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ABSTRACT

The key role of emotions in human life is undeniable. The ques-
tion of whether there exists a brain pattern associated with a spe-
cific emotion is the theme of many affective neuroscience studies.
In this work, we bring to bear graph signal processing (GSP) tech-
niques to tackle the problem of automatic emotion recognition using
brain signals. GSP is an extension of classical signal processing
methods to complex networks where there exists an inherent rela-
tion graph. With the help of GSP, we propose a new framework for
learning class-specific discriminative graphs. To that end, firstly we
assume for each class of observations there exists a latent underly-
ing graph representation. Secondly, we consider the observations
are smooth on their corresponding class-specific sough graph while
they are non-smooth on other classes’ graphs. The learned class-
specific graph-based representations can act as sub-dictionaries and
be utilized for the task of emotion classification. Applying the pro-
posed method on an electroencephalogram (EEG) emotion recog-
nition dataset indicates the superiority of our framework over other
state-of-the-art methods.

Index Terms— Graph learning, graph signal processing, dis-
criminative transform learning, emotion recognition, EEG.

1. INTRODUCTION

Over the years, many real-world problems have been tackled via tra-
ditional signal processing (SP) approaches. Graph signal process-
ing (GSP) has been introduced to extend the knowledge of classi-
cal SP to complex networks wherein the data rely on an underlying
graph different from the chain or grid structures assumed by tradi-
tional SP [1]. The underlying graph captures the connections be-
tween entities of the network. In some networks, the inherent topol-
ogy is known a priori (e.g., sensor networks) or directly observable
(e.g., social networks) [2]. However, this is not the case in many
networks, e.g., brain networks. Therefore, it is of interest to learn
the underlying graph using the data associated with the network.
Furthermore, the prosperity of GPS depends on how accurate the
learned graph represents the underlying relations in the network.

The so-called task of graph learning or topology inference aims
to estimate the underlying relationships of the graph signals. It is
known that the graph learning based on observed signals is an NP-
hard combinatorial problem. Hence, solving graph learning requires
applying some constraints to the problem. Such constraints encode
information about the structure of the network. Based on the liter-
ature, common constraints that have been used include smoothness
and sparsity [3,4]. Smoothness constraint implies that the graph sig-
nals that are related to each other behave similarly. Recently, ban-
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dlimitedness assumption has been taken into account in several stud-
ies [5,6]. Bandlimited graph signals admit a sparse representation in
the graph spectral domain. By considering graph signals as random
vectors drawn from a Gaussian Markov random field distribution,
the graph learning problem becomes the estimation of the inverse
covariance matrix [7, 8].

An important aspect of human life is emotion since emotions
play an important role in human decision makings and communica-
tions [9]. Moreover, investigating whether there exists a specific pat-
tern of brain connectivity related to a particular emotion has become
a key challenge in affective neuroscience. As mentioned before, the
human brain is recognized as a complex network and the underlying
graphs for particular cognitive, perceptual, or emotional processes
are unknown. However, one can try to exploit GSP tools to capture
brain patterns from the brain signals and classify human emotions
such as valence and arousal using these patterns. Electroencephalo-
gram (EEG) signals are recorded in a non-invasive manner and are
more affordable. Therefore, the vast majority of studies in the field
of emotion recognition use EEG signals [10–12].
Relation to prior work and contributions. While studies such
as [3, 4] focus on learning the underlying graph that is efficient with
respect to the signal representation; other studies focus on applica-
tions involving classification and try to learn a representation from
the signal to improve the classification result. Typically the goal
is to define a class-specific sub-dictionary by using the signals of
the corresponding class [8]. Previously, studies such as [13] sug-
gested defining a common graph for all classes and learn class-spe-
cific graph transforms based on the signals in each class which play
the role of sub-dictionaries. The lack of discrimination between the
class-specific graph transforms, which comes from using only one
graph for all classes, may reduce the classification performance [8].
The distinctive goal here is that of discriminative transform learn-
ing, to effectively tackle a classification problem involving network
data. The aim of our proposed topology inference method is to take
into account the discriminability while maintaining efficient signal
representation. Different from [3], our formulation enforces that
each classes’ signals to be smooth on their class-specific learned
graph while they are non-smooth on other classes’ graphs. The
discriminative graph learning problem studied here was first for-
mulated in [8] but under the lens of probabilistic graphical model
selection. Therein, graph signals are viewed as random vectors ad-
hering to a Gaussian Markov random field distribution, where the
unknown class-specific precision matrices typically play the role of
graph Laplacians. However, the discriminative graphical lasso es-
timator in [8] is not guaranteed to return a valid graph Laplacian
for each class, since the search is performed over the whole pos-
itive semi-definite cone. Incorporating Laplacian constraints may
challenge the block coordinate-descent algorithm in [8]. Accord-
ingly, one misses on the GSP insights offered here in terms of signal
smoothness and bandlimitedness in the graph spectral domain.
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2. PRELIMINARIES

