

EEG-based emotion classification using graph signal processing

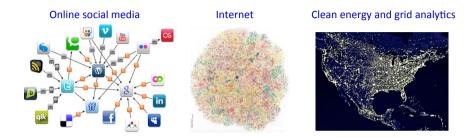
Seyed Saman Saboksayr

Dept. of Electrical and Computer Engineering University of Rochester Email: ssaboksa@ur.rochester.edu

Co-authors: Gonzalo Mateos and Mujdat Cetin

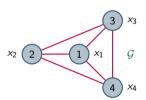
Acknowledgement: NSF awards CCF-1750428, CCF-1934962 and ECCS-1809356

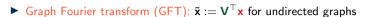
IEEE ICASSP, June 6-11, 2021



- Network as graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ► Desiderata: Process, analyze and learn from network data [Kolaczyk'09] \Rightarrow Use \mathcal{G} to study graph signals, data associated with nodes in \mathcal{V}
- Ex: Opinion profile, buffer congestion levels, functional brain connectivity
- Q: What about classification data using learned graphs?

- Undirected \mathcal{G} with adjacency matrix $\mathbf{W} \Rightarrow W_{ij} = \text{Proximity between } i \text{ and } j$
- Define a signal x on top of the graph $\Rightarrow x_i =$ Signal value at node i
- Associated with G is the combinatorial graph Laplacian L = D W
 - \Rightarrow D is diagonal matrix where its elements are vertices degree
 - \Rightarrow Graph Laplacian is positive semidefinite so $\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}$
- Graph Signal Processing \rightarrow Exploit structure encoded in W or L to process x
 - \Rightarrow Use GSP to learn the underlying ${\mathcal G}$ or a meaningful network model





 \Rightarrow Decompose **x** into different modes of variation

 \Rightarrow Inverse (i)GFT $\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$, eigenvectors as frequency atoms

► Total variation (or *Dirichlet energy*) of signal **x** with respect to L

$$\mathsf{TV}(\mathbf{x}) := \mathbf{x}^\top \mathsf{L} \mathbf{x} = \frac{1}{2} \sum_{i \neq j} W_{ij} \left(x_i - x_j \right)^2 = \sum_{k=1}^N \lambda_k \tilde{x}_k^2$$

 \Rightarrow Smoothness measure on the graph ${\cal G}$

For Laplacian eigenvectors $\mathbf{V} := [\mathbf{v}_1, \dots, \mathbf{v}_N] \Rightarrow \mathsf{TV}(\mathbf{v}_k) = \lambda_k$

 \Rightarrow 0 = $\lambda_1 < \lambda_2 \leq \cdots \leq \lambda_N$ can be viewed as frequencies

▶ labeled graph signals $\mathcal{X}_c := \{\mathbf{x}_p^{(c)}\}_{p=1}^{P_c}$ from *C* different classes.

 \Rightarrow Signals in each class possess a very distinctive structure

- Assumption: Class c signals are smooth w.r.t. unknown $\mathcal{G}_c(\mathcal{V}, \mathcal{E}_c)$
- Multiple linear subspace model
 - \Rightarrow Signals spanned by few Laplacian modes (GFT components)
 - \Rightarrow Like susbpace clustering [Vidal'11], but with supervision

Problem statement

Given training signals $\mathcal{X} = \bigcup_{c=1}^{C} \mathcal{X}_c$, learn discriminative graphs \mathbf{W}_c under smoothness priors to classify test signals via GFT projections.

- Network topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
- ▶ Key in neuroscience [Kassam et al'13] ⇒ Functional network from EEG signal
- Noteworthy GSP-based approaches
 - ► Graphical models [Egilmez et al'16], [Rabbat'17], [Kumar et al'19], ...
 - Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
 - Streaming data [Shafipour et al'18], [Natali et al'20], [Saboksayr et al'21], ...
- ▶ Our contribution: learn a discriminative graph-based representation of smooth signals

- Given a set of graph signal observations from P trials $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_P] \in \mathbb{R}^{N \times P}$
 - \Rightarrow A link between smoothness and sparsity (considering $Z \in \mathbb{R}^{N \times N}_+$ as Euclidean-distance matrix)

$$\sum_{\rho=1}^{P} \mathsf{TV}(\mathsf{x}_{\rho}) = \mathsf{trace}(\mathsf{X}^{\top}\mathsf{L}\mathsf{X}) = \frac{1}{2}\|\mathsf{W}\circ\mathsf{Z}\|_{1}$$

Framework for learning graphs under a smoothness prior [Kalofolias'16]

$$\min_{\mathbf{W}} \|\mathbf{W} \circ \mathbf{Z}\|_1 + f(\mathbf{W}) \quad \text{s. t.} \quad \text{diag}(\mathbf{W}) = \mathbf{0}, \ W_{ij} = W_{ji} \ge 0, \ i \neq j$$

 \Rightarrow Convex objective function $f(\mathbf{W})$ encodes assumptions about the network \mathcal{G}

