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Abstract

We address the problem of identifying structural brain networks from brain
signals measured by resting-state functional magnetic resonance imaging
(fMRI). Functional brain activity is modeled as graph signals generated
through a linear diffusion process on the unknown structural network. A
network deconvolution approach is advocated to: (i) use the fMRI signals
to estimate the eigenvectors of the structural network from those of the
empirical covariance; and (ii) solve a convex, sparsity-regularized inverse
problem to recover the eigenvalues that were obscured by diffusion. The
inferred structural networks capture key patterns matching known pathol-
ogy and may serve as biomarkers for further diagnosis.

Motivation and context

I Understanding brain function is a fundamental scientific challenge
I Network science with graph-centric tools valuable for brain analysis
I Neuroimaging studies are time-consuming and expensive

⇒ Functional (FC) and structural connectivity (SC)

⇒ FC and SC differ in resolution, running-time, acquisition

⇒ Costly to measure FC and SC separately

I Relation between FC & SC worth exploring

I Most previous work estimated FC from SC via

⇒ Linear, parametric diffusion model relating FC and SC

⇒ Large-scale simulation of nonlinear dynamics
I We take the reverse path

⇒ How to infer SC from observed FC?

Graph signal processing - 101

I Network as graph G = (V ,A): encode pairwise relationships
I Interest here not in G itself, but in data associated with nodes in V

⇒ The object of study is a graph signal
I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

I Graph SP: need to broaden classical SP results to graph signals

⇒ Our view: GSP well suited for brain network and signal analysis

Structural brain networks and functional signals

I Structural brain networks represent anatomical brain connections

⇒ Modeled via a weighted, undirected graph G := (V ,A)

⇒ SC: Sparse and symmetric adjacency matrix A = VΛV>

I Brain signals quantify level of neuronal acitivity in brain regions
I fMRI readings on N brain regions over T timepoints

X = [x1, ...,xT ] ∈ RN×T

⇒ FC: covariance of fMRI signals Σ = E[xxT ]

I Link SC with FC: Generative model for brain signals x supported on G

Diffusion process model of functional signals

I Signal x generated via diffusion over structural network G := (V ,A)

x = α0
∏∞

l=1(I− αlA)w =
∑∞

l=0 βlAl w

⇒ Zero-mean white input signal w with covariance E[ww>] = I

⇒ SC A encodes one-hop interactions among brain regions

I Diffusion process induces multi-hop relations

⇒ Capture indirect interactions

⇒ Shape up FC structure and statistics

I From Cayley Hamilton, rewrite diffusion as

x =
(∑L−1

l=0 hlAl
)

w = Hw

⇒ Graph filter H :=
∑L−1

l=0 hlAl ∈ RN×N

Problem statement

Problem: Given resting-state fMRI readings X = [x1, ...,xT ] ∈ RN×T

generated by diffusion process in the network G, estimate the structural
connectivity encoded in the sparse adjacency matrix A

Network deconvolution

I We propose a network deconvolution approach

STEP 1: Obtaining the eigenvectors

I Recall A = VΛV>, decompose graph filter as

H =
L−1∑
l=0

hl(VΛV>)l = V(
L−1∑
l=0

hlΛ
l)V>

I Use E[ww>] = I, can write covariance matrix (FC) as

Σ = E[Hw(Hw)>] = HH> = V(
∑L−1

l=0 hlΛ
l)2V>

I A and Σ share the same eigenvectors V

⇒ Only difference between them are eigenvalues

⇒ Use Σ̂ obtained from signals X to estimate eigenvectors V̂ of A

Ambiguity: Deconvolutoin problem is underdetermined. As long as
the matrices Σ and A have the same eigenvectors, there exist filter
coefficients h that generate x through a diffusion process on G

I Need additional assumptions to sort out ambiguity

I Criteria for choosing eigenvalues for meaningful graph structure

STEP 2: Obtaining the eigenvalues

I To determine eigenvalues of the adjacency matrix, seek A that:

⇒ Is optimal with respect to convex criteria f (A,Λ)

⇒ Belongs to convex set S of admissible adjacency matrices

S :={A |Aij = Aji ≥ 0,Aii = 0,
∑

j Aj1=1}

⇒ Is close to V̂ΛV̂T measured by a convex matrix distance metric

I Brain SC: sparse with fewer inter-hemisphere connections

⇒ Choose a sparsity-promoting criterion f (A,Λ) = ‖W ◦ A‖1

⇒W imposes non-uniform sparsity priors across candidate edges

I Formally, our idea is to solve the inverse problem

Â := argmin
Λ,A∈S

‖W ◦ A‖1, s. to ‖A− V̂ΛV̂T‖2
F ≤ ε

⇒ O(N3) complexity, scales to brain atlas with ∼ 100 regions

⇒ More efficient than traditional non-linear simulations

Numerical tests: simulated signals on known graph structure

I Ground-truth preprocessed structural brain network G0 (left)

I Generate synthetic signals via diffusion model with Gaussian inputs

I Network deconvolution to recover structural network Gr (right)

I Edge normalized and thresholded to maintain connected graphs

I Recovery error of 11.1% over 10 Monte Carlo realizations

ADHD data group-level analysis: Network recovery

I Data: Preprocessed BOLD signals from ADHD-200 dataset

⇒ 182 healthy subjects and 107 ADHD type-1 patients

⇒ Signals registered on AAL-116 brain atlas

I Concatenate brain signals of subjects in each group into

⇒ Xc ∈ R116×182T for the control group

⇒ Xp ∈ R116×107T for the patient group

I Network deconvolution: recover SC for control (left), patient (right)

I For patients, edges more clustered in diagonal blocks

⇒ Frontal, Occipital, Parietal, Temporal and Cerebellum

⇒ Loss of long-range connection

⇒ Increased local connection

ADHD data group-level analysis: Network comparison

I Quantitatively analyze recovered SCs across groups
I Network analytic methods: compare node-level graph metrics

⇒ Clustering coefficient, closeness, degree, local efficiency

⇒ Combo: graph metric of a node, e.g. degree of Frontal

I 105 combos found with significantly larger metrics in patient group

⇒ e.g. degree of left paracentral lobule, closeness of right caudate

⇒ e.g. local efficiency of right paracentral, degree of right fusiform

ADHD data subject-level analysis: Classification

I Data: Processed BOLD signals of 30 controls, 29 patients
I Goal: Perform subject-level patient-control classification
I Method: Recover A ∈ R116×116 for each subject, and

⇒ Compute above 4 metrics for each of the 116 nodes

⇒ Concatenate and obtain feature vector f1 ∈ R464 per subject

⇒ Extract 105 combos identified above from f1 → f2 ∈ R105

⇒ Sequential forward selection to reduce dimension to 6

⇒ Machine learning classifier models on feature vector inputs

ACC AUC TPR TNR

f2 ∈ R105 with selection 0.774 0.836 0.767 0.782
f1 ∈ R464 with selection 0.678 0.737 0.733 0.621

Method in [Feizi et al’13] 0.492 0.493 0.522 0.459

I 105 identified combos help improve classification accuracy

⇒ Network deconvolution model accurately infers SC

⇒ Recovered SC captures key patterns in brain networks
I More general diffusion model and sparsity promotion
I Competitive with results of ADHD-200 global competition

Discussion and road ahead

I Network deconvolution framework to identify SC from fMRI signals
I Built upon linear diffusion model between FC and SC
I Group-level and subject-level analysis match existing results
I Identified brain regions with discriminative power for patient diagnosis
I Envisioned research topics

⇒ Further validate recovery of SC from observed signals

⇒ Exploring graph frequency domain for discriminative features

⇒ Subject-level network inference and disease diagnosis
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