We define the graph signal x = [x1, . . . , xN ]> ∈ RN over a
weighted, undirected graph G (V, E ,W), where V = {1, . . . , N}
represents the node set of cardinality N and E ⊆ V × V the set
of edges. In the context of EEG signal processing, graph signals
correspond to the EEG signals and the graph represents the brain
functional connectivity. Accordingly nodes stand for the EEG elec-
trodes. Following this notation, xi ∈ R and W ∈ RN×N

+ denote
the signal value at node i ∈ V and the adjacency matrix of edge
weights, respectively. The symmetric and non-negative coefficients
Wij = Wji ∈ R+ indicate the strength of the connection (or
similarity) between electrode i and electrode j. In the absence of
connection [i.e., (i, j) * E] one has Wij = 0. Moreover, we as-
sume that G does not include any self-loops which implies Wii = 0,
∀i ∈ V . The adjacency matrix W encodes the brain functional con-
nectivity. Beyond the adjacency matrix W, results in spectral graph
theory often motivate choosing the combinatorial graph Laplacian
L := diag (W1) −W, where 1 refers to the all-one vector. In
particular, L plays a central role in defining a useful and intuitive
graph Fourier transform (GFT) as described next.
Graph Fourier transform and signal smoothness. In order to in-
troduce the network’s spectral basis and define the GFT, we decom-
pose the (symmetric and positive semi-definite) combinatorial graph
Laplacian as L = VΛV>, where Λ := diag (λ1, . . . , λN ) de-
notes the diagonal matrix of non-negative eigenvalues and V :=
[v1, . . . ,vN ] the orthonormal matrix of eigenvectors. The GFT of
x with respect to L is the signal x̃ := V>x. The inverse (i)GFT of
x̃ := [x̃1, . . . , x̃N ]> is given by x = Vx̃ =

∑N
k=1 x̃kvk, which is

a proper inverse due to the orthonormality of V. The GFT encodes a
notion of signal variability over G (akin to frequency in Fourier anal-
ysis of temporal signals) by synthesizing x as a sum of orthogonal
frequency components vk. The GFT coefficient x̃k is the contribu-
tion of vk to the graph signal x.

To elaborate on the notion of frequency for graph signals, con-
sider the total variation (or Dirichlet energy) of x with respect to the
combinatorial graph Laplacian L defined as

TV (x) := x>Lx =
∑
i 6=j

Wij (xi − xj)2 =

N∑
k=1

λkx̃
2
k. (1)

