
MAPPING BRAIN STRUCTURAL CONNECTIVITIES TO FUNCTIONAL NETWORKS VIA
GRAPH ENCODER-DECODER WITH INTERPRETABLE LATENT EMBEDDINGS

Yang Li†, Rasoul Shafipour†, Gonzalo Mateos† and Zhengwu Zhang∗

†Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
∗Dept. of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA

ABSTRACT

In this paper, the relationship between functional and structural brain
networks is investigated by training a graph encoder-decoder sys-
tem to learn the mapping from brain structural connectivity (SC)
to functional connectivity (FC). Our work leverages a graph con-
volutional network (GCN) model in the encoder which integrates
both nodal attributes and the network topology information to gen-
erate new graph representations in lower dimensions. Using brain
SC graphs as inputs, the novel GCN-based encoder-decoder sys-
tem manages to account for both direct and indirect interactions be-
tween brain regions to reconstruct the empirical FC networks. In
doing so, the latent variables within the system (i.e., the learnt low-
dimensional embeddings) capture important information regarding
the relation between functional and structural networks. By decom-
posing the reconstructed functional networks in terms of the output
of each graph convolution filter, we can extract those brain regions
which contribute most to the generation of FC networks from their
SC counterparts. Experiments on a large population of healthy sub-
jects from the Human Connectome Project show our model can learn
a generalizable and interpretable SC-FC relationship. Overall, re-
sults here support the promising prospect of using GCNs to discover
more about the complex nature of human brain activity and function.

Index Terms— Brain networks, graph convolutional network,
encoder-decoder system, graph embedding, structural connectivity-
functional connectivity relationship.

1. INTRODUCTION

Understanding brain function represents one of the most fundamen-
tal and pressing scientific challenges of our time. Driven by advances
in neuroimaging technology, brain data have increased in volume
and complexity, and accordingly graph-centric tools and methods of
network science have become indispensable for mapping and mod-
eling brain structure (of neural connections often referred to as the
connectome) [1, 2], as well as function [3].

Brain connectivity broadly consists of networks of brain regions
connected by functional associations (functional connectivity, or FC)
or anatomical tracts (structural connectivity, or SC) [4]. FC captures
statistical dependencies shaped by an underlying structural back-
bone, including higher-level interactions between brain regions with
no or limited structural connections [5, 6]. As a result, exploring the
mapping between FC and SC is a popular topic for research as such
relation could offer important additional insights on the inner work-
ings of the brain. Previous studies revealed that functional connec-
tivity correlates with structural connectivity at an aggregate level [7],
while strong functional connections exist among brain regions that
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are not directly structurally linked or have rather limited anatom-
ical connections between themselves [8]. These findings provide
strong evidence that functional interactions between brain regions
are shaped by indirect anatomical connections [9]. This also moti-
vated the problem of predicting FC from SC [5, 7, 8] and to inspect
how brain FC is generated in the context of the underlying physical
brain fiber connections [10]. In this context, our novel perspective
here is to view the pursuit of the SC-to-FC mapping as a regression
problem, which can be tackled with state-of-the-art machine learn-
ing algorithms for (non-Euclidean) network data.

Recent machine learning developments in computer vision,
speech processing, and natural language processing have brought
significant performance improvements in various tasks [11], due
to invariance and stability properties of the well-defined convolu-
tion operator for signals supported on regular domains [12]. To
accommodate nowadays ubiquitous non-Euclidean data residing
on a graph, there have been attempts to generalize (convolutional)
neural networks models for network data [13]. This body of work
has been sometimes referred to as geometric deep learning [14]. A
graph convolution operator was first introduced in the spectral do-
main using eigenvectors of the graph Laplacian matrix [15], which
play a similar role to the Fourier basis for information processing of
time-varying signals. This generalization motivated the definition of
graph convolutional networks (GCNs) with convolutional features
computed in the graph spectral and/or spatial domain; see [13, 16]
for recent surveys and the references therein. While the benefits
of GCNs have been well documented in applications ranging from
recommendation systems to resource allocation for wireless com-
munications, their potential for neuroimaging data analyses is yet to
be explored and fully realized.

