s-Rényi graphs
(N = 30 nodes, edge formation probability p = 0.15) and for
three different shifts: the adjacency A, the Laplacian L, and the
normalized Laplacian L, ; see Fig. 4(a). From the figure it is
clear that the recovery rates associated with the three analyzed
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Fig. 4. (a) Experiment analogous to the one depicted in Fig. 3(d) for three

different shifts based on the same graph: the adjacency A (top), the Laplacian
L (middle), and the normalized Laplacian L,, (bottom) matrices. (b) The mean
values of pyy (S) for S = 1,. .., 5 for the three graph-shift operators considered.

shifts are comparable, with slightly lower performance corre-
sponding to the Laplacian L. This can be partially explained
by the values of py(S) for S =1,...,5; see Fig. 4(b). The
figure shows that the values of py associated with the Lapla-
cian uniformly dominate the other two, thus, entailing a more
challenging scenario for recovery (cf. discussion around Fig. 2).

Comparison with alternative methods: So far we have as-
sumed that we observe the entire output signal y when trying
to infer x and h. Nevertheless, it can be the case that we can
only sample a subset of the nodes of the graph and try to recover
{x0,hy} from this reduced number of observations. Specifi-
cally, in Fig. 3(e) we fix L=.5=3, P=1, and analyze the error
behavior (median errors across 50 realizations) as a function of
the number of accessible values y; of the output for different re-
covery algorithms. Apart from our convex relaxation approach,
we consider a naive least squares (LS) baseline where we solve
(5) via a pseudoinverse. Moreover, we consider an alternating
minimization (AM) algorithm entailing two steps per iteration:
i) given x, vector h is found as the LS solution of (3); and
ii) given h, vector x is found by minimizing ||x||; subject to
(3) followed by a thresholding operation to retain S non-zero
values. These two steps are repeated until convergence, and
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the algorithm is initialized with the LS estimate of h. Finally,
we consider as a benchmark our convex method when the sup-
port of x is known (k.s.) [1].

Our proposed method clearly outperforms the naive LS and
AM approaches. Say for 60 observations (6 less than the to-
tal number of nodes), our method achieves a median error
of 0 while the median errors for AM and LS are 0.52 and
0.82, respectively. Outperforming LS is not surprising since this
algorithm is agnostic to the sparsity in x; and to the fact that
X0 hg is a rank-one matrix. Further, notice that our method out-
performs AM even though the latter assumes that the value of
S — but not the support of x( — is known. The big gap between
the yellow and the purple curves represents the performance
penalty due to supp(x() being unknown. For situations where
partial information about the support is available, e.g. we know
a priori that the input signal is null on a subset of nodes, inter-
mediate curves (not shown in the figure) are obtained.

Finally, we include two dashed curves to assess the perfor-
mance of our approach (with known and unknown support),
when the partial observations of y are noisy. More specifically,
we define y as a perturbed version of y givenbyy =y +oyor
where o controls the magnitude of the perturbation and r is a
random vector whose entries are drawn independently from a
standard normal distribution. In particular, the dashed curves
in Fig 3(e) correspond to o = 0.01. As expected, the median
reconstruction errors from noisy observations are larger than
their noiseless counterparts, however, our approach can be seen
to be robust to noise. For intermediate number of observations,
the performance of the noisy scheme with unknown support is
within 5% of the noiseless one and, once we observe the whole
66 nodes of the output signal, the error of the noisy approach is
in the order of o and comparable to that obtained by the noisy
scheme with known support.