The quadratic form (1) acts as a smoothness measure, because
it effectively quantifies how much the graph signal x changes
with respect to G’s topology [14]. If we evaluate the total vari-
ation of eigenvector vk (itself a graph signal), one immediately
obtains TV (vk) = λk. Accordingly, the Laplacian eigenvalues
0 = λ1 < λ2 ≤ · · · ≤ λN can be viewed as graph frequencies indi-
cating how the eigenvectors (i.e., frequency components) vary with
respect to G. Smoothness is a cardinal property of many real-world
network processes. The last equality in (1) suggests that smooth (or
bandlimited) signals admit a sparse representation in the graph spec-
tral domain. Intuitively, they tend to be spanned by a few Laplacian
eigenvectors associated with small eigenvalues.
Learning graphs from observations of smooth signals. Consider
the following network topology identification problem. Given a set
X := {xp}Pp=1 of possibly noisy graph signal observations from
P trials, the goal is to learn an undirected graph G(V, E ,W) with
|V| = N nodes such that the observations in X are smooth on G. In
this section, we review the solution proposed in [3], that we build on
in the rest of the paper.

Given X , one can form the data matrix X = [x1, . . . ,xP ] ∈
RN×P , and let x̄>i ∈ R1×P denote its i-th row collecting those P

measurements at vertex i. The key idea in [3] is to establish a link
between smoothness and sparsity, namely

P∑
p=1

TV(xp) = trace(X>LX) =
1

2
‖W ◦ Z‖1, (2)

where ◦ denotes the Hadamard (element-wise) product and the
Euclidean-distance matrix Z ∈ RN×N

+ has entries Zij := ‖x̄i −
x̄j‖2, i, j ∈ V . The intuition is that when the given distances in
Z come from a smooth manifold, the corresponding graph has a
sparse edge set, with preference given to edges (i, j) associated with
smaller distances Zij .

In this context, a general purpose framework for learning graphs
under a smoothness prior is advocated in [3], which entails solving

min
W
‖W ◦ Z‖1 + f(W) (3)

s. t. diag(W) = 0, Wij = Wji ≥ 0, i 6= j.

The convex objective function f(W) augments the smoothness
criterion ‖W ◦ Z‖1, and several choices have been proposed to,
e.g., recover common graph constructions based on the Gaussian
kernel [15], accommodate time-varying graphs [16], or to scale
other related graph learning algorithms [4]. Identity (2) offers a
favorable way of formulating the inverse problem (3), because the
space of adjacency matrices can be described via simpler (meaning
entry-wise decoupled) constraints relative to its Laplacian counter-
part. As a result, the convex optimization problem (3) can be solved
efficiently with complexity O(N2) per iteration, by leveraging
provably-convergent primal-dual solvers amenable to paralleliza-
tion [17].

3. DISCRIMINATIVE GRAPH LEARNING

In an effort to address a classification problem involving network
data, we bring to bear GSP insights to learn a discriminative graph-
based representation of the signals; see e.g., [8, 18]. To this end, a
new formulation for the graph learning problem is proposed which
can be solved using primal-dual algorithms. After this training
phase, the GFTs of the optimum graphs can be used to extract
discriminative features of the test signals we wish to classify.
Problem statement. Consider a dataset X =

⋃C
c=1 Xc comprising

labeled graph signals Xc := {x(c)
p }Pc

p=1 from C different classes
e.g., high and low valence. The signals in each class possess a
very distinctive structure, namely they are assumed to be smooth (or
bandlimited) with respect to unknown class-specific graphs Gc =
(V, Ec,Wc) , c = 1, . . . , C. This notion is analogous to a multiple
linear subspace model in which graph signals of each class are as-
sumed to be spanned by a few vectors (namely, the basis of the corre-
sponding low-dimensional subspace) [19]. In fact, the discussion in
Section 2 implies one can equivalently restate the class-conditional
signal model assumptions as follows: there is a network Gc such that
graph signals inXc are spanned by a few Laplacian eigenvectors (as-
sociated with small eigenvalues), for c = 1, . . . , C. Similar to [8],
given X the goal is to learn the class-specific adjacency matrices
Wc under signal smoothness priors, so that the obtained GFT bases
can be subsequently used to classify unseen (and unlabeled) graph
signals effectively.