In this paper, we put forth an unsupervised learning method to
reconstruct brain FC patterns from SC networks by building a graph
encoder-decoder system. The proposed architecture is inspired by
the graph autoencoder model [17], where the goal is to recover in-
put graphs using a GCN-based encoder. For each node of the graph,
the encoder outputs a low-dimensional feature vector (also known
as node embedding) [18]. Such compact node representations in-
tegrate both nodal attributes (when available) and the local graph
topology information. By computing nodal features via graph con-
volution operations, information is aggregated from multiple hops
within the graph, thus capturing indirect interactions across the net-
work [19]. Such property makes the GCN-based encoder a suitable
model to capture indirect (functional) connections within brain net-
works. Inspired by [20], which shows that connectome embeddings
using the node2vec algorithm [21] can map higher-order relations
between SC and FC, we propose a graph encoder-decoder system
in Section 2.2 to reconstruct brain FC using input SC data. We train
and test our model on a population of 1058 healthy subjects from the
Human Connectome Project1. and obtain satisfactory reconstruction
performance in Section 3. Additionally, the latent variables (i.e., the
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graph convolutional features) learned by the encoder-decoder sys-
tem can summarize the relation between brain SC and FC as well
as provide valuable insights regarding the generation of FC patterns
from SC. By further decomposing the reconstructed FC network into
small building blocks, each of which is the output of one graph con-
volution filter [22], we are able to extract certain brain regions and
sub-networks that contribute to the SC-FC relationship. We contend
these regions may play a vital role in shaping brain functional activ-
ity and may be fruitfully used later for a downstream patient-control
classification task. Concluding remarks are given in Section 4, along
with an outline of future directions related to this promising, but ad-
mittedly preliminary, line of research. To the best of our knowledge,
this is the first time that a GCN model is applied to study the relation
between brain structural and functional connectivities.

2. PRELIMINARIES AND PROPOSED MODEL

In this section, we first review some established graph convolutional
models used to build GCN architectures; see also [13,16] for further
details. Then we formally state the problem of learning the SC-to-FC
mapping and introduce the proposed graph encoder-decoder model.

2.1. Graph convolutional networks

Consider a weighted, undirected graph denoted by G := (V,A),
where V is a set ofN nodes corresponding to brain regions, and A is
the symmetric adjacency matrix with Aij representing the functional
(or structural) connection strengths between brain region i and j.
The graph Laplacian matrix is defined as L := D−A, where D is
the diagonal degree matrix. The Laplacian L is a symmetric matrix
and can be further decomposed as L = UΛUT , where U denotes
the set of orthonormal eigenvectors and Λ contains all eigenvalues
on its diagonal. As in classical signal processing, the eigenvectors in
U serve as the Fourier basis [23]. Consider a vertex-valued process
x ∈ RN where xi denotes the signal value at node i, for example,
the nodal attributes on the brain FC (or SC) network. Then the graph
Fourier transform (GFT) is defined as x̃ = UTx [23, 24]. Given a
filter h ∈ RN , the graph convolution operator can be defined as

x ∗ h = U((UTh)� (UTx)) (1)

where � denotes the element-wise multiplication. The definition in
(1) comes from the analogy of convolution among temporal signals,
where convolution in the time domain becomes element-wise multi-
plication of the signal and filter’s Fourier transform.

The first spectral convolutional neural network was proposed in
[15] to learn the filter response in the spectral domain. However,
this method needs to compute the eigenvectors of a (fixed) graph,
which may be computationally infeasible for very large networks.
Also, the filters depend on the eigenbasis of the Laplacian thus the
parameters cannot be shared across different graphs. To overcome
these limitations, the ChebNet was proposed in [25] by defining a
filter in terms of Chebyshev polynomials of the diagonal matrix of
eigenvalues expressed as

h(Λ̃) =

K∑
i=0

θiTi(Λ̃), (2)

where θi are the polynomial filter coefficients to be learned, Λ̃ =
2Λ/λmax − IN , with λmax denoting the largest eigenvalue of the
Laplacian, and IN is theN×N identity matrix. The Chebyshev poly-
nomials are recursively given as Tk(x) = 2xTk−1(x) − Tk−2(x)
with T0(x) = 1, T1(x) = x. In this case, the graph convolution can
be defined as

x ∗ h =

K∑
i=0

θiTi(L̃)x (3)

Fig. 1: The model scheme. The rows in Y are the low-dimensional nodal
embeddings learned by the encoder from the input structural networks.

with L̃ = 2L/λmax − IN . Note that (3) now is K-hop localized
with K being the order of the Chebyshev polynomial. This means
the convolution operation on a node depends only on other nodes
that are at most K hops away in G.