Recovery dependence on graph structure: Theorem 1 reveals
that the recovery performance of scheme (11) depends on the
graph structure. In particular, when recovering an S-sparse in-
put signal, the value of py (S) plays an important role, with
lower values of py (.S) leading to larger values of « and, hence,
larger probabilities of recovery [cf. (14) and (15)]. Even though
Theorem 1 refers to theoretical bounds on the performance,
we see that in practice the value of py (S) correlates with the
recovery success when implementing (11); see Fig. 5(a). More
specifically, we generate 50 Erd6s-Rényi graphs of size N = 50
and probability of edge appearance p drawn uniformly from
[0.05,0.15]. For each of these graphs we simulate 50 blind-
identification problems with L = 3 and S' = 3, solve them using
(11), and record the reconstruction RMSE and whether the re-
covery was successful, i.e., RMSE smaller than 0.01. In Fig. 5(a)
we plot for each graph the proportion of unsuccessful recoveries
(blue circles) and the mean RMSE (orange stars) as a function
of pu (3). First notice that the values of py (3) are clearly larger
than their theoretical lower bound of 3 (cf. Lemma 1 and Fig. 2).
Most importantly, blind identification is more challenging on
graphs with high values of py(3). For example, the average
failure rate for the graphs with py (3) < 25is 0.51 whereas for
the rest of the graphs the average is 0.64. Similarly, the aver-
age RMSE for the former class of graphs is 0.12, whereas the
graphs with larger values of py (3) achieve an average RMSE
of 0.20.
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Fig. 5. (a) Recovery failure rate and mean reconstruction error of the /;
minimization [cf. (11)] as a function of py (3) for L = 3 and S = 3. Each
point corresponds to an Erd6s-Rényi random graph of size N = 50 and p €
[0.05,0.15]. The failure rates and mean errors are computed based on blind
identification of 50 graph filters on each graph. The best linear fits are drawn in
dashed lines. (b) Counterpart of (a) for the reweighted /2 ; plus nuclear norm
[cf. (10)] as a function of py (5) for L = 4 and S = 5.

Although Theorem 1 specifies theoretical bounds of recovery
for /1 minimization, in practice the performance of more sophis-
ticated schemes such as the reweighted ¢, ; plus nuclear norm
minimization also depends on the value of py (5); see Fig. 5(b).
We mimic the recovery rate analysis for /; minimization but
in this case we consider a more challenging blind-identification
problem (L = 4 and S = 5) so that the failure rates are signif-
icant [cf. Fig. 5(b)]. As can be seen from the figure, the values
of pu (S) influence the recovery performance. For graphs with
values py (5) < 35 for instance, the average failure rate and
average RMSE are 0.22 and 0.08, respectively, whereas these
values are 0.30 and 0.12 for the remaining graphs. The same
trends of increasing recovery failure rates and mean errors with
increasing py have been found in other random graphs including
small-world graphs and Barabasi-Albert scale-free graphs [36].
Note finally that the fact of the recovery in actual graphs being
dependent on py, which is one of the parameters in (14), serves
as an indirect validation of the practical value of Theorem 1 and
the preceding assumptions.

Epidemics: We consider the social network of Zachary’s
karate club [38] represented by a graph G — with adjacency
A — consisting of 34 nodes or members of the club and 78 undi-
rected edges symbolizing friendships among members. On G
we simulate an N-intertwined SIS epidemic model [39], which
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is a susceptible-infected-susceptible (SIS) dynamical process
where contagion can only occur among friends (i.e., neighbors)
in the social network. To be more precise, each individual at any
point in time can be in one of two states: susceptible or infected.
At each time point, an infected individual heals with probability
w, thus becoming susceptible. By contrast, a susceptible per-
son i becomes infected with probability 5 |Z;|, where |Z;| is the
number of neighbors of ¢ that are infected at that point in time.
Our goal is to use the blind graph-filter identification methods to
identify the sources of the epidemic outbreak. Even though this
model entails non-linear and stochastic dynamics, its mean-field
approximation can be estimated by a linear function [39], [40].
Formally, denoting by p; a vector collecting the probability of
infection of each individual at time ¢, then for small values of
p: we have that

bt = [IN — U (WIN - 5A)] Pt-1 210

where v, is a time-varying step-size that arises after discretiza-
tion of the dynamics. We generally let v; vary with time,
representing that some time instants could be very active, with
multiple contagions and recoveries, whereas in other time in-
stants the epidemic remains more dormant. Equivalently, a time-
varying v, can be interpreted as having time-varying healing and
infection probabilities but maintaining a fixed ratio between
them. Defining S := wly — SA, we leverage (21) to write the
probabilities of infection at time 7" as

T-1

pr = [[ @y —vS)po.

t=0

(22)

