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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V

I Ex: Opinion profile, buffer congestion levels, brain signal analyses
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Networks of the brain

I Challenge: understand human brain function and structure
I Neuroimaging advances ⇒ Data increase in volume and complexity
I Graph-centric analysis and methods of network science [Sporns’10]

I Brain networks can reflect two connectivity patterns
I Structural connectivity (SC). How is the brain wired?

⇒ Anatomical tracts connecting brain regions (DTI)

I Functional connectivity (FC). How the brain functions?
⇒ Correlation between neural signals in different regions (fMRI)

I Key problem: deciphering the relationship between SC and FC
I Simulations of nonlinear cortical activity models [Honey et al’09]
I Diffusion-based parametric inverse problem [Abdelnour et al’14]
I Network deconvolution [Li-Mateos’19]

I Goal: pursue SC-to-FC mapping as a regression problem

⇒ Reconstruct FC network from SC network
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Graph signal processing (GSP)

I Graph G (V, E) with N = |V| nodes ⇒ A and L = D− A

I Graph signals mappings x : V → R, represented as vectors x ∈ RN

I To understand GS ⇒ Graph-shift operator S ∈ RN×N

⇒ Local Sij = 0 for i 6= j and (i , j) /∈ E ⇒ Ex: A or L

⇒ Spectrum of S = UΛUT

I Graph Fourier Transform (GFT): x̃ = UTx

I Generalize machine learning models for network data

⇒ GSP to define convolutions on graphs [Ortega et al’19]

⇒ Tool to integrate brain structure and function [Wang et al’19]
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Graph convolutions

I Given a graph filter h, graph convolution operator

x ∗ h = U((UTh)� (UTx))= Ugθ(Λ)UTx

I ChebNet: Chebyshev polynomials of Λ [Defferrard et al’16]

gθ(Λ̃) =
∑K

i=0
θiTi (Λ̃)

I θi : polynomial filter coefficients to be learned

I Λ̃ = 2Λ/λmax − IN , λmax: largest eigenvalue of L

I Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1,T1(x) = x

I Graph convolution operator becomes (L̃ = (2/λmax)L− IN)

x ∗ h =
∑K

i=0
θiTi (L̃)x

I Combines signal values at nodes K -hops away in G
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Graph convolutional network (GCN)

I First-order approximation of ChebNet [Kipf-Welling’17]

I Set K = 1, λmax = 2, θ = θ0 = −θ1

x ∗ h = θ(IN + D−1/2AD−1/2)x

I Compact rule for per-layer filtering update

X̃← ÃXΘ

I Ã = IN + D−1/2AD−1/2

I X: set of multiple observations of the graph signal x
I Θ collects the learnable filter parameters

I X̃ integrates nodal attributes in X and topology in Ã

I Q: Aggregate information from multiple hops within G?

⇒ Stack convolutional layers with pointwise non-linear activation

⇒ Capture indirect interactions across the network
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Problem statement

Study the generation of FC patterns from SC graphs

I Goal: learn the mapping from brain SC networks to FC networks

I Approach: reconstruct FC networks from the given SC networks

I Model: GCN-based encoder-decoder system

I Analysis: investigate latent variables within the system
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Model architecture: Encoder

I Input SC network A ∈ RN×N , N regions from brain atlas

⇒ Edge weights represent SC between brain regions

⇒ Preprocessing: Â := D̃−1/2ÃD̃−1/2, Ã = I + A

I Learn vertex representations (i.e., embeddings) that capture

(i) Nodal attributes, e.g. intrinsic properties of brain regions
(ii) Graph topology information, e.g. regional connection strengths

I A single-layer GCN used for encoder to learn node embeddings

Y = Relu(ÂXΘ) ∈ RN×F

I X ∈ RN×T : input signal matrix

I Θ ∈ RT×F : learnable GCN filter coefficients

I Relu(x) = max(0, x) activation for training the network
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Model architecture: Decoder

I Node embeddings Y ∈ RN×F go through the outer-product decoder

Z = tanh(Relu(YYT )) ∈ RN×N

I Weights in empirical FC networks restricted to [0,1]
I Ensure the output of the decoder in the same range

I Choose tanh and Relu over Sigmoid

I Loss function: MSE between Z and empirical FC
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Model architecture: Latent variables

I YYT : rank-F approximation of FC graph before activation
I Extract and analyze each of the rank-1 components yiyi

T

Zi = tanh(Relu(yiyi
T )), i = 1, . . . ,F

I Zi ⇔ outputs of individual filters in graph convolutional layer

⇒ View as building blocks of FC network

I Reveal details about generation of FC patterns from SC networks
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Numerical tests: Data

I 1058 healthy subjects from Human Connectome Project (HCP)

I Preprocessed SC network A from diffusion MRI

⇒ Fiber counts between N = 68 cortical surface regions

I Preprocessed FC network from functional MRI

⇒ Blood oxygen-level dependent (BOLD) signals

⇒ Estimated FC ⇔ Pearson correlation between BOLD signals

I One-hot encoding as the signal on each graph node (X = IN)
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Numerical tests: FC reconstruction performance

I MSE between reconstructed and empirical FC networks
I Average test reconstruction error = 0.0304 with std = 0.0011
I Capture population patterns of SC-FC relationship
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Numerical tests: Component graphs

I Investigate the latent variables learnt during model training
I Output of each graph filter in the graph convolution layer

I Building blocks Zi that generate reconstructed FC graph

I Subgraphs may reveal key insights about SC-to-FC mapping
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Numerical tests: Component graphs

I Left: subnetwork of regions in frontal and parietal lobe
I Precentral (PRC), Paracentral (PARA), motor/sensory functions

I Postcentral (POC), Superior Parietal (SP), spatial/somatosensory

I Right: subnetwork of regions in Inferior Frontal Gyrus
I Parsopercularis (POP), Parsorbitalis (POB), Parstriangularis (PT)

I Critically involved in complex brain functions [Greenlee et al’07]
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Summary and the road ahead

I Preliminary study of human brain SC-FC relationship

I Reconstruct FC given SC input

⇒ GCN-based encoder-decoder model

⇒ Learn population patterns of SC-FC mapping

I Latent variables contain vital information

⇒ Identify subnetworks contributing to FC formation from SC

I Numerical tests with a large population of HCP subjects

I Envisioned application domains

(a) Conduct patient-control comparison

(b) Identify potential regions or subnetworks as biomarkers

(c) Explore alternative node attributes as graph signals
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