Our approach blends elements and ideas from the graph learn-
ing framework in [3] [cf. (3)] along with the discriminative graphical
lasso estimator [8]. Indeed, the algorithm in [3] optimizes network
topology recovery under smoothness assumptions, but is otherwise
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agnostic to the performance of a potential downstream (say, classi-
fication) task the learned graph may be integral to. Inspired by [8],
we seek graph representations that capture the underlying network
topology (i.e., the class structure), but at the same time are discrim-
inative to boost classification performance. To this end, we propose
to learn a graph representation Gc per class by solving the following
convex optimization problems [cf. (3)]

min
Wc∈Wm

‖Wc ◦ Zc‖1 − α1> log (Wc1)

+ β‖Wc‖2F − γ
C∑

k 6=c

‖Wc ◦ Zk‖1, (4)

where Wc is the adjacency matrix of Gc, constrained to the set
Wm =

{
W ∈ RN×N

+ : W = W>, diag(W) = 0
}

. Moreover,
Zc is the distance matrix constructed from class c signals Xc :=

[x
(c)
1 , . . . ,x

(c)
Pc

] ∈ RN×Pc , while α, β, and γ are positive regular-
ization parameters.

Taking a closer look at the objective function, minimizing
‖Wc ◦ Zc‖1 encourages a graph Wc over which the signals in Xc

are smooth. At the same time, the last term enforces non-smoothness
of the signals in the other C − 1 classes. This composite criterion
will thus induce a GFT with better discrimination ability than the
γ = 0 case – the energy of class c signals will be predominantly
concentrated in lower frequencies, while the spectral content of
the other classes is pushed towards high-pass regions of the spec-
trum. Under Gaussianity assumptions, this can be interpreted as a
Fisher discrimination criterion used in Linear Discriminant Analysis
(LDA) [15, Ch. 4.3], which entails minimization of the inter-class
scatter as well as maximizing the intra-class scatter; see [8].

The logarithmic barrier on the nodal degree sequence Wc1 pre-
cludes the trivial all-zero solution. Moreover, it ensures the esti-
mated graph is devoid of isolated vertices. The Frobenius-norm reg-
ularization on the adjacency matrix Wc controls the graph’s edge
sparsity pattern by penalizing larger edge weights (the sparsest graph
is obtained for β = 0). Overall, this combination forces degrees to
be positive but does not prevent most individual edge weights from
becoming zero [3].
Primal-dual graph learning algorithm. Following [3], one can
solve (4) based on primal-dual techniques; see [17] for a tutorial
treatment on primal-dual methods and their applications. To make
(4) amenable to this optimization method, recall that the adjacency
matrix Wc ∈ W is symmetric with diagonal elements equal to
zero. Therefore, the independent decision variables are effectively
the upper-triangular elements [Wc]ij , j > i, which we collect in

the vector wc ∈ R
N(N−1)

2
+ . Given all these considerations one can

solve (4) via Algorithm 1, where zc is a vector containing the upper-

triangular entries of Zc and S ∈ {0, 1}N×
N(N−1)

2 is a matrix that
satisfies dc = Wc1 = Swc. Algorithm 1 is guaranteed to converge
when the step size is µ ∈

(
0, 1 + 4β +

√
2(N − 1)

)
[17].

Classification via low-pass graph filtering. During the training
phase of the classification task, the goal is to learn C class-specific
graphs Gc from labeled graph signals Xc := {x(c)

p }Pc
p=1. This can be

accomplished by running C parallel instances of Algorithm 1. Let
Ŵc denote the estimated adjacency matrix of the graph representing
class C, and likewise let L̂c = diag(Ŵc1) − Ŵc be the combina-
torial graph Laplacian. Finally, let V̂c denote the orthonormal GFT
basis of Laplacian eigenvectors for class C; see Section 2.