Notice that the above matrix product is a polynomial in S —hence
a graph filter — of degree 7" whose coefficients are a function
of {v; }]_}, which we assume to be unknown. Moreover, since
we are interested in identifying the original sources of infection,
the initial probability vector py is what we want to estimate. If
we were to observe pr, then the problem would be precisely an
instance of blind graph-filter identification. Given that observing
the probabilities of infection at time I’ seems impractical, we
consider a case where we observe W epidemic outbreaks in the
same population and estimate pr from these. Notice that the
epidemic outbreaks need not refer to diseases but could model
the spread of rumors or the adoption of new technologies. We
want to emphasize that the number and identities of the sources
in each of these outbreaks are generally different, but what
remains constant is the probability py with which the sources are
chosen. Nevertheless, we assume that the nodes that could start
an epidemic are just a subset of the total (of cardinality .S), so that
Po is sparse. For the simulations here, we consider 7' = 3, W =
500, and S drawn at random from {3,4,5}. After estimating
pr from the realizations, we implement our reweighted ¢ ;
plus nuclear norm minimization [cf. (10)] to obtain py, our
estimate of pg, which we use to identify the potential sources
of contagion. In particular, we quantify the localization error
as ||supp(po) — supp(po)|lo/S, which specifies the proportion
of misidentified sources. Assuming that in each realization we
can only access the state (infected or susceptible) of a subset of
nodes, in Fig. 6 we plot the localization error — mean across 20
realizations — as a function of the number of nodes observed. In
addition, we consider the incorporation of different levels of a

1155

--Q=N
p -*-Q=0.75N

0.8 Q=05N
S —-£-Q=38
& —+-Q=28
206
o
©
N o.4H
[
(6]
o
-

0.2

O 1 1 1 1 1 1 L L
16 18 20 22 24 26 28 30 32 34
Number of nodes observed

Fig. 6. Localization error for epidemic sources as a function of the number of
observed nodes and parametrized by the number of potential sources Q.

priori information. Specifically, we analyze scenarios where we
know that the S sources belong to a subset of potential nodes
of cardinality @), so that when () = N no a priori information
is considered.

Fig. 6 shows that, independently of the value of @, the lo-
calization error decreases when the number of observed nodes
increases. Intuitively, the larger the number of observed nodes,
the more complete the estimation of pr is, hence, entailing a
more reliable estimate p, of the epidemic sources. For Q = N,
if only 16 nodes are observed the localization is very poor with
an average error of 0.88, but when all 34 nodes are observed
this error decreases to 0.13. Furthermore, Fig. 6 illustrates the
benefit of a priori information. For instance, when only 24 nodes
are observable and we have no a priori information, the average
error is 0.59. However, this error can be reduced to 0.37 and 0.19
by constraining the potential sources to subsets of cardinality
Q) = N/2 and Q = 25, respectively.

VI. CONCLUSION

We formulated and studied the problem of blind graph-filter
identification, an extension of blind deconvolution of time (or
spatial) domain signals to graphs. While the graph signal ob-
servations are bilinear functions of the filter coefficients and the
sparse input signal, leveraging the frequency interpretation of
graph signals and graph filters it was possible to show that they
are also linearly related to the entries of a lifted rank-one, row-
sparse matrix of the unknowns. Accordingly, the blind graph-
filter identification problem was tackled via rank and sparsity
minimization subject to linear constraints, an inverse problem
amenable to convex relaxations offering provable recovery guar-
antees under simplifying assumptions. The probabilistic guaran-
tees derived offer intuition as to how the recovery performance
depends on the sparsity level, filter order, as well as on spectral
properties of the underlying graph via suitably defined coher-
ence parameters. A particular upshot of the analysis is that the
most favorable recovery setting arises with circulant graphs,
which include blind deconvolution in the temporal domain as
a special case. Numerical tests validated the theoretical claims
and demonstrated that the proposed approach offers satisfactory
recovery performance, even for settings well beyond the scope
of the analysis. Looking forward and building on the insights
gained here, it is of interest to develop spectral graph theoreti-
cal tools to facilitate identifying the key relationships between
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the (e.g., topological) properties of graphs and the resulting
recovery performance. For a given graph, it is also worth to for-
mally characterize whether there are filters or signal supports for
which recovery is easier or more challenging. Future research
includes also estimating the shift operator by bringing to bear
methods of network topology inference [5]; see also [9], [41] for
recent related approaches to estimate the graph structure from
the observation of graph signals.

APPENDIX A
PROOF OF THEOREM 1

We reiterate that the proof in this section follows closely the
ideas used to establish [13, Theorem 3.1]; see also [10]. Thus
the emphasis will be on the differences that arise in the graph
setting dealt with here.

