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Networks of the brain

» Structural connectivity (SC) How is the brain wired?
= Anatomical tracts connecting brain regions

= Sparse with fewer connections between hemispheres
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etworks of the brain

» Functional connectivity (FC) How the brain functions?

» Statistical correlation between neural signals in different regions
»> Blood oxygen-level dependent (BOLD) signals from fMRI

» FC depends on anatomical connections

> Strong FC exists between regions with weak or none SC connections

» FC correlates SC at an aggregate level
» FC between brain regions related with indirect SC connections
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Relationship between structure and function

Key problem: deciphering the relationship between SC and FC
» SC-FC correlation, graph feature comparisons [Hagmann et al’14]
» Simulations of nonlinear cortical activity models [Honey et al’09]

» Diffusion-based parametric inverse problem [Abdelnour et al’14]

Contributions: novel investigation of the SC-FC relationship
» Machine learning for network data
= Reconstruct FC from SC as a regression problem
= Learn lower-dimensional graph representations for classification
» Siamese network framework design
= Each input is a pair of graphs — enlarge data size
= Increase robustness to integrate various prior information

= Similarity-preserving graph embeddings
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Graph representation learning

» Learn a mapping from a discrete graph to a continuous domain

> Given G(V, &) with weighted adjacency matrix A € RV*"

= N brain regions, Aj; := anatomical connection strengths

» Goal: learn low dimensional vector representation, node embeddings

= Capture information of the node and its neighbors
» Approach: Graph signal processing (GSP) and graph convolution

» Extensions to embed the whole graph, i.e. graph embeddings

= Graph clustering/classification

» Potential of GRL for neuroimaging data analysis rather unexplored

= Inductive GRL for brain network analysis among population
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Graph signal processing

» Graph G(V,€) with N =|V| nodes == Aand L=D - A
= D: diagonal degree matrix
= Symmetric L = UAU"

» Graph signals represented as vectors x € RY
» Graph Fourier Transform (GFT): X = U"x

» Generalize machine learning models for network data

= GSP to define convolutions on graphs [Ortega et al'19]
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Graph convolutions

> Graph convolution (filter) with frequency response H = diag(h)
y =Hx= UAU x

» ChebNet: Chebyshev polynomials of A [Defferrard et al'16]
» First-order approximation of ChebNet [Kipf-Welling'17]

y = Hx = 0(Iy + D"?AD/?)x

» Compact rule for per-layer filtering update
X «+ AXO
=ly+ D~1/2AD~1/2

> A
> X: set of multiple observations of the graph signal x
» X integrates nodal attributes in X and topology in A

» GCN: aggregate information from multiple hops within G
= Stack convolutional layers with pointwise non-linear activation

= Capture indirect interactions across the network
EUSIPCO 2022
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Problem statement

» Goal: summarize SC-FC relationship by simultaneously learning
» Node embeddings X¢ to reconstruct FC X from input SC networks
= X¢ captures SC-FC relationship
» Graph embeddings for graph classification
= Approximately preserve similarity input graphs
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Data description and preprocessing

» 412 subjects from Human Connectome Project (HCP)
» Two classes: 191 non-drinkers, 221 heavy drinkers

» Preprocessed SC network A from diffusion MRI
= Fiber counts between N = 68 cortical surface regions
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» Preprocessed FC network from functional MRI

= Blood oxygen-level dependent (BOLD) signals

= Estimated FC < Pearson correlation between BOLD signals

= Discard negative correlation and keep only positive connections
» One-hot encoding as the signal on each graph node
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Model architecture: Encoder

> Input SC network A € RV*N N = 68 regions from brain atlas
=- Edge weights represent SC between brain regions
= Preprocessing: A:=D"'"2AD"Y? A=Iy+A

> Learn vertex representations (i.e., embeddings) that capture

(i) Nodal attributes, e.g. intrinsic properties of brain regions
(if) Graph topology information, e.g. regional connection strengths

» First GCN layer of the encoder to learn node embeddings
= ReLU(AXY0") ¢ RV
> X(0) ¢ RNXdo: input signal matrix

» O € RT*F1: learnable GCN filter coefficients
» ReLU(x) = max(0, x) activation for training the network
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Model architecture: Encoder
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» Multi-layer GCN with dimension 32 x 16 x 8
» Node embeddings concatenation

» Global row-wise mean pooling
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Model architecture: Decoder
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» Node embeddings
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» Generate estimate of empirical FC networks X

» Reconstruction loss EMSE(EA],E)
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Model architecture: Similarity preserving
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» Obtain whole graph embedding h; via row-wise average of X¢
» For input graph pairs {A;, A;} with label {/;, /;}, h;, h; shall be
= Highly (less) similar if [; = [; (I # ;)
= Measured by cosine similarity s(h;, h;)
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Siamese network: Loss function

» N, (Ny) graph pairs with same (different) labels
> Pairwise similarity global loss function [Ktena et al'18]

Leim = (0*7 +0°7) + w x max(0,m — (" — n7))
> Minimize p~ =3 s(h;, h;)/Ny, I; # I
= Mean similarity between embeddings of different classes
> Maximize ut =3 s(h;, h;)/Ns, l; =
= Mean similarity between embeddings of the same classes

» Minimize the variance of similarities within and between classes

» Overall loss function is

L= Lsm+ X (Lumse(Ei, i) + Luse (25, T)))
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Siamese network: Results

» Classify test sample (KNN= 5) by cosine similarity in vector space
» Baseline: supervised GRL model [Li et al’21]
= Reconstruct FC from SC

= Subject classification via a logistic regression classifier

Model Accuracy F score
Siamese model | 0.6843 +0.016 | 0.7391 + 0.016
Baseline 0.6610 +0.043 | 0.6962 + 0.030
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Conclusions and future work

Summary
» Building the Siamese network and training it with graph pairs

» Increase the amount of training data
» Bring in the flexibility to incorporate additional prior information

» Graph reconstruction of FC from SC
» Parsimonious representation of population-level SC-FC relationship
» Similarity estimation between input graphs
» Use subject labels as additional inputs for supervised classification
» Prospect of using graph-level, similarity-preserving embeddings
» Measure SC-FC coupling for brain network analysis
Future work
» Reflect more intrinsic differences between drinkers and non-drinkers

» Spatio-temporal analysis of dynamic brain networks
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