In the operational or test phase, we are presented with an unseen
and unlabeled graph signal x which we wish to classify into one of

Algorithm 1: Primal-dual for graph learning, class c

Input parameters α, β, γ, µ, data {zc}Cc=1, initial wc,dc.

Set µ̄ = 2µ
(
zc − γ

∑C
k 6=c zk

)
.

while not converged do
y1 = wc − µ(2βwc + S>dc).
y2 = dc + µSwc.
p1 = max(0,y1 − µ̄).

p2 = (y2 +
√

y2
2 + 4αµ1)/2.

q1 = p1 − µ(2βp1 + S>p2).
q2 = p2 + µSp1.
wc ← wc − y1 + q1.
dc ← dc − y2 + q2.

end

the C classes. To that end, we will process x with a filter-bank com-
prising C graph filters. The c-th branch yields the graph-frequency
domain output x̃F,c = diag(h̃)x̃c = h̃ ◦ x̃c, where x̃c are the GFT
coefficients of x with respect to graph Gc, and h̃ = [h̃1, . . . , h̃N ]>

is the frequency response of an ideal low-pass filter with bandwidth
w ∈ {1, 2, . . . , N}, i.e., h̃i := I {i ≤ w}. Typically, one chooses
the tunable parameter w to be N/2 or smaller in order to imple-
ment a low-pass filter. Notice that while the frequency response h̃ is
the same for all C branches, the graph filters Hc = Vcdiag(h̃)V>c
differ because the learned graphs (hence the GFT transforms) vary
across classes. From the definition of h̃, it immediately follows that
x̃F,c is nothing else than the projection of x onto the eigenvectors of
L̂c corresponding to the smallest w eigenvalues.

If x belongs to class c?, say, then this graph signal should be
smoothest with respect to Gc? . Equivalently, for fixed (appropriately
low) bandwidth w we expect the signal power to be largest when
projected onto the GFT basis constructed from L̂c. Accordingly, the
adopted classification rule is simply ĉ = argmaxc

{
‖x̃F,c‖22

}
. A

classification error occurs whenever ĉ 6= c?.

4. EEG EMOTION RECOGNITION

In this section, we study the application of the proposed discrimina-
tive graph learning algorithm in the context of emotion recognition
using EEG signals. To this end, we apply our method to a widely
used and publicly available EEG data-set called DEAP [20]. The
DEAP data-set contains EEG and peripheral physiological signals of
32 participants. The data were recorded while subjects were watch-
ing one-minute long music videos. Each participant has 40 trials
(music videos) and rates each video in terms of the levels of valence,
arousal, like/dislike, dominance, and familiarity [20]. In this study,
we focus on the valence and arousal classification. Ratings are dec-
imal numbers between 1 and 9 and in order to make this a binary
classification task we divide the ratings into two classes of low when
the ratings are smaller than 5, and high when ratings are larger than
or equal to 5. We exploit the pre-processed version of the data-set
which contains 32 EEG channels with 128 Hz sampling rate and the
3 second pre-trial baseline is discarded.

We perform the classification task in leave-one-trial-out scheme
where for each subject we use 39 trials as the training set and test on
the one remaining trial. We repeat this 40 times and report the mean
accuracy. This is a subject dependent procedure which means that
we do the classification (training and testing) for each subject sep-
arately. Classification follows the procedure described in Section 3
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Fig. 1. (a) Significantly different connections between low and high valence
with p ≤ 0.002. (b) Significantly different connections between low and
high arousal with p ≤ 0.03. These results suggest the learned graphs for low
and high emotional responses show significant difference with each other.