Preliminary definitions and notations: Going back to the dis-
cussion in Section III, for Z = xh” recall the linear mapping
M : CN*L s C¥ such that

Y =M(Z) = {u] Zo;}}L,, (23)
where u! and 1! denote the i-th rows of U and ¥, respec-
tively. Whenever clear from context, as in (23), notation {-}
will be used for the element-wise definition of a vector. Accord-
ingly, one can write ¥ = Mvec(Z) for M := (¥7 © UT)T €
CNXLN where

M7 = [m,,.. € CLVN,

., my] m; =P, 0. (24)
By using the inner product defined on CV** as (X,Z) :=
tr(XZ'), the adjoint operator M* : CV - CV*L as well as

MM : CN*L s CN*L take the form

N N
Mi(z) =" zayll, MM(Z) = wul Zy,pl.
i=1

i=1

(25)
Based on the aforementioned definitions, the following useful
formula holds

vec(M*M(Z)) = M Mvec(Z)

N
= Z (Eﬂ/’? ®ﬁiuf) vec(Z). (26)

i=1

Consider a subset of measurements I', C {1,..., N} with
IT',| = Q, and define the row-sampled operator M,, : C¥*L
C9 as M, (Z) := {ul Z, }icr,; as well as M3 M, (Z) :=
Zier,, wul Zep,ap. The linear operator M, has ma-
trix representation M, € C@*LN | where M]],{ has columns
{m;}icr,. Accordingly, one can write M,,(Z) = M, vec(Z)
and vec(M; M, (Z)) = M M, vec(Z).

Regarding the support of the sparse vector x;, we can assume
without loss of generality that the first S entries of x( are non-
zero and so are the first S rows of Zg = X hOT. While slightly
abusing notation, it is convenient to denote as €2 the supports
of both x and Z. Next, let x and Zq denote the orthogonal
projections of x and Z onto {2, respectively. Leveraging these
definitions, we can define Mg and Mg, as the restriction of M
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and M* to €2, such that
Mq(Z) = {uzT ZQ‘/%}Z]'L = {uZQZQd’i}z]’\;la

N
Mi(z) = ) 2o 7)
i=1

Naturally, one can be interested in projected and row-sampled
operators of the form M, o = {uiT‘Q Za, ticr, -
Instrumental to our proof will be the following form of the
non-commutative Bernstein inequality for matrices [33].
Theorem 2 (Th. 4.4 [13]): Consider a finite sequence

{Zi}icr, of independent, centered random matrices with
dimension M x M. Assume that || Z;|| < R and introduce the

random matrix
T=> 17

i€l
with variance parameter

o2 = maX{H ZE [ZiZiH]
iel

p

)

SE (27 H} (28)
iel,

Then for all ¢ > 0, it holds that
t2/2
o2+ Rt/3)"

Optimality conditions: A key step in the proof is Proposi-
tion 2, which states four conditions guaranteeing that the unique
solution to (11) is indeed Z( = x; hg. See [13, Proposition 4.2]
for a proof. In what follows, we denote by Q* the orthogonal
complement of ).

Proposition 2: The rank-one matrix Zo = xoh] is the
unique minimizer of (11), if there exists Y € range(M?*) and
a scalar ~ that satisfy conditions:

) [Isign(Zo) — Yallr < 1/(4v29).b) [ Yo | < 1/2:

and the operator M satisfies conditions:

o) M Mg —Tol| < 1/2,d) [M] < 7.

The rest of the section is devoted to establish each of the
four conditions a)-d) given above. Although Proposition 2 en-
tails deterministic conditions, as customary when dealing with
sparse recovery algorithms we show that conditions a)-d) can
be satisfied with a certain probability. More specifically, it turns
out that all conditions hold with probability at least 1 — N~*+1,
giving rise to the statement in Theorem 1 [cf. (15)].

We begin by showing condition ¢) in Proposition 2. We do so
by first showing a more general result in Lemma 2, which is a
modification of [13, Lemma 4.7].

