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IDENTIFYING STRUCTURAL BRAIN NETWORKS FROM FUNCTIONAL CONNECTIVITY:

Abstract

We address the problem of identifying structural brain networks from brain
signals measured by resting-state functional magnetic resonance imaging
(fMRI). Functional brain activity is modeled as graph signals generated

through a linear diffusion process on the unknown structural network. A
network deconvolution approach is advocated to: (i) use the fMRI signals
to estimate the eigenvectors of the structural network from those of the
empirical covariance; and (ii) solve a convex, sparsity-regularized inverse
problem to recover the eigenvalues that were obscured by diffusion. The
iInferred structural networks capture key patterns matching known pathol-

ogy and may serve as biomarkers for further diagnosis.

Motivation and context

» Understanding brain function is a fundamental scientific challenge
» Network science with graph-centric tools valuable for brain analysis
» Neuroimaging studies are time-consuming and expensive

= Functional (FC) and structural connectivity (SC)

— FC and SC differ in resolution, running-time, acquisition

— Costly to measure FC and SC separately

» Relation between FC & SC worth exploring

» Most previous work estimated FC from SC via
= Linear, parametric diffusion model relating FC and SC
=- Large-scale simulation of nonlinear dynamics

» We take the reverse path
= How to infer SC from observed FC?

Graph signal processing - 101

» Network as graph G = (V, A): encode pairwise relationships
» Interest here not in G itself, but in data associated with nodes in V
=- The object of study is a graph signal
» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

» Graph SP: need to broaden classical SP results to graph signals
= Our view: GSP well suited for brain network and signal analysis

Structural brain networks and functional signals

» Structural brain networks represent anatomical brain connections
= Modeled via a weighted, undirected graph G := (V, A)
= SC: Sparse and symmetric adjacency matrix A = VAV

» Brain signals quantify level of neuronal acitivity in brain regions
» fMRI readings on N brain regions over T timepoints

X = [X17 ...,XT] < RN>T
= FC: covariance of fMRI signals X = E[xx ]

» Link SC with FC: Generative model for brain signals x supported on G

http://www.ece.rochester.edu/~y1il131/

Diffusion process model of functional signals

» Signal x generated via diffusion over structural network G := (1, A)

X = ag [[7%(1 - a/A)w = 7% BA W
= Zero-mean white input signal w with covariance Ejww '] = |
= SC A encodes one-hop interactions among brain regions
» Diffusion process induces multi-hop relations
— Capture indirect interactions
= Shape up FC structure and statistics
» From Cayley Hamilton, rewrite diffusion as
x = (3 hA)w =Hw
= Graph filter H := S_77) hA! € RN*N

Problem statement

Problem: Given resting-state fMRI readings X = [Xy,...,X7] € RNVxT
generated by diffusion process in the network G, estimate the structural
connectivity encoded in the sparse adjacency matrix A

Network deconvolution

» We propose a approach
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STEP 1: STEP 2:
Estimate eigenvectors V from Inferred eigenvectors \V Identify eigenvalues with
signal covariance matrix & desired properties
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STEP 1: Obtaining the eigenvectors

» Recall A= VAV', decompose graph filter as
L1

L—1
H=> h(VAV)Y =V(} hN)VT
=0 I=0

» Use E[ww'] = |, can write covariance matrix (FC) as
> — E[Hw(Hw)"] = HHT = V(> hiN)2VT
» A and X share the same eigenvectors V

= Only difference between them are eigenvalues

— Use ¥ obtained from signals X to estimate eigenvectors V of A

| Ambiguity: Deconvolutoin problem is underdetermined. As long as
the matrices ¥ and A have the same eigenvectors, there exist filter
coefficients h that generate x through a diffusion process on G

» Need additional assumptions to sort out ambiguity
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STEP 2: Obtaining the eigenvalues

» To determine eigenvalues of the adjacency matrix, seek A that:

= |s optimal with respect to convex criteria f(A, N)

= Belongs to convex set S of admissible adjacency matrices

S:={AlAj=A;>0,A;=0  Ax=1}

= |s close to VAVT measured by a convex matrix distance metric
» Brain SC: sparse with fewer inter-hemisphere connections

= Choose a sparsity-promoting criterion f(A, A) = [|[W o A||

= W imposes non-uniform sparsity priors across candidate edges

» Formally, our idea is to solve the inverse problem

A :=argmin |[WoA|, s.to ||[A—VAVT|Z <
NAeS

= O(N?®) complexity, scales to brain atlas with ~ 100 regions

— More efficient than traditional non-linear simulations

Numerical tests: simulated signals on known graph structure

» Ground-truth preprocessed structural brain network G (left)
» (Generate synthetic signals via diffusion model with Gaussian inputs

» Network deconvolution to recover structural network G, (right)

—1 —1

- ] u - -
10 20 30 40 50 60 10 20 30 40 50 60

» Edge normalized and thresholded to maintain connected graphs

» Recovery error of 11.1% over 10 Monte Carlo realizations

ADHD data group-level analysis: Network recovery

» Data: Preprocessed BOLD signals from ADHD-200 dataset
= 182 healthy subjects and 107 ADHD type-1 patients
=- Signals registered on AAL-116 brain atlas

» Concatenate brain signals of subjects in each group into
= X, € R116x182T {or the control group
= X, € R116x107T for the patient group

» Network deconvolution: recover SC for control (left), patient (right)

» For patients, edges more clustered in diagonal blocks
=- Frontal, Occipital, Parietal, Temporal and Cerebellum
= Loss of long-range connection

= |ncreased local connection
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ADHD data group-level analysis: Network comparison

» Quantitatively analyze recovered SCs across groups

» Network analytic methods: compare node-level graph metrics

= Clustering coefficient, closeness, degree, local efficiency

= . graph metric of a node, e.g. degree of Frontal
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found with significantly larger metrics in patient group
= e.g. degree of left paracentral lobule, closeness of right caudate
= e.g. local efficiency of right paracentral, degree of right fusiform

ADHD data subject-level analysis: Classification

» Data: Processed BOLD signals of 30 controls, 29 patients
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Goal: Perform subject-level patient-control classification
Method: Recover A ¢ R''%*116 for each subject, and
= Compute above 4 metrics for each of the 116 nodes
— Concatenate and obtain feature vector f; € R** per subject
— Extract identified above from f; — f, € R19
= Sequential forward selection to reduce dimension to 6

= Machine learning classifier models on feature vector inputs

ACC AUC TPR TNR

f, € R1%° with selection |0.774 0.836 0.767 0.782
f; € R*4 with selection |0.678 0.737 0.733 0.621
Method in [Feizi et al’'13]|0.492 0.493 0.522 0.459

help improve classification accuracy
= Network deconvolution model accurately infers SC
= Recovered SC captures key patterns in brain networks
More general diffusion model and sparsity promotion
Competitive with results of ADHD-200 global competition

Discussion and road ahead
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Network deconvolution framework to identify SC from fMRI signals
Built upon linear diffusion model between FC and SC
Group-level and subject-level analysis match existing results
|dentified brain regions with discriminative power for patient diagnosis
Envisioned research topics
= Further validate recovery of SC from observed signals
= Exploring graph frequency domain for discriminative features
= Subject-level network inference and disease diagnosis
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