(a) (b) (c)
Fig. 2. The mean of the eigenvectors magnitude corresponding to (a) low,
(b) mid, and (c) high frequency for valence (top two rows) and arousal (bot-
tom two rows). These results demonstrate the different patter between low
and high emotions, where most of these differences are aligned with the lit-
erature.

and we project the test signals on the first 1/4 of the GFT basis
(w = N/4). Note that we did a grid search to find the best regular-
ization parameter and the results of the paper are the best parameters
that we find. The discriminative graph is learned for the training
set and then normalized to have unit Frobenius norm. The average
classification accuracy over all the trials and all the participants is
reported in Table 1. The results of the other state-of-the-art methods
are also reported for the comparison. Results of the discriminative
graphical lasso method in [8] are omitted since the provided code
did not converge for some of the DEAP dataset trials. As it is shown
in Table 1, the proposed discriminative graph learning approach out-
performs state-of-the-art methods in the classification of emotions.
Moreover, we can see 6 and 5 percent improvement in the classifica-
tion of valence and arousal, respectively with respect to the method
in [3] which is the foundation of our model. That improvement is
because of the added discriminative term.

Now that we established the superior performance of our pro-
posed framework, it is of interest to investigate whether there is any

Table 1. The classification accuracy averaged over all participants.
Study Valence Arousal

Proposed method 92.73 93.44
Kalofolias [3] 86.56 88.91

Chao and Liu [11] 77.02 76.13
Rozgić et al. [21] 76.90 69.10

Chen et al. [22] 76.17 73.59
Tripathi et al. [12] 81.40 73.36

useful pattern in the underlying learned graph. To this end, we first
discard the trials that have ratings in (4.5, 5.5) where the participant
is not confident enough in rating the trials. Then we study the con-
nections that are significantly different between classes. Finally, we
illustrate the decomposed signals and the eigenvectors with respect
to the low, mid, and high frequency in order to investigate whether
our findings are aligned with the literature.

Accordingly, we learn two graphs corresponding to low and
high emotions per person, using the parameters that gave us the
best results in the classification. Interestingly, it seems that the edge
weights are related to the intensity of the emotions, i.e., valence and
arousal. In Fig. 1, we show the significantly different connections
between low and high emotional responses. The statistical way
to check whether the learned representations are discriminative is
through analyzing the significantly different connections. Here, we
apply a non-parametric test of the null hypothesis called Wilcoxon
rank-sum test [23]. Fig. 1(a,b) show connections that are signif-
icantly different between low and high valence with p ≤ 0.002
and between low and high arousal with p ≤ 0.03, respectively.
The original paper of the DEAP data-set indicates the significant
channels [20, Table 4] which most of them are part of the signifi-
cantly different connections that we capture. Frequency analysis is
the common theme in the EEG signal processing literature. There-
fore, we conduct a similar analysis with the help of GFT and the
underlying learned graph. Fig. 2(a,b,c) demonstrate the average
of the magnitude of the eigenvector sets associated with low (first
1/4 components), mid, and high (last 1/4 components) frequencies,
respectively. The asymmetrical pattern of the frontal EEG activity
can be seen in Fig. 2(a) which is consistent with the findings in [24].
Also, as it is noted in Fig 1(a) most of the connections are related to
the frontal lobe (red-shaded colors). Moreover, the authors in [25]
discovered that for classifying positive from negative emotions, the
features are generally in the right occipital lobe and parietal lobe
for the alpha band, the central lobe for the beta band, and the left
frontal and right temporal lobes for the gamma band. Since we
do the classification via low-frequency components, the employed
features are mainly in the low-frequency representation Fig. 2(a) and
evidently there are different patterns in the mentioned areas such as
left frontal, right temporal, central, and parietal lobes between high
and low valence/arousal. Moreover, in high frequencies, we observe
different patterns in the right parietal and left occipital lobes.

5. CONCLUSION

In this work, we proposed a novel graph learning framework from
smooth signals by proposing an objective function that contains a
discriminative term. Results of the EEG emotion recognition exper-
iments show that the proposed approach outperforms state-of-the-art
algorithms in emotion classification, while it recovers interpretable
graphs offering insights into the structure of the data classes.
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