Lemma 2: For any fixed 0 < § < 1 and partition {I',})";
of {1,2,...,N} with |T',| = @ for all p, and defining T, =

T
Z@erp ;1p; we have that

P(IS] > 1) < 2M exp <— (29)

oQ
max sup ||M; oM, a(Z)—ZoT,||r < —, (30)
s M0 M0 (Z) = 2Ty e < 5
with probability at least 1 — N~**! if o > 1 and
5%(5/2 4 26/3)7"

= pw(L)pu(S)Nlog(2NLS)
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Proof: Define X; € CENXLN a5
Yi= (] ) @ (32)

and notice that every Y, is a centered random matrix since
E [4ouly] =Iyq due to the normalization of U (cf.

(Ti0 UZQ —Ino),

Theorem 1). Leveraging (26), it follows that vec
(M} oMy a(Z) —ZoT,) = 3 ,cr, Yivec(Zo) and, from
the definition of matrix induced norm, we obtain that
sup M}, oMy a(Z) — Zg (33)
1Zallr=1

ier,
Thus, our goal is to use Theorem 2 to find a probabilistic bound
on || >;cr Yi|. To this end, we need to find suitable expres-
sions for R and o. For computing R, notice that

I3[l = |9 i l[[Woul o —Invall < pe(L)pu(S), (34)

where we used the definition of pa in (13). Since (34) is true
for all 4, we have that R < pg (L)py (S) as wanted. In order
to compute o2, it suffices to consider 'I'Z-TZH since Y, is a
Hermitian matrix for all ¢ [cf. (28)]. Thus, we have

o PR

i€l

< pxp(L)H > @l) 9F [(Woulg —Iva)’] H

i€l

(35)

To compute the required expected value, expand the square and
use the facts that u! ,; o < pu(S) and E [0 ou? ] = Iy 0.
Substituting these into (35) and recalling the definition of T,
from the statement of Lemma 2, it follows that

5Q

uS)IT, I < pu(L)pu(8) 1

where the last inequality follows from [13, equation (4.7)]. We
use the results in (34) and (36) to apply Theorem 2 for the case
where t = §Q/N. In using Theorem 2, Y; can be interpreted
asan LS x LS matrix for all ¢ since this is the dimension of its
support [cf. (32)]. Thus, we obtain

If, in particular, for some constant o > 1 we choose

o> < pu(L)p (36)

<2LSexp (— Q2N )) .

pw (L)pu (S)(5 + 5
37

Q=5 (5 + 25) pw (L)pu (S)Nlog(2NLS),  (38)

the right-hand side in (37) is not larger than N~®. Using a union
bound on (37) to find the probability of || >2;. Xill = 6Q/L
for some p, and then considering its complementary event, we
get that

max H >1- PN >1_ N+
1<p<P
(39)
From (33) and (39), statement (30) follows whereas the expres-
sion for cv in (31) is obtained from (38). |
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Condition ¢) in Proposition 2 follows by specializing
Lemma 2 for § = 1/2 and P = 1. Notice that the latter equality
implies that Q = N and T = I . As discussed after the state-
ment of Theorem 1, a novel component introduced in the proof
of Lemma 2 compared to that of [13, Lemma 4.7] is the appear-
ance of py (9) in the lower bound for @ [cf. (38)]. Notice that
in [13], pu (S) = S since U is assumed to be random Fourier,
thus, every element has unit magnitude. In our case, different
graphs give rise to less favorable (larger) bounds on () since
pu(S) > S.

Our next step is to prove condition d) in Proposition 2.
We attain this in the following lemma, a restatement of [13,
Lemma 4.9].

Lemma 3: For M defined in (23) and « > 1 then it holds
that

|M]| < v:=+/2N(log(2LN) + 1) + 1, (40)

with probability at least 1 — N~ if a < (pg (L) log(N))~ .