A first-order approximation of the ChebNet was introduced
in [26] with K = 1, λmax = 2, θ = θ0 = −θ1 to simplify (3) as

x ∗ h = θ(IN + D−1/2AD−1/2)x. (4)

The compact version of (4) motivates the simple per-layer filtering
update implemented in [26] of the form

X̃← ÃXΘ, (5)

where Ã = IN + D−1/2AD−1/2, X is a set of multiple obser-
vations of the graph signal x, and Θ stores the learnable filter pa-
rameters. The output X̃ integrates both the nodal attributes in X and
the graph topology information in Ã. A neural network model based
on graph convolution can be built by stacking multiple convolutional
layers as in (5), each one followed by a point-wise non-linearity [26].
Next, for our proposed architecture, we build upon the graph convo-
lution in (5) due to its simplicity and remarkable performance [26].

2.2. Problem statement and model architecture

Given a brain SC network, the goal is to build and train a model to
reconstruct the brain FC network and learn the SC-to-FC mapping.
The latent variables within the model can provide novel insights re-
garding the generation of FC patterns from SC. To this end, we pro-
pose a graph encoder-decoder model as shown in Fig. 1.

With the input brain SC network where each node represents
one brain region, the encoder generates a lower dimension represen-
tation for each node. Being a suitable method to capture indirect
connections within brain networks as in (3), GCN is used here in the
encoder to generate latent variables that consolidate both nodal at-
tributes such as the known intrinsic properties of each brain region,
and the network topology information like the connection strengths
among regions in SC networks. In our architecture, a single-layer
GCN modified from (5) is used for the encoder, given by

Y = Relu(ÂXΘ) (6)

where Relu(x) = max(0, x). In (6), X ∈ RN×T is the input signal
matrix where each row represents a nodal attribute of length T and
N is the number of graph nodes. The normalized adjacency matrix is
Â := D̃−1/2ÃD̃−1/2, where Ã = I + A and D̃ is the degree ma-
trix of Ã (4). Matrix A, in our case, stands for the SC brain network.
Note that the identity matrix is added to the input graph A, introduc-
ing self loops so that during the graph convolution, the attribute on
the node itself could also contribute to the new node embedding.
The weight matrix Θ ∈ RN×F collects the filter coefficients for the



GCN to be learned during training. The hyperparameter F stands
for the length of the node embeddings, which is also the number of
filters in the graph convolutional layer. It is a common practice to
have F < T to perform dimensionality reduction while the neigh-
boring information is efficiently summarized. The Relu activation
function [27] is used to speed up the training and avoid the problem
of vanishing gradients.

The learned node embeddings Y ∈ RN×F then go through the
outer product decoder

Z = tanh(Relu(YYT )) (7)

to approximate the empirical FC networks via the adjacency matrix
estimate Z. The choice of the activation functions for the decoder
highly depends on the nature of the data. In the present setup de-
scribed in Section 3.1, the functional networks contain limited num-
ber of negative edges with much smaller magnitude compared with
the vast amount of positive edges. Using only tanh activation while
keeping the negative FC connections generates graphs with positive
edge weights. This situation resembles the classical data imbalance
problem in machine learning where classifiers are more biased to-
wards the majority classes. As a result, we restrict the FC weights
to the range [0, 1] by removing all the negative FC connections as in
previous works dealing with functional brain connectivity [28, 29].
To ensure that the output of the decoder is in the same range, we
select the combination of tanh and Relu over sigmoid function as the
latter results in slower training and larger test errors. Mean squared
error (MSE) between the reconstructed graph Z and the desired out-
put, i.e. the empirical FC network is used as the loss function for
training the model. MSE has been widely used and proven effective
for weighted graph reconstruction [19].