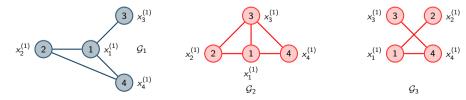
 \Rightarrow Primal-dual solver amenable to parallelization, $\mathcal{O}(N^2)$ cost [Kalofolias'16], [Komodakis et al'15]

Discriminative graph learning

Discriminative graph learning per class c

$$\begin{split} \min_{\mathbf{W}_{c} \in \mathcal{W}_{m}} \|\mathbf{W}_{c} \circ \mathbf{Z}_{c}\|_{1} - \alpha \mathbf{1}^{\top} \log \left(\mathbf{W}_{c}\mathbf{1}\right) + \beta \|\mathbf{W}_{c}\|_{F}^{2} - \gamma \sum_{k \neq c}^{C} \|\mathbf{W}_{c} \circ \mathbf{Z}_{k}\|_{1} \\ \mathcal{W}_{m} = \left\{\mathbf{W} \in \mathbb{R}_{+}^{N \times N} : \mathbf{W} = \mathbf{W}^{\top}, \text{diag}(\mathbf{W}) = 0\right\} \end{split}$$

- \Rightarrow Capture the underlying graph topology (class c structure)
- ⇒ Discriminability to boost classification performance
- \Rightarrow Logarithmic barrier forces positive degrees
- \Rightarrow Penalize large edge-weights to control sparsity



• Q: Given graphs $\{\hat{\mathbf{W}}_c\}_{c=1}^C$, how do we classify a test signal x?

 \Rightarrow Pass **x** through a filter-bank with C low-pass filters

$$ilde{\mathbf{x}}_{F,c} = \mathsf{diag}(ilde{\mathbf{h}}) \hat{\mathbf{V}}_c^{\top} \mathbf{x} \implies \hat{c} = \operatorname*{argmax}_c \left\{ \| ilde{\mathbf{x}}_{F,c} \|_2^2
ight\}$$

 $\Rightarrow \tilde{\mathbf{h}} = [\tilde{h}_1, \dots, \tilde{h}_N]^\top$ is the frequency response of an ideal low-pass filter

 \Rightarrow Learned class-c GFT basis $\hat{\mathbf{V}}_c$

If **x** belongs to class c^* , say, then this graph signal should be smoothest with respect to \mathcal{G}_{c^*} . Equivalently, for fixed low bandwidth we expect the signal power to be largest when projected onto the GFT basis constructed from $\hat{\mathbf{L}}_c$.

- Emotion is an important aspect of human life
 - \Rightarrow Brain pattern associated with a specific emotion
- ▶ Why EEG? non-invasive, affordable, high temporal resolution
- **DEAP data-set:** [Koelstra et al'11]
 - \Rightarrow 32 participants rated 40 one-minute-long music video
 - \Rightarrow Signals acquired from N = 32 EEG channels
 - \Rightarrow Rating levels of valence and arousal from 1 to 9

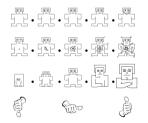


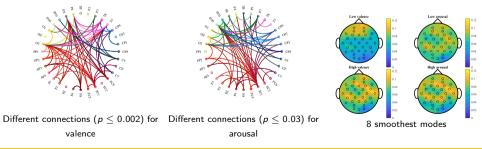
Figure extracted from [Koelstra et al'11]

- ▶ We perform a subject-specific valence and arousal classification task
 - \Rightarrow low valence/arousal (rating < 5) and high valence/arousal (rating \geq 5)
 - \Rightarrow Learn C = 2 graphs and project onto the 8 smoothest modes
 - \Rightarrow Report leave-one (trial)-out classification accuracy

Study	Valence	Arousal
Proposed method	92.73	93.44
[Kalofolias'16]	86.56	88.91
[Chao et al'20]	77.02	76.13
[Rozgić et al'13]	76.90	69.10
[Chen et al'15]	76.17	73.59
[Tripathi et al'17]	81.40	73.36

▶ Established superior performance ⇒ Any discriminative pattern in the underlying learned graph?

- Learn two graphs corresponding to low and high emotions per person
 - \Rightarrow We do classification via low-frequency components
 - \rightarrow Mapping by low-frequency eigenvectors
- The asymmetrical pattern of the frontal EEG activity [Schmidt et al'01]
- Different patterns in: 1. left frontal 2. right temporal 3. parietal [Nie et al'11]



Discriminative graph learning

- \Rightarrow Signals are smooth w.r.t. unknown class-specific graphs \mathcal{G}_c
- \Rightarrow Discriminability via enforcing non-smoothness
- \Rightarrow Classification by low-pass filtering
- ► EEG emotion recognition
 - \Rightarrow Outperform state-of-the-art methods in classifying low and high valence/arousal
 - \Rightarrow Infer discriminative brain patterns
- Ongoing work
 - \Rightarrow Proximal gradient based and Nesterov-type accelerated algorithms
 - \Rightarrow Observations of streaming signals

Extended journal version is available at: https://arxiv.org/abs/2101.00184