Proof: The proof follows the same steps as those in the proof
of [13, Lemma 4.9]. The only step that needs to be checked
is whether E [(Wyu! — Iy)?] = (N — 1)Iy still holds in our
context. To see this, expand the square and use the facts that
E [uqu ] = I and that u u; = N for all 7, which are imme-
diate implications of the normalization of U (cf. Theorem 1).
Finally, to obtain the expressions presented in the statement of
the proposition notice that k, L and 2, k/L in [13] are equal
to L and N and pg (L) here, respectively. |

Construction of dual certificate: We construct the inexact dual
certificate Y mentioned in conditions a) and b) of Proposition 2
via the celebrated golfing scheme [42]. The goal of the scheme
is to generate a sequence of random matrices Y, in range(M™)
such that the sequence converges to sign(Zg) [cf. a)] while
keeping each entry in Q* small [cf. b)]. We initialize Yy = 0
and set the following recursion

MM, (sien(Zo)
where the successive operators M, are based on different blocks
I, of a partition {I',}"_; of {1,2,..., N} such that |I',| = Q
for all p. We define our desired dual certificate as Y := Y p and
the sequence of residuals W), := Y, o — sign(Z). From this
definition, it follows that Wy =Y — sign(Z,) = —sign(Z)
implying that |[Wy||r = /LS from the sparsity level in
Z. Furthermore, Lemma 2 can be leveraged to show that
[W,llr <27! ||[W,_1||r with probability at least 1 — N1
as long as (31) is satisfied for § = 1/4 (cf. Lemma 4.6 in [13]).
Combining these two observations, we obtain that |[Wp||p =
Yo — sign(Zo)|lr <2 7+/LS. By equating this upper bound
with that in condition a) of Proposition 2, we obtain a lower
bound on the values of P that guarantee fulfillment of the con-
dition, namely

Y, =Y, + ~Y,10) @D

- log(4vv2LS)

— log(2)
Finally, in order to show condition b) in Proposition 2 we begin
by leveraging (41) and the definition of W, to write

(42)

N P
Yp=Y == MM,(W, 1)

(43)
Q &
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In order to show that || Yqu |l < 1/2, it suffices to show that
My M, (W), 1)]oxllee <2777'Q/N and then use the ex-
pression of a geometric sum in (43). We show this latter claim
via the following lemma, which is a modified version of [13,
Theorem 4.11].

Lemma 4: Under the assumption that [|[W, || < 277V/LS,
it holds that

" Q _
P (1AW, o < i) = 1=V
forall pif « > 1 and
1
P v (1) v (1)pw (1)LS
% (120 ullss VLS 4 g, [ou)ge LS ) s
- Npu(S)pw( ) log(25N?) '

Proof: The proof follows similar steps as those in the proof
of [13, Theorem 4.11]. However, in our case, matrix U is not
random Fourier, thus, different bounds must be used. In particu-
lar, we leverage the definition of pa in (13) to state that [cf. (24)]
o < [l uilloe = v/pw (D)pu (1) and, similarly, that

lm; |2 < \/pw (L)pu (S). These bounds lead to the following
expressions for R and o2

R<27/pu(1)pe (1)pu(S)pe (L)LS,
o <27 py(1)pw (1)5QLS/N.

(46)
(47)

After this, we apply the Bernstein inequality (cf. Theorem 2) and
implement a union bound mimicking the procedure in (37)—(39)
to attain the statement of the lemma. [ |

Thus far, we have found requirements on « > 1 that ensure
the fulfillment of conditions a)-d) in Proposition 2 with high
probability. Consequently, we need to satisfy the most restrictive
of the requirements on « to guarantee simultaneous fulfillment
of conditions a)-d) and, hence, ensure recovery of Z, = x hUT.
These requirements are re-stated below, in order of appearance:

0 (9w (?i) Tog(2NLS) (48a)

TLArTIEsE (48b)

as pu(S)pﬂL)i)l;gﬁ)J/%) log(2NLS)’ 1 (48¢)
310g(2) (120 A +8\/”EJ'<L”$;]<)[>S ) 7

pu (S)pw (L)log(47v2LS)log(2N?25) (48d)

Recall that (48a) is obtained by specializing (31) to @ = N
and 6 = 1/2 [cond. ¢)] whereas (48b) comes from Lemma 3
[cond. d)]. Expression (48c) is obtained by particularizing (31)
to 6 = 1/4, noting that @ = N/P and using (42) to bound P
[cond. a)]. Finally, (48d) is derived from (45) by again substi-
tuting QQ = N/P [cond. b)].
Notice that fulfillment of (48c) immediately implies fulfill-
ment of (48a) and (48b). By leveraging the facts that N > L,
u(1)S > pu(S), and pg (1)L > py (L) (cf. Lemma 1), it
follows that (48d) implies (48c). This makes (48d) the most
stringent of the requirements giving rise to (14) in Theorem 1.
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