Note that (7) can also be written as Z = tanh(Relu(YYT )) =

tanh(Relu(
∑F

i=1 yiyi
T )), where yi corresponds to the ith col-

umn in Y (respectively in Θ). Before the nonlinear activation, we
can view YYT as a rank-F approximation to the FC graph. This
prompts us to extract and analyze each of the rank-one components
yiyi

T , and consider the component graphs

Zi = tanh(Relu(yiyi
T )), i = 1, . . . , F (8)

which correspond to the outputs of the individual filters in the graph
convolutional layer. These F graphs can be regarded as building
blocks of the FC network, that we believe could reveal more details
about the process in the generation of FC patterns from SC networks.

3. NUMERICAL TEST CASES

Here we evaluate the effectiveness of the proposed architecture on a
real-world neuroimaging dataset.

3.1. Neuroimaging data

A dataset from the Human Connectome Project (HCP) containing
1058 healthy subjects is used in this paper. For each subject, the
brain SC network is extracted from the raw diffusion MRI (dMRI)
and structural MRI (sMRI) data using the pipeline in [30]. The brain
functional activities are measured by the blood oxygen-level depen-
dent (BOLD) signals residing on each brain region using functional
MRI (fMRI) scanning. The brain FC networks are then obtained by
computing the Pearson correlation between the BOLD signals2.

The Desikan-Killiany atlas [31] is used to define brain regions
corresponding to the nodes in both the FC and SC networks thus both
networks have N = 68 cortical surface regions with 34 nodes in

2For more information about the data and preprocessing steps, refer to
[30] and https://www.humanconnectome.org/

Fig. 2: Correlation between (left) SC and empirical FC; (right) reconstructed
FC and empirical FC. Higher correlation between the reconstructed FC orig-
inated from SC and empirical FC shows that the model captures the relation
between SC and FC.

each hemisphere. Since the FC networks are obtained from the brain
signals, in our tests we do not use the averaged BOLD timecourses
as node attributes and use one-hot encoding instead to define graph
signals. Accordingly, we set X = I68 in (6).

3.2. Implementation

The GCN-based encoder-decoder model is implemented using Ten-
sorflow. The number of filters F in the graph convolutional layer is
set to 32 and the weight coefficients Θ are initialized following [32].
We use 10-fold cross validation where each time the whole dataset
is partitioned randomly into 80% training, 10% validation and 10%
testing set. To avoid overfitting, early stopping is applied to monitor
the validation loss and stop the training once the validation loss in-
creases in 5 consecutive training epochs. The Adam [33] optimizer
is used to minimize the MSE with learning rate 0.001.

3.3. Results

Reconstruction performance. The model is trained for 10 folds and
the average test error is 0.0304 with a standard deviation of 0.0011.
This indicates that the proposed graph encoder-decoder system can
reconstruct FC networks from SC networks effectively with a sta-
ble performance. Fig. 2 shows the correlation coefficients between
the vectorization of the input SC networks and the empirical FC net-
works, and between vectorization of the reconstructed FC networks
and the empirical FC networks for all 1058 subjects. It clearly shows
that the graph encoder-decoder system is able to generate estimated
FC networks highly associated to the empirical FC networks even
when the SC networks and FC networks do not correspond well.

In Fig. 3, we further illustrate the ground-truth and reconstructed
FC networks of two randomly drawn test samples (test error = 0.021
and 0.0306, respectively) which depicts similarities between the re-
constructed FC network and the empirical FC network for each sub-
ject. Note that since the model is trained to capture the SC-FC re-
lation in a very large cohort of subjects, the latent variables used to
reconstruct the FC networks capture population patterns. Thus the
model should offer satisfactory performance on most subjects, that
is we expect it will generalize well as the test MSE corroborates.
As the goal is to study the overall relation between SC and FC net-
works and to find out general patterns within SC-to-FC mapping, we
believe that our model is well-suited to this end.

