

Abstract

We address the problem of identifying structural brain networks from brain signals measured by resting-state functional magnetic resonance imaging (fMRI). Functional brain activity is modeled as graph signals generated through a linear diffusion process on the unknown structural network. A network deconvolution approach is advocated to: (i) use the fMRI signals to estimate the eigenvectors of the structural network from those of the empirical covariance; and (ii) solve a convex, sparsity-regularized inverse problem to recover the eigenvalues that were obscured by diffusion. The inferred structural networks capture key patterns matching known pathology and may serve as biomarkers for further diagnosis.

Motivation and context

- Understanding brain function is a fundamental scientific challenge
- Network science with graph-centric tools valuable for brain analysis
- Neuroimaging studies are time-consuming and expensive
 - \Rightarrow Functional (FC) and structural connectivity (SC)
 - \Rightarrow FC and SC differ in resolution, running-time, acquisition
 - \Rightarrow Costly to measure FC and SC separately
- Relation between FC & SC worth exploring

- Most previous work estimated FC from SC via
 - \Rightarrow Linear, parametric diffusion model relating FC and SC
 - \Rightarrow Large-scale simulation of nonlinear dynamics
- We take the reverse path
 - \Rightarrow How to infer SC from observed FC?

Graph signal processing - 101

- Network as graph $\mathcal{G} = (\mathcal{V}, \mathbf{A})$: encode pairwise relationships
- \blacktriangleright Interest here not in \mathcal{G} itself, but in data associated with nodes in \mathcal{V} \Rightarrow The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph SP: need to broaden classical SP results to graph signals \Rightarrow Our view: GSP well suited for brain network and signal analysis

Structural brain networks and functional signals

- Structural brain networks represent anatomical brain connections \Rightarrow Modeled via a weighted, undirected graph $\mathcal{G} := (\mathcal{V}, \mathbf{A})$
 - \Rightarrow SC: Sparse and symmetric adjacency matrix $A = V \Lambda V$
- Brain signals quantify level of neuronal acitivity in brain regions
- ► fMRI readings on *N* brain regions over *T* timepoints

$$\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_T] \in \mathbb{R}^{N \times T}$$

- \Rightarrow FC: covariance of fMRI signals $\Sigma = \mathbb{E}[\mathbf{x}\mathbf{x}^T]$
- \blacktriangleright Link SC with FC: Generative model for brain signals **x** supported on \mathcal{G}

IDENTIFYING STRUCTURAL BRAIN NETWORKS FROM FUNCTIONAL CONNECTIVITY: A NETWORK DECONVOLUTION APPROACH

Yang Li and Gonzalo Mateos E-mail: yli131@ur.rochester.edu Dept. of Electrical and Computer Engineering, University of Rochester

- \Rightarrow Belongs to convex set S of admissible adjacency matrices

$$\mathcal{S} := \{ A \mid A_{ij} = A_{ji} \ge 0, A_{ii} = 0, \sum_{j} A_{j1} = 1 \}$$

 \Rightarrow Is close to $\hat{\mathbf{V}} \mathbf{A} \hat{\mathbf{V}}^T$ measured by a convex matrix distance metric

- \Rightarrow Choose a sparsity-promoting criterion $f(\mathbf{A}, \mathbf{\Lambda}) = \|\mathbf{W} \circ \mathbf{A}\|_{1}$
- \Rightarrow W imposes non-uniform sparsity priors across candidate edges

- $\Rightarrow \mathcal{O}(N^3)$ complexity, scales to brain atlas with ~ 100 regions

Generate synthetic signals via diffusion model with Gaussian inputs

Network deconvolution: recover SC for control (left), patient (right)

ADHD data group-level analysis: Network comparison

Discussion and road ahead

References

Quantitatively analyze recovered SCs across groups Network analytic methods: compare node-level graph metrics \Rightarrow Clustering coefficient, closeness, degree, local efficiency \Rightarrow Combo: graph metric of a node, e.g. *degree of Frontal*

105 combos found with significantly larger metrics in patient group \Rightarrow e.g. degree of left paracentral lobule, closeness of right caudate \Rightarrow e.g. local efficiency of right paracentral, degree of right fusiform

ADHD data subject-level analysis: Classification

Data: Processed BOLD signals of 30 controls, 29 patients Goal: Perform subject-level patient-control classification • Method: Recover $A \in \mathbb{R}^{116 \times 116}$ for each subject, and \Rightarrow Compute above 4 metrics for each of the 116 nodes \Rightarrow Concatenate and obtain feature vector $\mathbf{f}_1 \in \mathbb{R}^{464}$ per subject \Rightarrow Extract 105 combos identified above from $\mathbf{f}_1 \rightarrow \mathbf{f}_2 \in \mathbb{R}^{105}$ \Rightarrow Sequential forward selection to reduce dimension to 6 \Rightarrow Machine learning classifier models on feature vector inputs

ACC	AUC	TPR	TNR	
0.774	0.836	0.767	0.782	
0.678	0.737	0.733	0.621	
0.492	0.493	0.522	0.459	
	0.774 0.678	0.774 0.836 0.678 0.737	0.774 0.836 0.767 0.678 0.737 0.733	ACCAUCTPRTNR0.7740.8360.7670.7820.6780.7370.7330.6210.4920.4930.5220.459

105 identified combos help improve classification accuracy \Rightarrow Network deconvolution model accurately infers SC \Rightarrow Recovered SC captures key patterns in brain networks More general diffusion model and sparsity promotion Competitive with results of ADHD-200 global competition

Network deconvolution framework to identify SC from fMRI signals Built upon linear diffusion model between FC and SC Group-level and subject-level analysis match existing results Identified brain regions with discriminative power for patient diagnosis Envisioned research topics

 \Rightarrow Further validate recovery of SC from observed signals \Rightarrow Exploring graph frequency domain for discriminative features \Rightarrow Subject-level network inference and disease diagnosis

S. Segarra, A. Marques, G. Mateos, and A. Ribeiro, "Network topology inference from spectral templates," IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 467–483, Aug. 2017. S. Feizi, D. Marbach, M. Medard, and M. Kellis, "Network deconvolution as a general method to distinguish direct dependencies in networks," Nat. Biotechnol., vol. 31, no. 8, pp. 726, 2013. F. Abdelnour, H. U. Voss, and A. Raj, "Network diffusion accurately models the relationship between structural and functional brain connectivity networks," *Neuroimage*, vol. 90, pp. 335–347, 2014. R. Beare, C. Adamson, M. A. Bellgrove, V. Vilgis, et al. "Altered structural connectivity in ADHD: A network based analysis," Brain Imaging Behav., vol. 11, no. 3, pp. 846-858, 2017.