The reconstructed FC networks are learned by considering the
topology of SC networks and the interactions between brain regions
beyond direct anatomical pathways. The apparent similarity be-
tween the reconstructed and the empirical FC networks as shown
in Fig. 3 suggests that the embeddings Y have leaned and captured
valuable information related to the unknown SC-FC relationship, as
will be further elaborated in the next section.
Network decomposition. As mentioned in Section 2.2, the re-
constructed FC networks can be further decomposed into multiple
graphs. Each of the graphs is built from one column in the output of



(a) (b) (c)

(d) (e) (f)

Fig. 3: (a)(d) Structural network (b)(e) Recovered FC network (c)(f) Empiri-
cal FC network for two subjects (top and bottom row, respectively). While the
SC shows the pattern of highly within-hemisphere connections and sparser
between-hemisphere connections, both reconstructed FC and empirical FC
show less structured (i.e., modular) pattern of connections.

(a) (b)

(c) (d)

Fig. 4: The sub-networks identified through decomposition of reconstructed
FC network. Each subplot corresponds to a brain sub-network that con-
tributes to the SC-to-FC mapping.

the encoder, i.e. the output of each filter in the graph convolutional
layer. As the superposition of these rank-one outer products (before
the nonlinear activation) gives rise to the reconstructed graph struc-
ture at the decoder output, we can think of these graphs as building
blocks that contain vital information on a finer scale regarding the
mapping from SC to FC; see (8).

To evaluate what the filters learn during the training of the graph
encoder-decoder system, we choose one model with the smallest test
error among 10 folds. The SC networks of all 1058 subjects are fed
to the system and the reconstructed FC network is generated for each
subject that best approximates the individual empirical FC network.
Since the number of filters is set to F = 32, each reconstructed
FC network is decomposed into 32 graphs. For each filter, a rep-
resentative graph is obtained by taking the average of the outputs
across all 1058 subjects. Among the 32 representative graphs, some
stand out to correspond well to known brain regions and brain sub-
networks. We believe that these regions and sub-networks contribute
to the mapping from SC to FC and may provide vital information re-
garding the formation of brain functional activity. Fig. 4 presents
the connectivity matrices of the identified sub-networks which are
visualized in brain domain in Fig. 5.

(a) (b)

(c) (d)

Fig. 5: The sub-networks in Fig. 4 visualized via BrainNet Viewer [34].

The identified brain sub-networks present nice correspon-
dence with brain functions. For example, Fig. 4d and Fig. 5d
present a brain sub-network centering three regions with high intra-
connections: parsopercularis (POP), parsorbitalis (POB) and pars-
triangularis (PT). These three regions consist the Inferior Frontal
Gyrus which is critically involved in a wide range of complex oper-
ations [35]. Fig. 4b and Fig. 5b also present another sub-network
staring with precentral (PRC), paracentral (PARA), postcentral
(POC) and superior parietal (SP) regions. The first two deal with
motor and sensory functions and are located in the frontal lobe.
The last two are in the parietal lobe and are involved with spatial
orientation and somatosensory functions. The results indicate that
multiple identified building blocks highly correspond to functional
brain sub-networks and the decomposition process serves as func-
tional segregation to dissect the brain FC network into individual
components of functional activities.

4. CONCLUSIONS AND FUTURE WORK
The brain SC network and FC network are closely related and how
the brain functional activities are generated from and beyond the un-
derlying anatomical pathways has been an intriguing research topic.
In this paper, a graph encoder-decoder system was proposed to re-
construct FC graphs using the information from brain SC networks.
Through training with a large population of subjects, the model is
able to learn population patterns regarding the SC-FC relationship
in human brains. The latent variables within the encoder-decoder
model can be extracted and interpreted as building blocks that ap-
proximate the brain FC networks. Multiple building blocks corre-
spond to key brain sub-networks contributing to the generation of
functional activities from anatomical connections. Such findings
provide a novel perspective to exploring the SC-to-FC mapping and
locating key regions and sub-networks that generate complex brain
functional activities. Currently the model is trained on healthy sub-
jects using simple one-hot encoding as node attributes. Future work
shall be done to include alternative node features, and train the model
to identify differences in the SC-FC relationship between patient and
control groups and to locate potential regions as bio-markers for dis-
ease diagnosis.
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[20] G. Rosenthal, F. Váša, A. Griffa, P. Hagmann, E. Amico, J.
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